
Structured Language
Ashish, Bhupinder & Peeyush

1

Contents
2006 .. 3

Q1. What is Package? Explain any one package in Java in Detail? (2004) .. 3

Q2. A) What is meant by platform independence? How is it achieved in Java? (10 marks) 4

Q2.B. Which are the different primitive datatypes in Java? Where are they used? What is the
difference between the primitive and object data types (10 marks) ... 5

Q3.A. Explain general coding structure of a class with coding example. List a few coding conventions
followed in the language? (10 marks)... 11

Q3. B) How are methods defined in Java? Explain the usage of most common keywords used in
method definition? (10 marks) ... 12

Q4. What is Object Oriented Programming? Enumerate and explain various features in OOP with
suitable code examples? (20 marks) ... 14

Q5. Write Short notes on: ... 15

Q5.1. String class ... 15

Q5.2) Constructors .. 16

Q 5.3) Java Collections .. 18

Q5.4) Wrapper classes .. 20

Q6. What is Method Overloading? Where is it used? How is it different than Method Overridding? .. 22

Q7. Explain salient features, advantages and disadvantages of Java as programming language. How
does this language compare with other programming languages? What are the practical applications
of java? Explain a few.. 25

Q8. A) What is container software? .. 28

Q8.B) what are the different types of EJB’s? Where are EJB’s used? ... 28

2009 .. 31

Q. What do you mean by Declaration, definition and Usage. Illustrate with example of each. 31

Q. “Byte Code” is the key that allows Java to solve both the security and portability problems. 35

Q. What do you mean by “Structure” in structured languages? Discuss. .. 37

Q. What are the identifying characteristics of a object oriented programming paradigm. 38

Q. Briefly describe history and evolution of java .. 44

Q. “Java is a strongly typed language”. Discuss .. 46

Q. “It is simple to manage stack memory than heap memory”. Discuss? .. 48

2010 .. 51

Q1: Write answer in complete one sentence (20 marks) ... 51

Q2a) What is a structure? Explain with example. How structure is different from Array? Distinguish
between Structure and Class (8 marks) [Not Applicable] ... 51

Structured Language
Ashish, Bhupinder & Peeyush

2

Q2b) Describe all the various features of Java (8 marks) ... 51

Q2c) What is pointer variable. How it differs from reference variable? (4 marks) [Not Applicable] 53

Q3a) What is the meaning of abstract method? What is the advantage of declaring class as abstract?
What is the difference between abstract and final class? (8 marks) .. 53

Q3b) What are the different types of function declaration? How will you declare a function outside
and inside the class? (8 marks) [Not Applicable] .. 56

Q3c) Compare class and object with suitable example (4 marks) ... 56

Q4a) What is object oriented paradigm? Explain the various features of object oriented progamming
with example (8 marks) [Repeat in 2004] ... 57

Q4b) Explain practical usage of interface with example Describe how it differs from class (8 marks) .. 60

Q4c) What do you mean by Exception Handling? What are the types of exception? Compare them (4
marks) ... 60

Q5a) Compare and contrast C++ and Java (8 marks) .. 62

Q5b) Write brief note on .. 63

1. JVM.. 63

2. Development tools for JDK ... 63

Q5c) What are the uses of Keyword final in Java? Give example (4 marks) ... 64

Q6a) What is array? Write example for each type of array. Describe 2 ways to declare array in Java.
How do you get size of an array? Is index checking supported by Java? (8 marks) 65

Q6b) What is friend function? Describe their benefits and limitations. Give suitable example (6 marks)
[Not applicable] ... 68

Q6c) What is the need of dynamic method dispatch? Explain with Example (6 marks) 68

2004 .. 70

Q2) What are constructors? How are objects created and destroyed in JVM? Explain briefly the
functioning of Garbage Collection in JVM. ... 70

Q3) What is method/constructor overloading? How is it used in Programming? 71

Q6) What is Threading? Explain the applications and common problems in threading. 73

Q7) What is loop (control) Structure. Explain the 3 types of loop with small code snippets. 76

Q8) What is JDBC? What are the different types of JDBC drivers? .. 78

Structured Language
Ashish, Bhupinder & Peeyush

3

2006

Q1. What is Package? Explain any one package in Java in Detail? (2004)
Ans. A package is a namespace that organizes a set of related classes and interfaces. Conceptually you
can think of packages as being similar to different folders on your computer. You might keep HTML
pages in one folder, images in another, and scripts or applications in yet another. Because software

written in the Java programming language can be composed of hundreds or thousands of individual
classes, it makes sense to keep things organized by placing related classes and interfaces into packages.

The Java platform provides an enormous class library (a set of packages) suitable for use in your own
applications. This library is known as the "Application Programming Interface", or "API" for short. Its
packages represent the tasks most commonly associated with general-purpose programming. For

example, a String object contains state and behavior for character strings; a File object allows a
programmer to easily create, delete, inspect, compare, or modify a file on the filesystem;

a Socket object allows for the creation and use of network sockets; various GUI objects control buttons
and checkboxes and anything else related to graphical user interfaces. There are literally thousands of
classes to choose from. This allows you, the programmer, to focus on the design of your particular
application, rather than the infrastructure required to make it work.

The Java I/O Package

The Java I/O package, a.k.a. java.io, provides a set of input streams and a set of output streams used to
read and write data to files or other input and output sources. There are three categories of classes in
java.io: input streams, output streams and everything else.

The pages of this lesson provide overviews of Java's I/O classes. They give information about what each
class does and how you can use them. These pages do not provide any practical examples or details of
each class. For more practical information regarding reading and writing data using these classes,

see Input and Output Streams .

Input Streams

Input streams read data from an input source. An input source can be a file, a string, or memory--
anything that can contain data. All input streams inherit from InputStream--an abstract class that
defines the programming interface for all input streams.

The InputStream class defines a programming interface for reading bytes or arrays of bytes, marking
locations in the stream, skipping bytes of input, finding out the number of bytes that are available for
reading, and resetting the current position within the stream. An input stream is automatically opened

when you create it. You can explicitly close a stream with the close() method, or let it be closed
implicitly when the object is garbage collected.

Output Streams
Output streams write data to an output source. Similar to input sources, an output source can be
anything that can contain data: a file, a string, or memory.

The OutputStream class is a sibling to InputStream and is used to write data that can then be read by an
input stream. The OutputStream class defines a programming interface for writing bytes or arrays of
bytes to the stream and flushiing the stream. Like an input stream, an output stream is automatically

http://www.geom.uiuc.edu/~daeron/docs/javaguide/MissingPage.html
http://www.geom.uiuc.edu/~daeron/docs/javaguide/tools/packages/input.html
http://www.geom.uiuc.edu/~daeron/docs/javaguide/tools/packages/output.html
http://www.geom.uiuc.edu/~daeron/docs/javaguide/MissingPage.html

Structured Language
Ashish, Bhupinder & Peeyush

4

opened when you create it. You can explicitly close an output stream with theclose() method, or let it
be closed implicitly when the object is garbage collected.

Everything Else
In addition to the streams classes, java.io contains a few other classes:

File

Represents a file on the host system.

RandomAccessFile

Represents a random access file.

StreamTokenizer

Tokenizes the contents of a stream.

Q2. A) What is meant by platform independence? How is it achieved in Java?
(10 marks)
Ans. A Platform-Independent Model (PIM) in software engineering is a model of a software
system or business system, that is independent of the specific technological platform used to
implement it.

The term platform-independent model is most frequently used in the context of the model-driven
architecture approach.Platform independent is program running on different processors like intel, AMD,
Sun Micro Systems etc.; This model-driven architecture approach corresponds the Object Management
Group vision of Model Driven Engineering.

Java solves the problem of platform-independence by using byte code. The Java compiler does not
produce native executable code for a particular machine like a C compiler would. Instead it produces a
special format called byte code. Java byte code written in hexadecimal, byte by byte,
looks like this:
CA FE BA BE 00 03 00 2D 00 3E 08 00 3B 08 00 01 08 00 20 08

This looks a lot like machine language, but unlike machine language Java byte code is exactly the same
on every platform. This byte code fragment means the same thing on a Solaris workstation as it does on
a Macintosh PowerBook. Java programs that have been compiled into byte code still need an interpreter
to execute them on any given platform. The interpreter reads the byte code and translates it into the
native language of the host machine on the fly. The most common such interpreter is Sun's program java
(with a little j). Since the byte code is completely platform independent, only the interpreter and a few
native libraries need to be ported to get Java to run on a new computer or operating system. The rest of
the runtime environment including the compiler and most of the class libraries are written in Java.

All these pieces, the javac compiler, the java interpreter, the Java programming language, and more are
collectively referred to as Java.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Business_system
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Model_Driven_Engineering

Structured Language
Ashish, Bhupinder & Peeyush

5

Q2.B. Which are the different primitive datatypes in Java? Where are they
used? What is the difference between the primitive and object data types (10
marks)
Ans. The Java programming language is statically-typed, which means that all variables must first be
declared before they can be used. This involves stating the variable's type and name, as you've already
seen:

int gear = 1;

Doing so tells your program that a field named "gear" exists, holds numerical data, and has an initial
value of "1". A variable's data type determines the values it may contain, plus the operations that may

be performed on it. In addition to int, the Java programming language supports seven other primitive
data types. A primitive type is predefined by the language and is named by a reserved keyword.
Primitive values do not share state with other primitive values. The eight primitive data types supported
by the Java programming language are:

 byte: The byte data type is an 8-bit signed two's complement integer. It has a minimum value

of -128 and a maximum value of 127 (inclusive). The byte data type can be useful for saving

memory in large arrays, where the memory savings actually matters. They can also be used in

place of int where their limits help to clarify your code; the fact that a variable's range is limited
can serve as a form of documentation.

 short: The short data type is a 16-bit signed two's complement integer. It has a minimum

value of -32,768 and a maximum value of 32,767 (inclusive). As with byte, the same guidelines

apply: you can use a short to save memory in large arrays, in situations where the memory
savings actually matters.

 int: The int data type is a 32-bit signed two's complement integer. It has a minimum value of -
2,147,483,648 and a maximum value of 2,147,483,647 (inclusive). For integral values, this data
type is generally the default choice unless there is a reason (like the above) to choose something
else. This data type will most likely be large enough for the numbers your program will use, but

if you need a wider range of values, use long instead.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Structured Language
Ashish, Bhupinder & Peeyush

6

 long: The long data type is a 64-bit signed two's complement integer. It has a minimum value
of -9,223,372,036,854,775,808 and a maximum value of 9,223,372,036,854,775,807 (inclusive).

Use this data type when you need a range of values wider than those provided by int.

 float: The float data type is a single-precision 32-bit IEEE 754 floating point. Its range of values

is beyond the scope of this discussion, but is specified in the Floating-Point Types,
Formats, and Values section of the Java Language Specification. As with the

recommendations for byte and short, use a float (instead of double) if you need to save
memory in large arrays of floating point numbers. This data type should never be used for
precise values, such as currency. For that, you will need to use

the java.math.BigDecimal class instead. Numbers and
Strings covers BigDecimal and other useful classes provided by the Java platform.

 double: The double data type is a double-precision 64-bit IEEE 754 floating point. Its range of

values is beyond the scope of this discussion, but is specified in theFloating-Point Types,
Formats, and Values section of the Java Language Specification. For decimal values, this
data type is generally the default choice. As mentioned above, this data type should never be
used for precise values, such as currency.

 boolean: The boolean data type has only two possible values: true and false. Use this data
type for simple flags that track true/false conditions. This data type represents one bit of
information, but its "size" isn't something that's precisely defined.

 char: The char data type is a single 16-bit Unicode character. It has a minimum value

of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535 inclusive).

In addition to the eight primitive data types listed above, the Java programming language also provides

special support for character strings via the java.lang.String class. Enclosing your character string

within double quotes will automatically create a new String object; for example, String s = "this is a

string";. String objects are immutable, which means that once created, their values cannot be changed.

The String class is not technically a primitive data type, but considering the special support given to it by

the language, you'll probably tend to think of it as such. You'll learn more about the String class

in Simple Data Objects

Default Values

It's not always necessary to assign a value when a field is declared. Fields that are declared but not
initialized will be set to a reasonable default by the compiler. Generally speaking, this default will be

zero or null, depending on the data type. Relying on such default values, however, is generally
considered bad programming style.

The following chart summarizes the default values for the above data types.

Data Type Default Value (for fields)

byte 0

http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.2.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.2.3
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/tutorial/java/data/index.html
http://docs.oracle.com/javase/tutorial/java/data/index.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.2.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.2.3
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/tutorial/java/data/index.html

Structured Language
Ashish, Bhupinder & Peeyush

7

short 0

int 0

long 0L

float 0.0f

double 0.0d

char '\u0000'

String (or any object) Null

boolean False

Local variables are slightly different; the compiler never assigns a default value to an uninitialized local
variable. If you cannot initialize your local variable where it is declared, make sure to assign it a value
before you attempt to use it. Accessing an uninitialized local variable will result in a compile-time error.

Literals

You may have noticed that the new keyword isn't used when initializing a variable of a primitive type.
Primitive types are special data types built into the language; they are not objects created from a class.

A literal is the source code representation of a fixed value; literals are represented directly in your
code without requiring computation. As shown below, it's possible to assign a literal to a variable of a
primitive type:

boolean result = true;
char capitalC = 'C';
byte b = 100;
short s = 10000;
int i = 100000;

Integer Literals

An integer literal is of type long if it ends with the letter L or l; otherwise it is of type int. It is

recommended that you use the upper case letter L because the lower case letterl is hard to distinguish

from the digit 1.

Values of the integral types byte, short, int, and long can be created from int literals. Values of

type long that exceed the range of int can be created from long literals. Integer literals can be
expressed by these number systems:

 Decimal: Base 10, whose digits consists of the numbers 0 through 9; this is the number system
you use every day

 Hexadecimal: Base 16, whose digits consist of the numbers 0 through 9 and the letters A
through F

Structured Language
Ashish, Bhupinder & Peeyush

8

 Binary: Base 2, whose digits consists of the numbers 0 and 1 (you can create binary literals in

Java SE 7 and later)

For general-purpose programming, the decimal system is likely to be the only number system you'll ever
use. However, if you need to use another number system, the following example shows the correct

syntax. The prefix 0x indicates hexadecimal and 0b indicates binary:

// The number 26, in decimal
int decVal = 26;
// The number 26, in hexadecimal
int hexVal = 0x1a;
// The number 26, in binary
int binVal = 0b11010;

Floating-Point Literals

A floating-point literal is of type float if it ends with the letter F or f; otherwise its type is double and it

can optionally end with the letter D or d.

The floating point types (float and double) can also be expressed using E or e (for scientific notation), F
or f (32-bit float literal) and D or d (64-bit double literal; this is the default and by convention is omitted).

double d1 = 123.4;
// same value as d1, but in scientific notation
double d2 = 1.234e2;
float f1 = 123.4f;

Character and String Literals

Literals of types char and String may contain any Unicode (UTF-16) characters. If your editor and file
system allow it, you can use such characters directly in your code. If not, you can use a "Unicode escape"

such as '\u0108' (capital C with circumflex), or "S\u00ED Se\u00F1or" (Sí Señor in Spanish). Always use

'single quotes' for char literals and "double quotes" for String literals. Unicode escape sequences may

be used elsewhere in a program (such as in field names, for example), not just in char or String literals.

The Java programming language also supports a few special escape sequences

for char and String literals: \b (backspace), \t (tab), \n (line feed), \f (form feed), \r(carriage

return), \" (double quote), \' (single quote), and \\ (backslash).

There's also a special null literal that can be used as a value for any reference type. null may be assigned

to any variable, except variables of primitive types. There's little you can do with a null value beyond

testing for its presence. Therefore, null is often used in programs as a marker to indicate that some
object is unavailable.

Finally, there's also a special kind of literal called a class literal, formed by taking a type name and

appending ".class"; for example, String.class. This refers to the object (of type Class) that represents
the type itself.

Using Underscore Characters in Numeric Literals

Structured Language
Ashish, Bhupinder & Peeyush

9

In Java SE 7 and later, any number of underscore characters (_) can appear anywhere between digits in a
numerical literal. This feature enables you, for example. to separate groups of digits in numeric literals,
which can improve the readability of your code.

For instance, if your code contains numbers with many digits, you can use an underscore character to
separate digits in groups of three, similar to how you would use a punctuation mark like a comma, or a
space, as a separator.

The following example shows other ways you can use the underscore in numeric literals:

long creditCardNumber = 1234_5678_9012_3456L;
long socialSecurityNumber = 999_99_9999L;
float pi = 3.14_15F;
long hexBytes = 0xFF_EC_DE_5E;
long hexWords = 0xCAFE_BABE;
long maxLong = 0x7fff_ffff_ffff_ffffL;
byte nybbles = 0b0010_0101;
long bytes = 0b11010010_01101001_10010100_10010010;

You can place underscores only between digits; you cannot place underscores in the following places:

 At the beginning or end of a number
 Adjacent to a decimal point in a floating point literal

 Prior to an F or L suffix
 In positions where a string of digits is expected

The following examples demonstrate valid and invalid underscore placements (which are highlighted) in
numeric literals:

// Invalid: cannot put underscores
// adjacent to a decimal point
float pi1 = 3_.1415F;
// Invalid: cannot put underscores
// adjacent to a decimal point
float pi2 = 3._1415F;
// Invalid: cannot put underscores
// prior to an L suffix
long socialSecurityNumber1 = 999_99_9999_L;

// This is an identifier, not
// a numeric literal
int x1 = _52;
// OK (decimal literal)
int x2 = 5_2;
// Invalid: cannot put underscores
// At the end of a literal
int x3 = 52_;
// OK (decimal literal)
int x4 = 5_______2;

// Invalid: cannot put underscores
// in the 0x radix prefix
int x5 = 0_x52;

Structured Language
Ashish, Bhupinder & Peeyush

10

// Invalid: cannot put underscores
// at the beginning of a number
int x6 = 0x_52;
// OK (hexadecimal literal)
int x7 = 0x5_2;
// Invalid: cannot put underscores
// at the end of a number
int x8 = 0x52_;

Object Data Type

Like variables are instances of primitive data types, Object Data Type essentially means class that is
used to create object instances. In other words, objects which are instances of classes are referred
to be of type “Object Data Type”. The class could be user-defined class or the one provided through
Java Library. For example, String which happens to be most frequently used class for creating
objects such as “studentName”. The most important thing to understand about a class is that it
defines a new data type. Once defined, this new type can be used to create objects of that type.
Thus, a class is a template for an object, and an object is an instance of a class.

When you create a class, you are creating a new data type. You can use this type to declare objects
of that type. However, obtaining objects of a class is a two-step process. First, you must declare a
variable of the class type. This variable does not define an object.

Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,
physical copy of the object and assign it to that variable. You can do this using the new operator.
The new operator dynamically allocates (that is, allocates at run time) memory for an object and
returns a reference to it. This reference is, more or less, the address in memory of the object
allocated by new. This reference is then stored in the variable. Thus, in Java, all class objects must
be dynamically allocated. Let’s look at the details of this procedure.

In the preceding sample programs, a line similar to the following is used to declare an object of type
Box:

Box mybox;

mybox = new Box();

The first line declares mybox as a reference to an object of type Box. After this line executes, mybox
contains the value null, which indicates that it does not yet point to an actual object. Any attempt to
use mybox at this point will result in a compile-time error. The next line allocates an actual object
and assigns a reference to it to mybox. After the second line executes, you can use mybox as if it
were a Box object. But in reality, mybox simply holds the memory address of the actual Box object.
The effect of these two lines of code is depicted

Structured Language
Ashish, Bhupinder & Peeyush

11

Java’s primitive types are not implemented as objects. Rather, they are implemented as “normal”
variables. This is done in the interest of efficiency. Objects have many features and attributes that
require Java to treat them differently than it treats the primitive types. By not applying the same
overhead to the primitive types that applies to objects, Java can implement the primitive types more
efficiently.

Q3.A. Explain general coding structure of a class with coding example. List a
few coding conventions followed in the language? (10 marks)
Ans.

You can see we have the package name first. Notice how the line ends with a semicolon. If you miss the
semicolon out, the programme won't compile:

package firstproject;

Structured Language
Ashish, Bhupinder & Peeyush

12

The class name comes next:

public class FirstProject {

}

You can think of a class as a code segment. But you have to tell Java where code segments start and end.
You do this with curly brackets. The start of a code segment is done with a left curly bracket { and is
ended with a right curly bracket }. Anything inside of the left and right curly brackets belong to that code
segment.

What's inside of the left and right curly brackets for the class is another code segment. This one:

public static void main(String[] args) {

}

The word "main" is the important part here. Whenever a Java programme starts, it looks for a method
called main. (A method is just a chunk of code. You'll learn more about these later.) It then executes any
code within the curly brackets for main. You'll get error messages if you don't have a main method in
your Java programmes. But as its name suggest, it is the main entry point for your programmes.

The blue parts before the word "main" can be ignored for now.

(If you're curious, however, public means that the method can be seen outside of this class; static means
that you don't have to create a new object; and void means it doesn't return a value - it just gets on with
it. The parts between the round brackets of main are something called command line arguments. Don't
worry if you don't understand any of that, though.)

The important point to remember is that we have a class called FirstProject. This class contains a
method called main. The two have their own sets of curly brackets. But the main chunk of code belongs
to the class FirstProject.

Q3. B) How are methods defined in Java? Explain the usage of most common
keywords used in method definition? (10 marks)
Ans.

The only required elements of a method declaration are the method's return type, name, a pair of

parentheses, (), and a body between braces, {}.

More generally, method declarations have six components, in order:

1. Modifiers—such as public, private, and others you will learn about later.

2. The return type—the data type of the value returned by the method, or void if the method does
not return a value.

3. The method name—the rules for field names apply to method names as well, but the
convention is a little different.

Structured Language
Ashish, Bhupinder & Peeyush

13

4. The parameter list in parenthesis—a comma-delimited list of input parameters, preceded by

their data types, enclosed by parentheses, (). If there are no parameters, you must use empty
parentheses.

5. An exception list—to be discussed later.
6. The method body, enclosed between braces—the method's code, including the declaration of

local variables, goes here.

Modifiers, return types, and parameters will be discussed later in this lesson. Exceptions are discussed in
a later lesson.

Here is an example of a typical method declaration:

public double calculateAnswer(double wingSpan, int numberOfEngines,
 double length, double grossTons) {
 //do the calculation here
}

Definition: Two of the components of a method declaration comprise the method signature—the
method's name and the parameter types.

The signature of the method declared above is:

calculateAnswer(double, int, double, double)

Naming a Method

Although a method name can be any legal identifier, code conventions restrict method names. By
convention, method names should be a verb in lowercase or a multi-word name that begins with a verb
in lowercase, followed by adjectives, nouns, etc. In multi-word names, the first letter of each of the
second and following words should be capitalized. Here are some examples:

run
runFast
getBackground
getFinalData
compareTo
setX
isEmpty

Typically, a method has a unique name within its class. However, a method might have the same name

as other methods due to method overloading.

Overloading Methods

The Java programming language supports overloading methods, and Java can distinguish between

methods with different method signatures. This means that methods within a class can have the same
name if they have different parameter lists (there are some qualifications to this that will be discussed in
the lesson titled "Interfaces and Inheritance").

Suppose that you have a class that can use calligraphy to draw various types of data (strings, integers,
and so on) and that contains a method for drawing each data type. It is cumbersome to use a new name

for each method—for example, drawString, drawInteger, drawFloat, and so on. In the Java programming

Structured Language
Ashish, Bhupinder & Peeyush

14

language, you can use the same name for all the drawing methods but pass a different argument list to

each method. Thus, the data drawing class might declare four methods named draw, each of which has
a different parameter list.

public class DataArtist {
 ...
 public void draw(String s) {
 ...
 }
 public void draw(int i) {
 ...
 }
 public void draw(double f) {
 ...
 }
 public void draw(int i, double f) {
 ...
 }
}

Overloaded methods are differentiated by the number and the type of the arguments passed into the

method. In the code sample, draw(String s) and draw(int i) are distinct and unique methods because
they require different argument types.

You cannot declare more than one method with the same name and the same number and type of
arguments, because the compiler cannot tell them apart.

The compiler does not consider return type when differentiating methods, so you cannot declare two
methods with the same signature even if they have a different return type.

Note: Overloaded methods should be used sparingly, as they can make code much less readable.

Q4. What is Object Oriented Programming? Enumerate and explain various
features in OOP with suitable code examples? (20 marks)
Ans. Object-oriented programming (OOP) is a programming paradigm that represents concepts as "objects"

that have data fields(attributes that describe the object) and associated procedures known as methods.
Objects, which are usually instances ofclasses, are used to interact with one another to design applications and
computer programs.

In programming languages an object is the composition of nouns (like data, such as numbers, strings,

or variables) and verbs (like actions, such as functions).

An object-oriented program may be viewed as a collection of interacting objects, as opposed to the

conventional model, in which a program is seen as a list of tasks (subroutines) to perform. In OOP, each object

is capable of receiving messages, processing data, and sending messages to other objects. Each object can

be viewed as an independent "machine" with a distinct role or responsibility. Actions (or "methods") on these

objects are closely associated with the object. For example, OOP data structurestend to "carry their own

operators around with them" (or at least "inherit" them from a similar object or class)—except when they must

be serialized.

Encapsulation Enforces Modularity

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Field_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Instance_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

Structured Language
Ashish, Bhupinder & Peeyush

15

Encapsulation refers to the creation of self-contained modules that bind processing functions to the

data. These user-defined data types are called "classes," and one instance of a class is an "object."

For example, in a payroll system, a class could be Manager, and Pat and Jan could be two instances

(two objects) of the Manager class. Encapsulation ensures good code modularity, which keeps

routines separate and less prone to conflict with each other.

Inheritance Passes "Knowledge" Down

Classes are created in hierarchies, and inheritance lets the structure and methods in one class pass

down the hierarchy. That means less programming is required when adding functions to complex

systems. If a step is added at the bottom of a hierarchy, only the processing and data associated with

that unique step must be added. Everything else about that step is inherited. The ability to reuse

existing objects is considered a major advantage of object technology.

Polymorphism Takes any Shape

Object-oriented programming lets programmers create procedures for objects whose exact type is not

known until runtime. For example, a screen cursor may change its shape from an arrow to a line

depending on the program mode. The routine to move the cursor on screen in response to mouse

movement can be written for "cursor," and polymorphism lets that cursor take whatever shape it

requires at runtime. It also lets new shapes be easily integrated.

OOP Languages

Used for simulating system behavior in the late 1960s, SIMULA was the first object-oriented language.

In the 1970s, Xerox's Smalltalk was the first object-oriented programming language and was used to

create the graphical user interface (GUI). Today, C++ and Java are the major OOP languages, while

C#, Visual Basic.NET, Python and JavaScript are also popular. ACTOR and Eiffel were earlier OOP

languages.

Q5. Write Short notes on:

Q5.1. String class

The String class represents character strings. All string literals in Java programs, such as "abc", are
implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String

buffers support mutable strings. Because String objects are immutable they can be

shared. For example:

 String str = "abc";

Structured Language
Ashish, Bhupinder & Peeyush

16

is equivalent to:

 char data[] = {'a', 'b', 'c'};

 String str = new String(data);

Here are some more examples of how strings can be used:

 System.out.println("abc");

 String cde = "cde";

 System.out.println("abc" + cde);

 String c = "abc".substring(2,3);

 String d = cde.substring(1, 2);

The class String includes methods for examining individual characters of the

sequence, for comparing strings, for searching strings, for extracting substrings, and

for creating a copy of a string with all characters translated to uppercase or to

lowercase. Case mapping is based on the Unicode Standard version specified by

the Character class.

The Java language provides special support for the string concatenation operator (+),

and for conversion of other objects to strings. String concatenation is implemented

through the StringBuilder(or StringBuffer) class and its append method. String

conversions are implemented through the method toString, defined by Object and

inherited by all classes in Java. For additional information on string concatenation and

conversion, see Gosling, Joy, and Steele, The Java Language Specification.

Unless otherwise noted, passing a null argument to a constructor or method in this

class will cause a NullPointerException to be thrown.

A String represents a string in the UTF-16 format in which supplementary

characters are represented by surrogate pairs (see the section Unicode Character

Representations in the Character class for more information). Index values refer

to char code units, so a supplementary character uses two positions in a String.

The String class provides methods for dealing with Unicode code points (i.e.,

characters), in addition to those for dealing with Unicode code units (i.e., char values).

Q5.2) Constructors

A constructor is a special method that is used to initialize a newly created objectand is called just after the

memory is allocated for the objectIt can be used to initialize the objects ,to required ,or default valuesat the

http://docs.oracle.com/javase/6/docs/api/java/lang/Character.html
http://docs.oracle.com/javase/6/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Character.html#unicode
http://docs.oracle.com/javase/6/docs/api/java/lang/Character.html#unicode

Structured Language
Ashish, Bhupinder & Peeyush

17

time of object creationIt is not mandatory for the coder to write a constructor for the class

If no user defined constructor is provided for a class, compiler initializes member variables to its default

values.

 numeric data types are set to 0

 char data types are set to null character(‘’)

 reference variables are set to null

In order to create a Constructor observe the following rules

1. It has the same name as the class

2. It should not return a value not even void

Assignment 1: Create your First Constructor

Step 1: Type following code in your editor

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

class Demo{

 int value1;

 int value2;

 Demo(){

 value1 = 10;

 value2 = 20;

 System.out.println("Inside Constructor");

 }

 public void display(){

Structured Language
Ashish, Bhupinder & Peeyush

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 System.out.println("Value1 === "+value1);

 System.out.println("Value2 === "+value2);

 }

 public static void main(String args[]){

 Demo d1 = new Demo();

 d1.display();

 }

}

Step 2) Save , Run & Compile the code. Observe the output.

constructor overloading
Constructor overloading is a technique in Java in which a class can have any number of constructors that differ

in parameter lists. The compiler differentiates these constructors by taking into account the number of

parameters in the list and their type

Q 5.3) Java Collections

Ans. A collection — sometimes called a container — is simply an object that groups

multiple elements into a single unit. Collections are used to store, retrieve, manipulate,

and communicate aggregate data. Typically, they represent data items that form a

natural group, such as a poker hand (a collection of cards), a mail folder (a collection

of letters), or a telephone directory (a mapping of names to phone numbers). If you

have used the Java programming language — or just about any other programming

language — you are already familiar with collections.

Structured Language
Ashish, Bhupinder & Peeyush

19

What Is a Collections Framework?

A collections framework is a unified architecture for representing and manipulating

collections. All collections frameworks contain the following:

 Interfaces: These are abstract data types that represent collections. Interfaces
allow collections to be manipulated independently of the details of their
representation. In object-oriented languages, interfaces generally form a
hierarchy.

 Implementations: These are the concrete implementations of the collection
interfaces. In essence, they are reusable data structures.

 Algorithms: These are the methods that perform useful computations, such as
searching and sorting, on objects that implement collection interfaces. The
algorithms are said to be polymorphic: that is, the same method can be used
on many different implementations of the appropriate collection interface. In
essence, algorithms are reusable functionality.

Apart from the Java Collections Framework, the best-known examples of collections

frameworks are the C++ Standard Template Library (STL) and Smalltalk's collection

hierarchy. Historically, collections frameworks have been quite complex, which gave

them a reputation for having a steep learning curve. We believe that the Java

Collections Framework breaks with this tradition, as you will learn for yourself in this

chapter.

Benefits of the Java Collections Framework

The Java Collections Framework provides the following benefits:

 Reduces programming effort: By providing useful data structures and
algorithms, the Collections Framework frees you to concentrate on the
important parts of your program rather than on the low-level "plumbing"
required to make it work. By facilitating interoperability among unrelated
APIs, the Java Collections Framework frees you from writing adapter objects
or conversion code to connect APIs.

 Increases program speed and quality: This Collections Framework provides
high-performance, high-quality implementations of useful data structures and
algorithms. The various implementations of each interface are
interchangeable, so programs can be easily tuned by switching collection
implementations. Because you're freed from the drudgery of writing your own

Structured Language
Ashish, Bhupinder & Peeyush

20

data structures, you'll have more time to devote to improving programs'
quality and performance.

 Allows interoperability among unrelated APIs: The collection interfaces are
the vernacular by which APIs pass collections back and forth. If my network
administration API furnishes a collection of node names and if your GUI toolkit
expects a collection of column headings, our APIs will interoperate seamlessly,
even though they were written independently.

 Reduces effort to learn and to use new APIs: Many APIs naturally take
collections on input and furnish them as output. In the past, each such API had
a small sub-API devoted to manipulating its collections. There was little
consistency among these ad hoc collections sub-APIs, so you had to learn each
one from scratch, and it was easy to make mistakes when using them. With
the advent of standard collection interfaces, the problem went away.

 Reduces effort to design new APIs: This is the flip side of the previous
advantage. Designers and implementers don't have to reinvent the wheel
each time they create an API that relies on collections; instead, they can use
standard collection interfaces.

 Fosters software reuse: New data structures that conform to the standard
collection interfaces are by nature reusable. The same goes for new
algorithms that operate on objects that implement these interfaces.

Q5.4) Wrapper classes

Ans. A primitive wrapper class in the Java and ActionScript programming languages is one of eight classes

provided in the java.lang package to provide object methods for the eight primitive types. All of the primitive

wrapper classes in Java are immutable. J2SE 5.0 introduced autoboxing of primitive types into their wrapper

object, and automatic unboxing of the wrapper objects into their primitive value—the implicit conversion

between the wrapper objects and primitive values.

Wrapper classes are used to represent primitive values when an Object is required. The wrapper classes are

used extensively with Collection classes in thejava.util package and with the classes in

the java.lang.reflect reflection package.

The primitive wrapper classes and their corresponding primitive types are:

Primitive type Wrapper class Constructor Arguments

byte Byte byte or String

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/ActionScript
http://download.oracle.com/javase/7/docs/api/java/lang/package-summary.html
http://en.wikipedia.org/wiki/Java_package
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Primitive_type
http://en.wikipedia.org/wiki/Immutable_object
http://en.wikipedia.org/wiki/Java_Platform,_Standard_Edition
http://en.wikipedia.org/wiki/Boxing_(computer_science)#Autoboxing
http://en.wikipedia.org/wiki/Object_type
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html
http://download.oracle.com/javase/7/docs/api/java/util/Collection.html
http://download.oracle.com/javase/7/docs/api/java/util/package-summary.html
http://download.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://en.wikipedia.org/wiki/Reflection_(computer_science)
http://download.oracle.com/javase/7/docs/api/java/lang/Byte.html

Structured Language
Ashish, Bhupinder & Peeyush

21

short Short short or String

int Integer int or String

long Long long or String

float Float float, double or String

double Double double or String

char Character char

boolean Boolean boolean or String

The Byte, Short, Integer, Long, Float, and Double wrapper classes are all subclasses of

the Number class.

The wrapper classes BigDecimal and BigInteger are not one of the primitive wrapper classes and

are mutable.
[1]

Void

Although it is not a wrapper class, the Void class is similar in that it provides an object representation of

the void return. "The Void class is an uninstantiable placeholder class used by

the java.lang.reflect API to hold a reference to the Class object representing the Java

keyword void."(Javadoc for Void)

Atomic wrapper classes

With Java 5.0, additional wrapper classes were introduced in

the java.util.concurrent.atomic package. These classes are mutable and cannot be used as a

replacement for the regular wrapper classes. Instead, they provide atomic operations for addition,

increment and assignment.

The atomic wrapper classes and their corresponding types are:

Primitive type Wrapper class

http://download.oracle.com/javase/7/docs/api/java/lang/Short.html
http://download.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://download.oracle.com/javase/7/docs/api/java/lang/Long.html
http://download.oracle.com/javase/7/docs/api/java/lang/Float.html
http://download.oracle.com/javase/7/docs/api/java/lang/Double.html
http://download.oracle.com/javase/7/docs/api/java/lang/Character.html
http://download.oracle.com/javase/7/docs/api/java/lang/Boolean.html
http://en.wikipedia.org/wiki/Subclasses
http://download.oracle.com/javase/7/docs/api/java/lang/Number.html
http://en.wikipedia.org/wiki/Primitive_wrapper_class#cite_note-1
http://download.oracle.com/javase/7/docs/api/java/lang/Void.html
http://en.wikipedia.org/wiki/Void_type
http://download.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://en.wikipedia.org/wiki/Application_programming_interface
http://download.oracle.com/javase/7/docs/api/java/lang/Class.html
http://en.wikipedia.org/wiki/Java_keyword
http://en.wikipedia.org/wiki/Java_keyword
http://docs.oracle.com/javase/6/docs/api/java/lang/Void.html
http://download.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/package-summary.html
http://en.wikipedia.org/wiki/Atomic_operation

Structured Language
Ashish, Bhupinder & Peeyush

22

int AtomicInteger

long AtomicLong

boolean AtomicBoolean

V AtomicReference<V>

The AtomicInteger and AtomicLong classes are subclasses of the Number class.

The AtomicReference class accepts the type parameter V that specifies the type of the

object reference. (See "Generics in Java" for a description of type parameters in Java).

Q6. What is Method Overloading? Where is it used? How is it different than
Method Overridding?

Ans. In Java it is possible to define two or more methods within the same class that share the same

name, as long as their parameter declarations are different. When this is the case, the methods are

said to beoverloaded, and the process is referred to as method overloading. Method overloading is

one of the ways that Java implements polymorphism.

If you have never used a language that allows the overloading of methods, then the concept may

seem strange at first. But as you will see, method overloading is one of Java's most exciting and

useful features. When an overloaded method is invoked, Java uses the type and/or number of

arguments as its guide to determine which version of the overloaded method to actually call. Thus,

overloaded methods must differ in the type and/or number of their parameters. While overloaded

methods may have different return types, the return type alone is insufficient to distinguish two

versions of a method. When Java encounters a call to an overloaded method, it simply executes the

version of the method whose parameters match the arguments used in the call. Here is a simple

example that illustrates method overloading:

// Demonstrate method overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

http://download.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/AtomicInteger.html
http://download.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/AtomicLong.html
http://download.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
http://download.oracle.com/javase/7/docs/api/java/util/concurrent/atomic/AtomicReference.html
http://en.wikipedia.org/wiki/TypeParameter
http://en.wikipedia.org/wiki/Reference_(computer_science)
http://en.wikipedia.org/wiki/Generics_in_Java

Structured Language
Ashish, Bhupinder & Peeyush

23

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

double test(double a) {

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.2);

System.out.println("Result of ob.test(123.2): " + result);

Structured Language
Ashish, Bhupinder & Peeyush

24

}

}

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.2

Result of ob.test(123.2): 15178.24

As you can see, test() is overloaded four times. The first version takes no parameters, the second

takes one integer parameter, the third takes two integer parameters, and the fourth takes

one doubleparameter. The fact that the fourth version of test() also returns a value is of no

consequence relative to overloading, since return types do not play a role in overload resolution.

When an overloaded method is called, Java looks for a match between the arguments used to call

the method and the method's parameters

Difference between Method Overloading and Overridding

The difference between overriding and overloading in Java is a common source of confusion – but it is

fairly simple to understand. Let’s start the discussion by talking more about method overloading.

Overloading in Java can occur when two or more methods in the same class share the same name or

even if a child class shares a method with the same name as one of it’s parent classes. But, in order

to actually have overloaded methods, the methods not only have to have the same name, but there

are other conditions that must be satisfied – read below to see what those conditions are.

Suppose we have a class called TestClass which has 2 methods, and both methods have

the same name – let’s say that name is “someMethod” – this would be considered to be method

overloading if at least one of these 2 things is true:

1.) The number of parameters is different for the methods

2.) The parameter types are different.

How to NOT overload methods:

It’s important to understand that method overloading is NOT something you can accomplish by doing

these 2 things:

Structured Language
Ashish, Bhupinder & Peeyush

25

1. Changing the return type of the method

2. Changing the name of the method parameters, but

 not changing the parameter types.

Q7. Explain salient features, advantages and disadvantages of Java as
programming language. How does this language compare with other
programming languages? What are the practical applications of java? Explain
a few.

Ans. Java was developed by taking the best points from other programming languages, primarily C and C++.

Java therefore utilises algorithms and methodologies that are already proven. Error prone tasks such as pointers

and memory management have either been eliminated or are handled by the Java environment automatically

rather than by the programmer. Since Java is primarily a derivative of C++ which most programmers are

conversant with, it implies that Java has a familiar feel rendering it easy to use.

JAVA IS OBJECT-ORIENTED

Even though Java has the look and feel of C++, it is a wholly independent language which has been designed

to be object-oriented from the ground up. In object-oriented programming (OOP), data is treated as objects to

which methods are applied. Java's basic execution unit is the class. Advantages of OOP include: reusability of

code, extensibility and dynamic applications.

JAVA IS DISTRIBUTED

Commonly used Internet protocols such as HTTP and FTP as well as calls for network access are built into

Java. Internet programmers can call on the functions through the supplied libraries and be able to access files

on the Internet as easily as writing to a local file system.

JAVA IS INTERPRETED

When Java code is compiled, the compiler outputs the Java Bytecode which is an executable for the Java

Virtual Machine. The Java Virtual Machine does not exist physically but is the specification for a hypothetical

processor that can run Java code. The bytecode is then run through a Java interpreter on any given platform

that has the interpreter ported to it. The interpreter converts the code to the target hardware and executes it.

JAVA IS ROBUST

Structured Language
Ashish, Bhupinder & Peeyush

26

Java compels the programmer to be thorough. It carries out type checking at both compile and runtime making

sure that every data structure has been clearly defined and typed. Java manages memory automatically by

using an automatic garbage collector. The garbage collector runs as a low priority thread in the background

keeping track of all objects and references to those objects in a Java program. When an object has no more

references, the garbage collector tags it for removal and removes the object either when there is an immediate

need for more memory or when the demand on processor cycles by the program is low.

JAVA IS SECURE

The Java language has built-in capabilities to ensure that violations of security do not occur. Consider a Java

program running on a workstation on a local area network which in turn is connected to the Internet. Being a

dynamic and distributed computing environment, the Java program can, at runtime, dynamically bring in the

classes it needs to run either from the workstation's hard drive, other computers on the local area network or a

computer thousands of miles away somewhere on the Internet. This ability of classes or applets to come from

unknown locations and execute automatically on a local computer sounds like every system administrator's

nightmare considering that there could be lurking out there on one of the millions of computers on the Internet,

some viruses, Trojan horses or worms which can invade the local computer system and wreak havoc on it.

Java goes to great lengths to address these security issues by putting in place a very rigorous multilevel system

of security:

 First and foremost, at compile time, pointers and memory allocation are removed thereby eliminating the tools

that a system breaker could use to gain access to system resources. Memory allocation is deferred until

runtime.

 Even though the Java compiler produces only correct Java code, there is still the possibility of the code being

tampered with between compilation and runtime. Java guards against this by using the bytecode verifier to

check the bytecode for language compliance when the code first enters the interpreter, before it ever even gets

the chance to run.

The bytecode verifier ensures that the code does not do any of the following:

o Forge pointers

o Violate access restrictions

o Incorrectly access classes

o Overflow or underflow operand stack

o Use incorrect parameters of bytecode instructions

o Use illegal data conversions

 At runtime, the Java interpreter further ensures that classes loaded do not access the file system except in the

manner permitted by the client or the user.

Sun Microsystems will soon be adding yet another dimension to the security of Java. They are currently

working on a public-key encryption system to allow Java applications to be stored and transmitted over the

Structured Language
Ashish, Bhupinder & Peeyush

27

Internet in a secure encrypted form.

JAVA IS ARCHITECTURALLY NEUTRAL

The Java compiler compiles source code to a stage which is intermediate between source and native machine

code. This intermediate stage is known as the bytecode, which is neutral. The bytecode conforms to the

specification of a hypothetical machine called the Java Virtual Machine and can be efficiently converted into

native code for a particular processor.

JAVA IS PORTABLE

By porting an interpreter for the Java Virtual Machine to any computer hardware/operating system, one is

assured that all code compiled for it will run on that system. This forms the basis for Java's portability.

Another feature which Java employs in order to guarantee portability is by creating a single standard for data

sizes irrespective of processor or operating system platforms.

JAVA IS HIGH-PERFORMANCE

The Java language supports many high-performance features such as multithreading, just-in-time compiling,

and native code usage.

 Java has employed multithreading to help overcome the performance problems suffered by interpreted code

as compared to native code. Since an executing program hardly ever uses CPU cycles 100 % of the time, Java

uses the idle time to perform the necessary garbage cleanup and general system maintenance that renders

traditional interpreters slow in executing applications. [NB: Multithreading is the ability of an application to

execute more than one task (thread) at the same time e.g. a word processor can be carrying out spell check in

one document and printing a second document at the same time.]

 Since the bytecode produced by the Java compiler from the corresponding source code is very close to

machine code, it can be interpreted very efficiently on any platform. In cases where even greater performance

is necessary than the interpreter can provide, just-in-time compilation can be employed whereby the code is

compiled at run-time to native code before execution.

 An alternative to just-in-time compilation is to link in native C code. This yields even greater performance but

is more burdensome on the programmer and reduces the portability of the code.

JAVA IS DYNAMIC

Structured Language
Ashish, Bhupinder & Peeyush

28

By connecting to the Internet, a user immediately has access to thousands of programs and other computers.

During the execution of a program, Java can dynamically load classes that it requires either from the local hard

drive, from another computer on the local area network or from a computer somewhere on the Internet.

Q8. A) What is container software?
Ans. Container, in the context of Java development, refers to a part of the server that is responsible
for managing the lifecycle of Web applications. The Web applications specify the required lifecycle
management with the help of a contract presented in XML format. The Web container cannot be
accessed directly by a client. Rather, the server manages the Web container, which in turn manages
the Web application code.

The container is an important component of Web applications in Java-based J2EE technology. It is
responsible for maintaining the individual components on the server side, which include Java
servlets, Java server pages and Java server faces. How the services will be provided and accessed
is determined by a contract, which is an agreement between the Web application and the container.
This provides a considerable amount of security in the J2EE framework because the client
applications are unaware of the existence of the container and therefore it cannot be accessed
directly. Thus, the Web container is responsible for initializing Web application components and
invoking client requests on the components.

Q8.B) what are the different types of EJB’s? Where are EJB’s used?

Types of EJB

In most texts on this subject you will see pictures of a 3-tier system containing boxes labeled "EJB." It is
actually more important to identify what application functionality that should go into an EJB.

At the start of application development, regardless of the precise development process used there is
generally some analysis that delivers a model, or set of classes and packages, that represent single or
grouped business concepts.

Two types of functionality are generally discovered during analysis—data manipulation and business
process flow. The application model will usually contain data-based classes such
as Customer or Product. These classes will be manipulated by other classes or roles that represent
business processes, such as Purchaser or CustomerManager. There are different types of EJB that
can be applied to these different requirements:

 Session EJB—A Session EJB is useful for mapping business process flow (or equivalent
application concepts). There are two sub-types of Session EJB—stateless and stateful—that are
discussed in more detail on Day 5. Session EJBs commonly represent "pure" functionality and
are created as needed.

 Entity EJB—An Entity EJB maps a combination of data (or equivalent application concept) and
associated functionality. Entity EJBs are usually based on an underlying data store and will be
created on the data within that store.

 Message-Driven EJB—A Message-driven EJB is very similar in concept to a Session EJB, but is
only activated when an asynchronous message arrives.

Structured Language
Ashish, Bhupinder & Peeyush

29

As an application designer, you should choose the most appropriate type of EJB based on the task to be
accomplished.

Common Uses of EJBs

So, given all of this, where would you commonly encounter EJBs and in what roles? Well, the following
are some examples:

 In a Web-centric application, the EJBs will provide the business logic that sits behind the Web-
oriented components, such as servlets and JSPs. If a Web-oriented application requires a high
level of scalability or maintainability, use of EJBs can help to deliver this.

 Thick client applications, such as Swing applications, will use EJBs in a similar way to Web-centric
applications. To share business logic in a natural way between different types of client
applications, EJBs can be used to house that business logic.

 Business-to-business (B2B) e-commerce applications can also take advantage of EJBs. Because
B2B e-commerce frequently revolves around the integration of business processes, EJBs provide
an ideal place to house the business process logic. They can also provide a link between the Web
technologies often used to deliver B2B and the business systems behind.

 Enterprise Application Integration (EAI) applications can incorporate EJBs to house processing
and mapping between different applications. Again, this is an encapsulation of the business logic
that is needed when transferring data between applications (in this case, in-house applications).

These are all high-level views on how EJBs are applied. There are various other EJB-specific patterns and
idioms that can be applied when implementing EJB-based solutions. These are discussed more on Day
18, "Patterns."

Why Use EJBs?

Despite the recommendations of the J2EE Blueprints, the use of EJBs is not mandatory. You can build
very successful applications using servlets, JSPs or standalone Java applications.

As a general rule of thumb, if an application is small in scope and is not required to be highly scalable,
you can use J2EE components, such as servlets, together with direct JDBC connectivity to build it.
However, as the application complexity grows or the number of concurrent users increases, the use of
EJBs makes it much easier to partition and scale the application. In this case, using EJBs gives you some
significant advantages.

The main advantage of using EJBs in your application is the framework provided by the EJB container.
The container provides various services for the EJB to relieve the developer from having to implement
such services, namely

 Distribution via proxies—The container generates a client-side stub and server-side skeleton for
the EJB. The stub and skeleton use RMI over IIOP to communicate.

 Lifecycle management—Bean initialization, state management, and destruction is driven by the
container, all the developer has to do is implement the appropriate methods.

 Naming and registration—The EJB container and server provide the EJB with access to naming
services. These services are used by local and remote clients to look up the EJB and by the EJB
itself to look up resources it may need.

Structured Language
Ashish, Bhupinder & Peeyush

30

 Transaction management—Declarative transactions provide a means for the developer to easily

delegate the creation and control of transactions to the container.
 Security and access control—Again, declarative security provides a means for the developer to

easily delegate the enforcement of security to the container.
 Persistence (if required)—Using the Entity EJB's Container-Managed Persistence mechanism

(CMP), state can be saved and restored without having to write a single line of code.

Structured Language
Ashish, Bhupinder & Peeyush

31

2009

Q. What do you mean by Declaration, definition and Usage. Illustrate with
example of each.
Soln. Declaration, Definition and Usage

Declaration: It’s a methodology used for familiarizing the compiler with the contents/components of the
code. Declaration uses the predefined keywords to declare the various elements that are involved in the
program. Declaration can be for classes, interfaces, functions, variables etc.

In Java programming, a class is defined by a class declaration, which is a piece of code that follows this

basic form:

[public] class ClassName {class-body}

The public keyword indicates that this class is available for use by other classes. Although it’s optional,

you usually include it in your class declarations so that other classes can create objects from the class

you’re defining.

The ClassName provides the name for the class. You can use any identifier you want to name a class, but

the following three guidelines can simplify your life:

 Begin the class name with a capital letter. If the class name consists of more than one word,

capitalize each word: for example, Ball, RetailCustomer, and GuessingGame.

 Whenever possible, use nouns for your class names. Classes create objects, and nouns are the

words you use to identify objects. Thus, most class names should be nouns.

 Avoid using the name of a Java API class. No rule says that you absolutely have to, but if you create

a class that has the same name as a Java API class, you have to use fully qualified names (such

as java.util.Scanner) to tell your class apart from the API class with the same name.

The class body of a class is everything that goes within the braces at the end of the class declaration,

which can contain the following elements:

 Fields: Variable declarations define the public or private fields of a class.

 Methods: Method declarations define the methods of a class.

 Constructors: A constructor is a block of code that’s similar to a method but is run to initialize an

object when an instance is created. A constructor must have the same name as the class itself, and

although it resembles a method, it doesn’t have a return type.

 Initializers: These stand-alone blocks of code are run only once, when the class is initialized. The

two types are static initializers and instance initializers.

Structured Language
Ashish, Bhupinder & Peeyush

32

 Other classes: A class can include another class, which is then called an inner class or a nested

class.

A public class must be written in a source file that has the same name as the class, with the

extension .java. A public class named Greeter, for example, must be placed in a file namedGreeter.java.

You can’t place two public classes in the same file. For example, you can’t have a source file that looks

like this:

public class Class1

{

 // class body for Class1 goes here

}

public class Class2

{

 // class body for Class2 goes here

}

The compiler will generate an error message indicating that Class2 is a public class and must be declared

in a file named Class2.java. In other words, Class1 and Class2 should be defined in separate files.

Method declaration:

Here is an example of a typical method declaration:

public double calculateAnswer(double wingSpan, int numberOfEngines,
 double length, double grossTons) {
 //do the calculation here
}

The only required elements of a method declaration are the method's return type, name, a pair of
parentheses, (), and a body between braces, {}.

More generally, method declarations have six components, in order:

1. Modifiers—such as public, private, and others you will learn about later.
2. The return type—the data type of the value returned by the method, or void if the method does

not return a value.
3. The method name—the rules for field names apply to method names as well, but the

convention is a little different.
4. The parameter list in parenthesis—a comma-delimited list of input parameters, preceded by

their data types, enclosed by parentheses, (). If there are no parameters, you must use empty
parentheses.

Structured Language
Ashish, Bhupinder & Peeyush

33

5. An exception list—to be discussed later.
6. The method body, enclosed between braces—the method's code, including the declaration of

local variables, goes here.

The signature of the method declared above is:

calculateAnswer(double, int, double, double)

Definition

The declaration part familiarizes the elements to the compiler in contrary definition provides
information of what action has to be done as part of a particular program. The definition is generally
provided as part of method or method body.

Method Body: The method body contains a collection of statements that define what the method does.

Note: In certain other languages, methods are referred to as procedures and functions. A method
with a nonvoid return value type is called a function; a method with a void return value type is called
a procedure.

Example:

Here is the source code of the above defined method called max(). This method takes two
parameters num1 and num2 and returns the maximum between the two:

/** Return the max between two numbers */

public static int max(int num1, int num2) {

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Structured Language
Ashish, Bhupinder & Peeyush

34

Usage of definition and declaration

In creating a method, you give a definition of what the method is to do. To use a method, you have
to call or invoke it. There are two ways to call a method; the choice is based on whether the method
returns a value or not.

When a program calls a method, program control is transferred to the called method. A called
method returns control to the caller when its return statement is executed or when its method-ending
closing brace is reached.

If the method returns a value, a call to the method is usually treated as a value. For example:

int larger = max(30, 40);

If the method returns void, a call to the method must be a statement. For example, the method
println returns void. The following call is a statement:

System.out.println("Welcome to Java!");

Example:

Following is the example to demonstrate how to define a method and how to call it:

public class TestMax {

 /** Main method */

 public static void main(String[] args) {

 int i = 5;

 int j = 2;

 int k = max(i, j);

 System.out.println("The maximum between " + i +

 " and " + j + " is " + k);

 }

 /** Return the max between two numbers */

 public static int max(int num1, int num2) {

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

 }

}

This would produce following result:

The maximum between 5 and 2 is 5

Structured Language
Ashish, Bhupinder & Peeyush

35

This program contains the main method and the max method. The main method is just like any other
method except that it is invoked by the JVM.

The main method's header is always the same, like the one in this example, with the modifiers public
and static, return value type void, method name main, and a parameter of the String[] type. String[]
indicates that the parameter is an array of String.

Q. “Byte Code” is the key that allows Java to solve both the security and
portability problems.
Soln. Java bytecode is the form of instructions that the Java virtual machine executes. Bytecode is computer object

code that is processed by a program, usually referred to as a virtual machine, rather than by the "real" computer
machine, the hardware processor. The virtual machine converts each generalized machine instruction into a specific
machine instruction or instructions that this computer's processor will understand. Bytecode is the result of compiling
source code written in a language that supports this approach. Most computer languages, such as C and C++,
require a separate compiler for each computer platform - that is, for each computer operating system and the
hardware set of instructions that it is built on. Windows and the Intel line of microprocessor architectures are one
platform; Apple and the PowerPC processors are another. Using a language that comes with a virtual machine for
each platform, your source language statements need to be compiled only once and will then run on any platform.
The best-known language today that uses the bytecode and virtual machine approach isJava. This is how bytecode
resolves the portability problem.

Rather than being interpreted one instruction at a time, Java bytecode can be recompiled at each particular system

platform by a just-in-time compiler. Usually, this will enable the Java program to run faster. In Java, bytecode is

contained in a binary file with a .CLASS suffix.

Security is the practice by which individuals and organizations protect their physical and intellectual property from all

forms of attack and pillage. In order to combat potential security threats, users need programs they can rely on.

Moreover, developers are looking for a development platform that has been designed with built-in security

capabilities. This is where the Java platform comes in. As a matter of fact, Java is designed from the ground up for

network-based computing, and security measures are an integral part of Java's design. Compilers and a bytecode

verifier ensure that only legitimate Java code is executed. The bytecode verifier, together with the Java virtual

machine, guarantees language type safety at run time.

 Java source code Java compiler trusted byte code Byte code verifier

Java Bytecode Verifier : Java compiler compiles source programs into bytecodes, and a trustworthy

compiler ensures that Java source code does not violate the safety rules. At runtime, a compiled

code fragment can come from anywhere on the net, and it is unknown if the code fragment comes

from a trustworthy compiler or not. So, practically the Java runtime simply does not trust the

incoming code, and instead subjects it to a series of tests by bytecode verifier.

The bytecode verifier is a mini theorem prover, which verifies that the language ground rules are

respected. It checks the code to ensure that [5]:

· Compiled code is formatted correctly.

http://en.wikipedia.org/wiki/Java_virtual_machine
http://searchcio-midmarket.techtarget.com/definition/object-code
http://searchcio-midmarket.techtarget.com/definition/object-code
http://searchservervirtualization.techtarget.com/definition/virtual-machine
http://searchcio-midmarket.techtarget.com/definition/processor
http://searchcio-midmarket.techtarget.com/definition/instruction
http://searchwinit.techtarget.com/definition/C
http://searchsqlserver.techtarget.com/definition/C
http://whatis.techtarget.com/definition/compiler
http://searchservervirtualization.techtarget.com/definition/platform
http://searchsoa.techtarget.com/definition/Java
http://searchcio-midmarket.techtarget.com/definition/binary
http://searchexchange.techtarget.com/definition/file

Structured Language
Ashish, Bhupinder & Peeyush

36

· Internal stacks will not overflow or underflow.

· No "illegal" data conversions will occur (i.e., the verifier will not allow integers to serve as pointers).

 This ensures that variables will not be granted access to restricted memory areas.

· Byte-code instructions will have appropriately-typed parameters (for the same reason as described

in the previous bullet).

· All class member accesses are "legal". For instance, an object's private data must always remain

private.

The bytecode verifier ensures that the code passed to the Java interpreter is in a fit state to be

executed and can run without fear of breaking the Java interpreter

Q. Compare “Passing parameter by value” with “Passing parameter by reference”. Illustrate with an

example.

Soln. “Passing parameter by value” with “passing parameter by reference”

Call by Value:

When values of built in types are passed as arguments to a function. It is known as Call by value. A

copy of the argument is passed as parameter. So the caller method and the called method are

working on different sets of data. The changes made to formal parameters in the called function

are not reflected in the actual arguments class.

Pass By Value: It refers to pass the variables or a constant that holds the primitive data type to a

method.

Example:

public class PassByValue{

public static void display(int a){

a=5;

System.out.println(a);

}

public static void main(String[]args){

int i=20;

System.out.println(i);

display(i);

Structured Language
Ashish, Bhupinder & Peeyush

37

}

}

Call by Reference:

In this approach, an object is passed as an argument, which is assigned to an object reference are

directly reflected to actual argument. The address of the object on the heap, w.r.t java, is passed

as the parameter. So modifying one will have an effect on the other.

Pass By Reference: It refers to pass an object variable to a method.

Example:

public class PassByRefernce{

public static void display(StringBuffer sb){

sb=sb.insert(8,"to");

System.out.println(sb);

}

public static void main(String[]args){

StringBuffer sb1=new StringBuffer("Welcome RoseIndia");

System.out.println(sb1);

display(sb1);

}

}

Q. What do you mean by “Structure” in structured languages? Discuss.
Soln Structure in structured languages

Structure is often composed of simple, hierarchical program flows. These are sequence,
selection, and repetition:

 "Sequence" refers to an ordered execution of statements.

 In "selection" one of a number of statements is executed depending on the state of the

program. This is usually expressed with keywords such

http://en.wikipedia.org/wiki/Keyword_(computer_programming)

Structured Language
Ashish, Bhupinder & Peeyush

38

asif..then..else..endif, switch, or case. In some languages keywords cannot be

written verbatim, but must be stopped.

 In "repetition" a statement is executed until the program reaches a certain state, or

operations have been applied to every element of a collection. This is usually expressed

with keywords such as while, repeat, for or do..until. Often it is recommended that

each loop should only have one entry point (and in the original structural programming, also

only one exit point, and a few languages enforce this).

A set of quality standards that make programs more verbose but more readable, reliable, and
easily maintained. The goal of structured programming is to avoid spaghetti code caused by
overreliance on GOTO statements, a problem often found in BASIC and FORTRAN programs.
Structured programming-such as that promoted by C, Pascal Modula-2, and the dBASE
software command language - insists that the overall program structure reflect what the
program is supposed to do, beginning with the first task and proceeding logically. Indentations
help make the logic clear, and the programmer is encouraged to use loops and branch control
structures and named procedures rather than GOTO statements.

Q. What are the identifying characteristics of a object oriented programming
paradigm.
Soln. characteristics of a object oriented programming

Object-oriented programming (OOP) is a programming paradigm that represents concepts as
"objects" that have data fields (attributes that describe the object) and associated procedures
known as methods. Objects, which are usually instances ofclasses, are used to interact with
one another to design applications and computer programs.

Object oriented characteristics:

Abstraction

“Eliminate the Irrelevant, Amplify the Essential”

Abstraction is to focus on the essential and discard the irrelevant. Abstraction in Java is achieved by

using interface and abstract class in Java. An interface or abstract class is something which is

not concrete , something which is incomplete. In order to use interface or abstract class we need to
extend and implement abstract method with concrete behavior. One example of Abstraction is
creating interface to denote common behavior without specifying any details about how that

behavior works e.g. You create an interface called Server which

as start() and stop() method. This is called abstraction of Server because every server should
have way to start and stop and details may differ.

Encapsulation
"Hiding the Unnecessary"

Encapsulation in Java or object oriented programming language is a concept which enforce protecting variables, functions

http://en.wikipedia.org/wiki/Conditional_(programming)
http://en.wikipedia.org/wiki/Switch_statement
http://en.wikipedia.org/wiki/Switch_statement
http://en.wikipedia.org/wiki/Stropping_(syntax)
http://en.wikipedia.org/wiki/While_loop
http://en.wikipedia.org/wiki/Do_while_loop
http://en.wikipedia.org/wiki/For_loop
http://en.wikipedia.org/wiki/Do_while_loop
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Field_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Instance_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://javarevisited.blogspot.sg/2012/04/10-points-on-interface-in-java-with.html

Structured Language
Ashish, Bhupinder & Peeyush

39

from outside of class, in order to better manage that piece of code and having least impact or no impact on other parts of
program duec to change in protected code. Encapsulation in Java is visible at different places and Java language itself
provide many construct to encapsulate members. You can completely encapsulate a member be it a variable or method in

Java by using private keyword and you can even achieve a lesser degree of encapsulation in Java by using other access

modifier like protected or public.

Encapsulation is hiding the unnecessary. Meaning things that you do not want other
people/classes to know are to be hidden

In a way encapsulation protect the system, since it hides stuff that can be vulnerable to
malicious attack.

Advantage of Encapsulation in Java and OOPS

Here are few advantages of using Encapsulation while writing code Java or any Object oriented programming

language:

1. Encapsulated Code is more flexible and easy to change with new requirements.

2. Encapsulation in Java makes unit testing easy.

3. Encapsulation in Java allows you to control who can access what.

4. Encapsulation also helps to write immutable class in Java which are a good choice in multi-threading

environment.

5. Encapsulation reduce coupling of modules and increase cohesion inside a module because all piece of one thing

are encapsulated in one place.

6. Encapsulation allows you to change one part of code without affecting other part of code.

Inheritance
“Modeling the Similarity”

Inheritance can be defined as the process where one object acquires the properties of another. With
the use of inheritance the information is made manageable in a hierarchical order. When we talk
about inheritance the most commonly used keyword would be extends and implements. These
words would determine whether one object IS-A type of another. By using these keywords we can
make one object acquire the properties of another object.

IS-A Relationship:

IS-A is a way of saying : This object is a type of that object. Let us see how the extends keyword is
used to achieve inheritance.

public class Animal{

}

public class Mammal extends Animal{

Structured Language
Ashish, Bhupinder & Peeyush

40

}

public class Reptile extends Animal{

}

public class Dog extends Mammal{

}

Now based on the above example, In Object Oriented terms following are true:

 Animal is the superclass of Mammal class.

 Animal is the superclass of Reptile class.

 Mammal and Reptile are sub classes of Animal class.

 Dog is the subclass of both Mammal and Animal classes.

Now if we consider the IS-A relationship we can say:

 Mammal IS-A Animal

 Reptile IS-A Animal

 Dog IS-A Mammal

 Hence : Dog IS-A Animal as well

With use of the extends keyword the subclasses will be able to inherit all the properties of the
superclass except for the private properties of the superclass.

We can assure that Mammal is actually an Animal with the use of the instance operator.

Example:

public class Dog extends Mammal{

 public static void main(String args[]){

 Animal a = new Animal();

 Mammal m = new Mammal();

 Dog d = new Dog();

 System.out.println(m instanceof Animal);

 System.out.println(d instanceof Mammal);

 System.out.println(d instanceof Animal);

 }

}

This would produce following result:

Structured Language
Ashish, Bhupinder & Peeyush

41

true

true

true

Since we have a good understanding of the extends keyword let us look into how the implements
keyword is used to get the IS-A relationship.
The implements keyword is used by classes by inherit from interfaces. Interfaces can never be
extended by the classes.

Example:

public interface Animal {}

public class Mammal implements Animal{

}

public class Dog extends Mammal{

}

The instanceof Keyword:

Let us use the instanceof operator to check determine whether Mammal is actually an Animal, and
dog is actually an Animal

interface Animal{}

class Mammal implements Animal{}

public class Dog extends Mammal{

 public static void main(String args[]){

 Mammal m = new Mammal();

 Dog d = new Dog();

 System.out.println(m instanceof Animal);

 System.out.println(d instanceof Mammal);

 System.out.println(d instanceof Animal);

 }

}

This would produce following result:

true

true

true

HAS-A relationship:

These relationships are mainly based on the usage. This determines whether a certain class HAS-A
certain thing. This relationship helps to reduce duplication of code as well as bugs.

Lets us look into an example:

public class Vehicle{}

public class Speed{}

Structured Language
Ashish, Bhupinder & Peeyush

42

public class Van extends Vehicle{

 private Speed sp;

}

This shows that class Van HAS-A Speed. By having a separate class for Speed we do not have to
put the entire code that belongs to speed inside the Van class., which makes it possible to reuse the
Speed class in multiple applications.

In Object Oriented feature the users do not need to bother about which object is doing the real work.
To achieve this, the Van class hides the implementation details from the users of the Van class. SO
basically what happens is the users would ask the Van class to do a certain action and the Vann
class will either do the work by itself or ask another class to perform the action.

A very important fact to remember is that Java only supports only single inheritance. This means that
a class cannot extend more than one class. Therefore following is illegal:

public class extends Animal, Mammal{}

However a class can implement one or more interfaces. This has made Java get rid of the
impossibility of multiple inheritance

Polymorphism

"Same Function different behavior"

Polymorphism is an Oops concept which advice use of common interface instead of concrete
implementation while writing code. When we program for interface our code is capable of handling any new
requirement or enhancement arise in near future due to new implementation of our common interface. If we don't
use common interface and rely on concrete implementation, we always need to change and duplicate most of our
code to support new implementation. Its not only Java but other object oriented language like C++ also supports
polymorphism and it comes as fundamental along with other OOPS concepts like Encapsulation , Abstraction
and Inheritance.

Java has excellent support of polymorphism in terms of Inheritance, method overloading and method overriding.
Method overriding allows Java to invoke method based on a particular object at run-time instead of declared type
while coding. To get hold of concept let's see an example of polymorphism in Java:

public class TradingSystem{

 public String getDescription(){

 return "electronic trading system";

 }

}

public class DirectMarketAccessSystem extends TradingSystem{

http://javarevisited.blogspot.sg/2011/09/code-review-checklist-best-practice.html
http://javarevisited.blogspot.sg/2012/03/what-is-encapsulation-in-java-and-oops.html
http://javarevisited.blogspot.sg/2011/12/method-overloading-vs-method-overriding.html
http://javarevisited.blogspot.sg/2011/12/method-overloading-vs-method-overriding.html
http://javarevisited.blogspot.sg/2012/04/how-to-invoke-method-by-name-in-java.html

Structured Language
Ashish, Bhupinder & Peeyush

43

 public String getDescription(){

 return "direct market access system";

 }

}

public class CommodityTradingSystem extends TradingSystem{

 public String getDescription(){

 return "Futures trading system";

 }

}

Here we have a super class called TradingSystem and there two

implementation DirectMarketAccessSystem and CommodityTradingSystem and here we will write code

which is flexible enough to work with any future implementation of TradingSystem we can achieve this by using

Polymorphism in Java which we will see in further example.

Where you can use Polymorphism in Java while writing code.

1) Method argument:

Always use super type in method argument that will give you leverage to pass any implementation while invoking
method. For example:

public void showDescription(TradingSystem tradingSystem){

 tradingSystem.description();

}

If you have used concrete implementation e.g. CommodityTradingSystem or DMATradingSystem then that

code will require frequent changes whenever you add new Trading system.

2) Variable names:

Always use Super type while you are storing reference returned from any Factory method in Java, This gives you
flexibility to accommodate any new implementation from Factory. Here is an example of polymorphism while writing
Java code which you can use retrieving reference from Factory:

String systemName = Configuration.getSystemName();

http://javarevisited.blogspot.sg/2011/08/code-comments-java-best-practices.html
http://javarevisited.blogspot.sg/2011/12/factory-design-pattern-java-example.html

Structured Language
Ashish, Bhupinder & Peeyush

44

TradingSystem system = TradingSystemFactory.getSystem(systemName);

3) Return type of method

Return type of any method is another place where you should be using interface to take
advantage of Polymorphism in Java. In fact this is a requirement of Factory design pattern in
Java to use interface as return type for factory method.

public TradingSystem getSystem(String name){

 //code to return appropriate implementation

}

Q. What are the characteristics of a objected oriented programming paradigm.

soln. Characteristic of structured programming language.

Why To Use Structured Programming?

In computer programming, the spaghetti code (unstructured code) confuses the program flow.The use of GOTO or
jump statements in programming kills the natural flavour of programming. Hence Structured programming
(Modular Programming) is used for well-organized programs that are easier to –

 Design

 Read and understand

 Modify

 Test and debug

 Compare with other programs

 Properly documented

 Efficient
Characteristics of Structured Programming

1. A structured program is based on top down approach. In other words, the problem is broken down in to
major components, each of which is further broken down if necessary. Therefore the process involves
working from the most general down to the most specific.

2. Each module has one entry and one exit point.

3. Use of GOTO or jump statements is avoided.

4. A rule of thumb is that the modules should not be more than a half page long. If they are longer than
this, they should preferably be split into two or more sub modules.

5. Two way decisions are based on IF…THEN….ELSE, and nested IF statements.

6. Repetition processes are implemented through various loops available.

7. It is much easier for the programmers to debug the structured programs.

Q. Briefly describe history and evolution of java
Soln. Java is an object-oriented programming language developed by James Gosling and

colleagues at Sun Microsystems in the early 1990s. Unlike conventional languages which are

http://javarevisited.blogspot.sg/2011/12/factory-design-pattern-java-example.html
http://javarevisited.blogspot.sg/2011/12/factory-design-pattern-java-example.html
http://www.freejavaguide.com/object_oriented_programming.html

Structured Language
Ashish, Bhupinder & Peeyush

45

generally designed either to be compiled to native (machine) code, or to be interpreted from
source code at runtime, Java is intended to be compiled to a bytecode, which is then run

(generally using JIT compilation) by a Java Virtual Machine.

The initial release of Java was nothing short of revolutionary, but it did not mark the end of

Java’s era of rapid innovation. Unlike most other software systems that usually settle into a

pattern of small, incremental improvements, Java continued to evolve at an explosive pace.

Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The

features added by Java 1.1 were more significant and substantial than the increase in the

minor revision number would have you think. Java 1.1 added many new library elements,

redefined the way events are handled by applets, and reconfigured many features of the 1.0

library. It also deprecated (rendered obsolete) several features originally defined by Java 1.0.

Thus, Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.” The

creation of Java 2 was a watershed event, marking the beginning of Java’s “modern age.”

With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform Standard Edition),

and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections

Framework, and it enhanced the Java Virtual Machine and various programming tools. Java 2

also contained a few deprecations. The most important affected the Thread class in which the

methods suspend(),resume(), and stop() were deprecated.

The next major release of Java was J2SE 1.3. This version of Java was the first major upgrade

to the original Java 2 release. For the most part, it added to existing functionality and “tightened

up” the development environment. In general, programs written for version 1.2 and those

written for version 1.3 are source-code compatible. Although version 1.3 contained a smaller

set of changes than the preceding three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important

upgrades, enhancements, and additions. For example, it added the new keyword assert,

chained exceptions, and a channel-based I/O subsystem. It also made changes to the
Collections Framework and the networking classes. In addition, numerous small changes were
made throughout. Despite the significant number of new features, version 1.4 maintained nearly
100 percent source-code compatibility with prior versions

http://www.freejavaguide.com/virtual_machine.html

Structured Language
Ashish, Bhupinder & Peeyush

46

The release of J2SE 5 was a profoundly significant event in the life cycle of Java. Unlike most

of the previous Java upgrades, which offered important, but incremental improvements,

J2SE 5 fundamentally expands the scope, power, and range of the language. Not since its
original launch nearly a decade ago has a release of Java been so important, or so eagerly
awaited To grasp the magnitude of the changes that J2SE 5 made to Java, consider the
following list of its major new features:

• Generics

• Metadata

• Autoboxing and auto-unboxing

• Enumerations

• Enhanced, for-each style forloop

• Variable-length arguments (varargs)

• Static import

• Formatted I/O

• Concurrency utilities

• Upgrades to the API

This is not a list of minor tweaks or incremental upgrades. Each item in the list represents a

significant addition to the Java language. Some, such as generics, the enhancedfor, and
varargs, introduce new syntax elements. Others, such as autoboxing and auto-unboxing, alter
the semantics of the language. Metadata adds an entirely new dimension to programming. In all
cases, the impact of these additions goes beyond their direct effects. They change the very
character of Java, itself. Thus, the current product is called J2SE 5, and the developer’s kit is
called JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its internal
version number. Thus, “5” is the external version number, and “1.5” is the internal version
number.

Q. “Java is a strongly typed language”. Discuss
Soln. Java is a strongly typed programming language because every variable must be
declared with a data type. A variable cannot start off life without knowing the range of

values it can hold, and once it is declared, the data type of the variable cannot change.

We call C/C++ and Java are strongly typed anguages and JavaScript andPERL are

loosely typed languages.

 int marks = 20.

 String str = "way2java.com";

 boolean raining = true;

Structured Language
Ashish, Bhupinder & Peeyush

47

The variable must be declared along with the data type. Similarly, an array object must

be instantiated with the size. This is a feature of strongly typed languages.

Just reverse with loosely typed languages. Observe the variable declaration in

JavaScript, an object-based language.

 var marks = 20.
 var str = "way2java.com";

 var raining = true;

The string and data types int and boolean are replaced by var that stands for variable.

Depending on the value assigned, var becomes a number or a string or boolean. This is

done implicitly by the JavaScript interpreter. It looks strange and unbelievable for a C

or Java programmer. A JavaScript programmer need not remember the list of data

types (actually, they exist), JavaScript supports.

It looks nice and easy with loosely typed languages. But it raises a lot of problems in

coding. Observe the following.

Say in Java language:

 int cost = 10;

 int cost = 20;

It is compilation error as two times cost is initialized. You must declare only ones and

can be reassigned number of times as follows.

 int cost = 10;
 cost = 20;

Same thing in JavaScript or PERL is not error. Observe the code.

 var cost = 10;
 var cost = 20;

Structured Language
Ashish, Bhupinder & Peeyush

48

The earlier cost value is overridden with 20, but not error; earlier value is lost. This is a

very dangerous situation which leads problems. If an article costs Rs.10 and the

programmer declared correctly earlier. In the later part of the code, he forgot that he

declared and re-declares with a different value (which may be wrong). For this reason,

the object-based languages like JavaScript, PERL and Ruby etc. have limited scope in

programming and are not used as full-fledged languages to develop software like

banking, insurance etc.

A strongly typed language compiler enforces strict rules over the operations, what

programmer can do, on data types and also passing parameters and return type to a

method. An advantage of strongly typed language is it gives consistency over the

results (by declaring the variables with data types). Specific operations are allowed on

certain types. For example boolean cannot be used in addition, but an int can be used

in addition. Boolean is used in control structures. This type of accidental wrong coding

raises error by a strongly typed language.

Q. “It is simple to manage stack memory than heap memory”. Discuss?
Heap: When program allocate memory at runtime using calloc and malloc function, then
memory gets allocated in heap. when some more memory need to be allocated using calloc and
malloc function, heap grows upward as shown in above diagram.

• Stack: Stack is used to store your local variables and is used for passing arguments to the
functions along with the return address of the instruction which is to be executed after the
function call is over. When a new stack frame needs to be added (as a result of a newly called
function), the stack grows downward.

The stack and heap are traditionally located at opposite ends of the process’s virtual address
space. The stack grows automatically when accessed, up to a size set by the kernel (which can
be adjusted with setrlimit(RLIMIT_STACK, ...)). The heap grows when the memory allocator
invokes the brk() or sbrk() system call, mapping more pages of physical memory into the
process’s virtual address space. Implementation of both the stack and heap is usually down to
the runtime/OS. Often games and other applications that are performance critical create their
own memory solutions that grab a large chunk of memory from the heap and then dish it out
internally to avoid relying on the OS for memory.

Stacks in computing architectures are regions of memory where data is added or removed in a
last-in-first-out manner. Because the data is added and removed in a last-in-first-out manner,
stack allocation is very simple and typically faster than heap-based memory allocation (also

Structured Language
Ashish, Bhupinder & Peeyush

49

known as dynamic memory allocation). Another feature is that memory on the stack is
automatically, and very efficiently, reclaimed when the function exits, which can be convenient
for the programmer if the data is no longer required. If however, the data needs to be kept in
some form, then it must be copied from the stack before the function exits. Therefore, stack
based allocation is suitable for temporary data or data which is no longer required after the
creating function exits. Stores local data, return addresses, used for parameter passing.

Deallocating the stack is pretty simple because you always deallocate in the reverse order in
which you allocate. Stack stuff is added as you enter functions, the corresponding data is
removed as you exit them. This means that you tend to stay within a small region of the stack
unless you call lots of functions that call lots of other functions

The heap contains a linked list of used and free blocks. New allocations on the heap (by new or
malloc) are satisfied by creating a suitable block from one of the free blocks. This requires
updating list of blocks on the heap. This meta information about the blocks on the heap is also
stored on the heap often in a small area just in front of every block.

.• The size of the heap is set on application startup, but can grow as space is needed (the
allocator requests more memory from the operating system) (see Footnote 6).

• Stored in computer RAM like the stack.

• Variables on the heap must be destroyed manually and never fall out of scope. The data is
freed with delete, delete[] or free

• Slower to allocate in comparison to variables on the stack.

• Used on demand to allocate a block of data for use by the program

• Can have fragmentation when there are a lot of allocations and deallocations

• Can have allocation failures if too big of a buffer is requested to be allocated.

• You would use the heap if you don’t know exactly how much data you will need at runtime or if
you need to allocate a lot of data.

• Responsible for memory leaks

Another factor to consider is that there will be some overhead in the management of the heap.

•The heap manager will need to keep track of the amount of heap used or remaining, the size of
the block being allocated and will usually contain a pointer to the next available memory location
available.

•One more factor is that the tools may reserve a larger block of memory than requested to
accommodate the memory architecture. For instance, EWARM compiler always allocates blocks
of memory in multiples of 8 bytes to maintain stack alignment

It is difficult to estimate how much heap space you will need without some sort of tool to help
analyze your dynamic memory needs

• There exist such tools for desktop Java (HAT, Heap Analysis Tool)

• No such tool as yet for Embedded C/C++

Structured Language
Ashish, Bhupinder & Peeyush

50

• As embedded systems have limited resources, dynamic memory should be used sparingly due
to overhead and the possibility of heap fragmentation

Unlike a heap, a stack will never become fragmented or suffer from memory leaks

Structured Language
Ashish, Bhupinder & Peeyush

51

2010

Q1: Write answer in complete one sentence (20 marks)
1) A
2) D
3) B
4) B
5) B
6) C
7) C
8) H (C)
9) C
10) C
11) B
12) B
13) B
14) A
15) C
16) B
17) B
18) A
19) A
20) A

Q2a) What is a structure? Explain with example. How structure is different
from Array? Distinguish between Structure and Class (8 marks) [Not
Applicable]

Q2b) Describe all the various features of Java (8 marks)
Ans) [Ref: Java Complete Reference – Page 9, 10, 11]

The features of Java are explained below:

Object-Oriented

Java is Object Oriented Programming Language and is strongly typed in nature. Java balances between
the purist’s “everything is an object” paradigm and the pragmatist’s “stay out of my way” model. The
object model in Java is simple and easy to extend, while primitive types, such as integers, are kept as
high-performance non-objects.

Robust

To gain reliability, Java restricts you in a few key areas to force you to find your mistakes early in
program development. At the same time, Java frees you from having to worry about many of the most
common causes of programming errors. Because Java is a strictly typed language, it checks your code at
compile time. However, it also checks your code at run time. To better understand how Java is robust,
consider two of the main reasons for program failure: memory management mistakes and mishandled
exceptional conditions (that is, run-time errors). Memory management can be a difficult, tedious task in

Structured Language
Ashish, Bhupinder & Peeyush

52

traditional programming environments. For example, in C/C++, the programmer must manually allocate
and free all dynamic memory. This sometimes leads to problems, because programmers will either
forget to free memory that has been previously allocated or, worse, try to free some memory that
another part of their code is still using. Java virtually eliminates these problems by managing memory
allocation and deallocation for you. (In fact, deallocation is completely automatic, because Java provides
garbage collection for unused objects.) Exceptional conditions in traditional environments often arise in
situations such as division by zero or “file not found,” and they must be managed with clumsy and hard-
to-read constructs. Java helps in this area by providing object-oriented exception handling. In a well-
written Java program, all run-time errors can—and should—be managed by your program.

Security

Java Programs are more secure than the downloaded “normal” program written in other language. The
other binary code have risk of containing a virus, Trojan horse, or other harmful code. At the core of the
problem is the fact that malicious code can cause its damage because it has gained unauthorized access
to system resources. For example, a virus program might gather private information, such as credit card
numbers, bank account balances, and passwords, by searching the contents of your computer’s local file
system. In order for Java to enable applets to be downloaded and executed on the client computer
safely, it was necessary to prevent an applet from launching such an attack. Java achieved this
protection by confining an applet to the Java execution environment and not allowing it access to other
parts of the computer.

Portability

Portability is a major aspect of the Internet because there are many different types of computers and
operating systems connected to it. If a Java program were to be run on virtually any computer
connected to the Internet, there needed to be some way to enable that program to execute on different
systems. For example, in the case of an applet, the same applet must be able to be downloaded and
executed by the wide variety of CPUs, operating systems, and browsers connected to the Internet. It is
not practical to have different versions of the applet for different computers. The same code must work
on all computers. Therefore, some means of generating portable executable code was needed. The key
that allows Java to solve both the security and the portability problems just described is that the output
of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly optimized set of
instructions designed to be executed by the Java run-time system, which is called the Java Virtual
Machine (JVM).

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked programs. To
accomplish this, Java supports multithreaded programming, which allows you to write programs that do
many things simultaneously. The Java run-time system comes with an elegant yet sophisticated solution
for multiprocess synchronization that enables you to construct smoothly running interactive systems.
Java’s easy-to-use approach to multithreading allows you to think about the specific behavior of your
program, not the multitasking subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One of the main
problems facing programmers is that no guarantee exists that if you write a program today, it will run

Structured Language
Ashish, Bhupinder & Peeyush

53

tomorrow—even on the same machine. Operating system upgrades, processor upgrades, and changes
in core system resources can all combine to make a program malfunction. The Java designers made
several hard decisions in the Java language and the Java Virtual Machine in an attempt to alter this
situation. Java is “write once; run anywhere, any time, forever” language.

Interpreted and High Performance

Java enables the creation of cross-platform programs by compiling into an intermediate representation
called Java bytecode. This code can be executed on any system that implements the Java Virtual
Machine. Most previous attempts at cross-platform solutions have done so at the expense of
performance. As explained earlier, the Java bytecode was carefully designed so that it would be easy to
translate directly into native machine code for very high performance by using a just-in-time compiler.
Java run-time systems that provide this feature lose none of the benefits of the platform-independent
code.

Distributed

Java is designed for the distributed environment of the Internet because it handles TCP/IP protocols. In
fact, accessing a resource using a URL is not much different from accessing a file. Java also supports
Remote Method Invocation (RMI). This feature enables a program to invoke methods across a network.

Dynamic

Java programs carry with them substantial amounts of run-time type information that is used to verify
and resolve accesses to objects at run time. This makes it possible to dynamically link code in a safe and
expedient manner. This is crucial to the robustness of the Java environment, in which small fragments of
bytecode may be dynamically updated on a running system.

Q2c) What is pointer variable. How it differs from reference variable? (4
marks) [Not Applicable]

Q3a) What is the meaning of abstract method? What is the advantage of
declaring class as abstract? What is the difference between abstract and final
class? (8 marks)
There are situations in which one wants to define a superclass that declares the structure of a given
abstraction without providing a complete implementation of every method. That is, sometimes one will
want to create a superclass that only defines a generalized form that will be shared by all of its
subclasses, leaving it to each subclass to fill in the details. Such a class determines the nature of the
methods that the subclasses must implement. One way this situation can occur is when a superclass is
unable to create a meaningful implementation for a method. This is the case with the class Figure used
in the preceding example. The definition of area() is simply a placeholder. It will not compute and
display the area of any type of object. One may have methods that must be overridden by the subclass
in order for the subclass to have any meaning. Consider the class Triangle. It has no meaning if area() is
not defined. In this case, you want some way to ensure that a subclass does, indeed, override all
necessary methods. The solution to this requirement is the abstract method. These methods are
sometimes referred to as subclasser responsibility because they have no implementation specified in
the superclass. Thus, a subclass must override them—it cannot simply use the version defined in the
superclass. To declare an abstract method, use this general form:

Structured Language
Ashish, Bhupinder & Peeyush

54

abstract type name(parameter-list);

Any class that contains one or more abstract methods must also be declared abstract. To declare a class
abstract, you simply use the abstract keyword in front of the class keyword at the beginning of the class
declaration. There can be no objects of an abstract class. That is, an abstract class cannot be directly
instantiated with the new operator. Such objects would be useless, because an abstract class is not fully
defined. Also, you cannot declare abstract constructors, or abstract static methods. Any subclass of an
abstract class must either implement all of the abstract methods in the superclass, or be itself declared
abstract. Here is a simple example of a class with an abstract method, followed by a class which
implements that method:

// A Simple demonstration of abstract.
abstract class A {
abstract void callme();
// concrete methods are still allowed in abstract classes

void callmetoo() {
System.out.println("This is a concrete method.");
}
}
class B extends A {
void callme() {
System.out.println("B's implementation of callme.");
}
}
class AbstractDemo {
public static void main(String args[]) {
B b = new B();
b.callme();
b.callmetoo();
}
}

Notice that no objects of class A are declared in the program. As mentioned, it is not possible to
instantiate an abstract class. One other point: class A implements a concrete method called callmetoo().
This is perfectly acceptable. Abstract classes can include as much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to create object
references, because Java’s approach to run-time polymorphism is implemented through the use of
superclass references. Thus, it must be possible to create a reference to an abstract class so that it can
be used to point to a subclass object. You will see this feature put to use in the next example. Using an
abstract class, you can improve the Figure class shown earlier. Since there is no meaningful concept of
area for an undefined two-dimensional figure, the following version of the program declares area() as
abstract inside Figure. This, of course, means that all classes derived from Figure must override area().

// Using abstract methods and classes.
abstract class Figure {
double dim1;
double dim2;

Figure(double a, double b) {
dim1 = a;
dim2 = b;
}
// area is now an abstract method
abstract double area();
}
class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);
}
// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;
}

Structured Language
Ashish, Bhupinder & Peeyush

55

}

class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);
}
// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;
}
}
class AbstractAreas {
public static void main(String args[]) {
// Figure f = new Figure(10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref; // this is OK, no object is created
figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

}

}

As the comment inside main() indicates, it is no longer possible to declare objects of type Figure, since it
is now abstract. And, all subclasses of Figure must override area(). To prove this to yourself, try creating
a subclass that does not override area(). You will receive a compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference variable of type
Figure. The variable figref is declared as a reference to Figure, which means that it can be used to refer
to an object of any class derived from Figure. As explained, it is through superclass reference variables
that overridden methods are resolved at run time.

Difference between Final and Abstract Class

Abstract Class:

- Abstract class shall have one or more methods defined to be abstract

- Subclass inheriting from Abstract Class should either implement the abstract method or else it will be
treated as Abstract class itself

- Abstract class cannot be instantiated however reference variable can be created for Abstract Class

Final Class:

- Final Class shall have specifier set to Final

- Final class cannot be inherited further

- Final Class can be instantiated.

Structured Language
Ashish, Bhupinder & Peeyush

56

Q3b) What are the different types of function declaration? How will you
declare a function outside and inside the class? (8 marks) [Not Applicable]

Q3c) Compare class and object with suitable example (4 marks)
Class defines a new data type. Once defined, this new type can be used to create objects of that type.
Thus, a class is a template for an object, and an object is an instance of a class. Because an object is an
instance of a class, you will often see the two words object and instance used interchangeably.

Aclass is declared by use of the class keyword. The classes that have been used up to this point are
actually very limited examples of its complete form. Classes can (and usually do) get much more
complex. A simplified general form of a class definition is shown here:

class classname {
type instance-variable1;
type instance-variable2;

// ...
type instance-variableN;
type methodname1(parameter-list) {
// body of method
}
type methodname2(parameter-list) {
// body of method
}
// ...
type methodnameN(parameter-list) {
// body of method
}
}

The data, or variables, defined within a class are called instance variables. The code is contained within
methods. Collectively, the methods and variables defined within a class are called members of the class.
In most classes, the instance variables are acted upon and accessed by the methods defined for that
class. Thus, as a general rule, it is the methods that determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance of the class (that is,
each object of the class) contains its own copy of these variables. Thus, the data for one object is
separate and unique from the data for another.

Declaring Object

Obtaining objects of a class is a two-step process. First, you must declare a variable of the class type.
This variable does not define an object. Instead, it is simply a variable that can refer to an object.
Second, you must acquire an actual, physical copy of the object and assign it to that variable. You can do
this using the new operator.

The new operator dynamically allocates (that is, allocates at run time) memory for an object and returns
a reference to it. This reference is, more or less, the address in memory of the object allocated by new.
This reference is then stored in the variable. Thus, in Java, all class objects must be dynamically
allocated. Let’s look at the details of this procedure. In the preceding sample programs, a line similar to
the following is used to declare an object of type Box:

Box mybox = new Box();

Structured Language
Ashish, Bhupinder & Peeyush

57

This statement combines the two steps just described. It can be rewritten like this to show each step
more clearly:

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line executes, mybox
contains the value null, which indicates that it does not yet point to an actual object. Any attempt to use
mybox at this point will result in a compile-time error. The next line allocates an actual object and
assigns a reference to it to mybox. After the second line executes, you can use mybox as if it were a Box
object. But in reality, mybox simply holds the memory address of the actual Box object.

Q4a) What is object oriented paradigm? Explain the various features of object
oriented progamming with example (8 marks) [Repeat in 2004]
Features of Object Oriented Programming

Abstraction

An essential element of object-oriented programming is abstraction. Humans manage complexity
through abstraction. For example, people do not think of a car as a set of tens of thousands of individual
parts. They think of it as a well-defined object with its own unique behavior. This abstraction allows
people to use a car to drive to the grocery store without being overwhelmed by the complexity of the
parts that form the car. They can ignore the details of how the engine, transmission, and braking
systems work. Instead, they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications. This allows you
to layer the semantics of complex systems, breaking them into more manageable pieces. From the
outside, the car is a single object. Once inside, you see that the car consists of several subsystems:
steering, brakes, sound system, seat belts, heating, cellular phone, and so on. In turn, each of these
subsystems is made up of more specialized units. For instance, the sound system consists of a radio, a
CD player, and/or a tape player. The point is that you manage the complexity of the car (or any other
complex system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs. The data from
a traditional process-oriented program can be transformed by abstraction into its component objects. A
sequence of process steps can become a collection of messages between these objects. Thus, each of
these objects describes its own unique behavior. You can treat these objects as concrete entities that
respond to messages telling them to do something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human understanding. It
is important that you understand how these concepts translate into programs. As you will see, object-
oriented programming is a powerful and natural paradigm for creating programs that survive the
inevitable changes accompanying the life cycle of any major software project, including conception,
growth, and aging. For example, once you have well-defined objects and clean, reliable interfaces to
those objects, you can gracefully decommission or replace parts of an older system without fear.

Encapsulation

Structured Language
Ashish, Bhupinder & Peeyush

58

Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps both
safe from outside interference and misuse. One way to think about encapsulation is as a protective
wrapper that prevents the code and data from being arbitrarily accessed by other code defined outside
the wrapper. Access to the code and data inside the wrapper is tightly controlled through a well-defined
interface. To relate this to the real world, consider the automatic transmission on an automobile. It
encapsulates hundreds of bits of information about your engine, such as how much you are
accelerating, the pitch of the surface you are on, and the position of the shift lever. You, as the user,
have only one method of affecting this complex encapsulation: by moving the gear-shift lever. You can’t
affect the transmission by using the turn signal or windshield wipers, for example. Thus, the gear-shift
lever is a well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the
transmission does not affect objects outside the transmission. For example, shifting gears does not turn
on the headlights! Because an automatic transmission is encapsulated, dozens of car manufacturers can
implement one in any way they please. However, from the driver’s point of view, they all work the
same. This same idea can be applied to programming. The power of encapsulated code is that everyone
knows how to access it and thus can use it regardless of the implementation details—and without fear
of unexpected side effects. In Java, the basis of encapsulation is the class. Although the class will be
examined in great detail later in this book, the following brief discussion will be helpful now. A class
defines the structure and behavior (data and code) that will be shared by a set of objects. Each object of
a given class contains the structure and behavior defined by the class, as if it were stamped out by a
mold in the shape of the class. For this reason, objects are sometimes referred to as instances of a class.
Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class. Collectively, these
elements are called members of the class. Specifically, the data defined by the class are referred to as
member variables or instance variables. The code that operates on that data is referred to as member
methods or just methods. (If you are familiar with C/C++, it may help to know that what a Java
programmer calls a method, a C/C++ programmer calls a function.) In properly written Java programs,
the methods define how the member variables can be used. This means that the behavior and interface
of a class are defined by the methods that operate on its instance data. Since the purpose of a class is to
encapsulate complexity, there are mechanisms for hiding the complexity of the implementation inside
the class. Each method or variable in a class may be marked private or public. The public interface of a
class represents everything that external users of the class need to know, or may know. The private
methods and data can only be accessed by code that is a member of the class. Therefore, any other
code that is not a member of the class cannot access a private method or variable. Since the private
members of a class may only be accessed by other parts of your program through the class’ public
methods, you can ensure that no improper actions take place.

Inheritance

Inheritance is the process by which one object acquires the properties of another object. This is
important because it supports the concept of hierarchical classification. As mentioned earlier, most
knowledge is made manageable by hierarchical (that is, top-down) classifications. For example, a Golden
Retriever is part of the classification dog, which in turn is part of the mammal class, which is under the
larger class animal. Without the use of hierarchies, each object would need to define all of its
characteristics explicitly. However, by use of inheritance, an object need only define those qualities that
make it unique within its class. It can inherit its general attributes from its parent. Thus, it is the
inheritance mechanism that makes it possible for one object to be a specific instance of a more general
case. Let’s take a closer look at this process.

Structured Language
Ashish, Bhupinder & Peeyush

59

Most people naturally view the world as made up of objects that are related to each other in a
hierarchical way, such as animals, mammals, and dogs. If you wanted to describe animals in an abstract
way, you would say they have some attributes, such as size, intelligence, and type of skeletal system.
Animals also have certain behavioral aspects; they eat, breathe, and sleep. This description of attributes
and behavior is the class definition for animals. If you wanted to describe a more specific class of
animals, such as mammals, they would have more specific attributes, such as type of teeth, and
mammary glands. This is known as a subclass of animals, where animals are referred to as mammals’
superclass. Since mammals are simply more precisely specified animals, they inherit all of the attributes
from animals. Adeeply inherited subclass inherits all of the attributes from each of its ancestors in the
class hierarchy.

Inheritance interacts with encapsulation as well. If a given class encapsulates some attributes, then any
subclass will have the same attributes plus any that it adds as part of its specialization (see Figure 2-2).
This is a key concept that lets object-oriented programs grow in complexity linearly rather than
geometrically. A new subclass inherits all of the attributes of all of its ancestors. It does not have
unpredictable interactions with the majority of the rest of the code in the system.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to be used for
a general class of actions. The specific action is determined by the exact nature of the situation.
Consider a stack (which is a last-in, first-out list). You might have a program that requires three types of
stacks. One stack is used for integer values, one for floating-point values, and one for characters. The
algorithm that implements each stack is the same, even though the data being stored differs. In a non–
object-oriented language, you would be required to create three different sets of stack routines, with
each set using different names. However, because of polymorphism, in Java you can specify a general
set of stack routines that all share the same names.

More generally, the concept of polymorphism is often expressed by the phrase “one interface, multiple
methods.” This means that it is possible to design a generic interface to a group of related activities. This
helps reduce complexity by allowing the same interface to be used to specify a general class of action. It
is the compiler’s job to select the specific action (that is, method) as it applies to each situation. You, the

Structured Language
Ashish, Bhupinder & Peeyush

60

programmer, do not need to make this selection manually. You need only remember and utilize the
general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a cat, it will bark and
run after it. If the dog smells its food, it will salivate and run to its bowl. The same sense of smell is at
work in both situations. The difference is what is being smelled, that is, the type of data being operated
upon by the dog’s nose!

Q4b) Explain practical usage of interface with example Describe how it differs
from class (8 marks)
Using the keyword interface, you can fully abstract a class’ interface from its implementation. That is,
using interface, you can specify what a class must do, but not how it does it. Interfaces are syntactically
similar to classes, but they lack instance variables, and their methods are declared without any body. In
practice, this means that you can define interfaces that don’t make assumptions about how they are
implemented. Once it is defined, any number of classes can implement an interface. Also, one class can
implement any number of interfaces. To implement an interface, a class must create the complete set of
methods defined by the interface. However, each class is free to determine the details of its own
implementation. By providing the interface keyword, Java allows you to fully utilize the “one interface,
multiple methods” aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time. Normally, in order for a
method to be called from one class to another, both classes need to be present at compile time so the
Java compiler can check to ensure that the method signatures are compatible. This requirement by itself
makes for a static and nonextensible classing environment. Inevitably in a system like this, functionality
gets pushed up higher and higher in the class hierarchy so that the mechanisms will be available to more
and more subclasses. Interfaces are designed to avoid this problem. They disconnect the definition of a
method or set of methods from the inheritance hierarchy. Since interfaces are in a different hierarchy
from classes, it is possible for classes that are unrelated in terms of the class hierarchy to implement the
same interface. This is where the real power of interfaces is realized.

An interface is defined much like a class. This is the general form of an interface:

Q4c) What do you mean by Exception Handling? What are the types of
exception? Compare them (4 marks)
A Java exception is an object that describes an exceptional (that is, error) condition that has occurred in
a piece of code. When an exceptional condition arises, an object representing that exception is created
and thrown in the method that caused the error. That method may choose to handle the exception
itself, or pass it on. Either way, at some point, the exception is caught and processed. Exceptions can be
generated by the Java run-time system, or they can be manually generated by your code. Exceptions
thrown by Java relate to fundamental errors that violate the rules of the Java language or the
constraints of the Java execution environment. Manually generated exceptions are typically used to
report some error condition to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws, and finally. Briefly, here
is how they work. Program statements that you want to monitor for exceptions are contained within a
try block. If an exception occurs within the try block, it is thrown. Your code can catch this exception
(using catch) and handle it in some rational manner. System-generated exceptions are automatically

Structured Language
Ashish, Bhupinder & Peeyush

61

thrown by the Java run-time system. To manually throw an exception, use the keyword throw. Any
exception that is thrown out of a method must be specified as such by a throws clause. Any code that
absolutely must be executed after a try block completes is put in a finally block.

This is the general form of an exception-handling block:

try {
// block of code to monitor for errors
}

catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1
}
catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2
}
// ...
finally {
// block of code to be executed after try block ends
}

Types of Exception

All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the top of the
exception class hierarchy. Immediately below Throwable are two subclasses that partition exceptions
into two distinct branches. One branch is headed by Exception. This class is used for exceptional
conditions that user programs should catch. This is also the class that you will subclass to create your
own custom exception types. There is an important subclass of Exception, called RuntimeException.
Exceptions of this type are automatically defined for the programs that you write and include things
such as division by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to be caught under
normal circumstances by your program. Exceptions of type Error are used by the Java run-time system
to indicate errors having to do with the run-time environment, itself. Stack overflow is an example of
such an error.

Inside the standard package java.lang, Java defines several exception classes. The most general of these
exceptions are subclasses of the standard type RuntimeException. These exceptions need not be
included in any method’s throws list. In the language of Java, these are called unchecked exceptions
because the compiler does not check to see if a method handles or throws these exceptions. The
unchecked exceptions defined in java.lang are listed below

Structured Language
Ashish, Bhupinder & Peeyush

62

The following lists those exceptions defined by java.lang that must be included in a method’s throws list
if that method can generate one of these exceptions and does not handle it itself. These are called
checked exceptions.

Q5a) Compare and contrast C++ and Java (8 marks)
[Self written. Answers were not available from Complete Reference book. Readers may kindly verify the
validity or refer other writer’s content]

Both C++ and Java are object oriented programming language with following differences

1) C++ was created as extension to C. Hence a code written in C syntax can be compiled by
any ANSI C++ compliant compiler. Java was created from scratch and is not an extension
of any existing language.

2) Both Java and C++ support following primitive types: int, char, float, double
3) Java provides with an additional access specified (package) in addition to the three

access specifiers which are also supported in C++ viz., Public, Protected, Private
4) Java compiler produces byte-code which is then interpreted by JVM. C++ compiler

compiles to native code (object code).
5) C++ supports pointers which enables programmers to write unsafe code. Java does not

have support for pointers or any other means to access memory locations.
6) C++ requires compiling and linking with libraries to create executable code. The linking

can be static linking or dynamic linking to create static libraries or shared
objects/libraries in C++. Java only allows for creation of .class files or executable jars
which essentially is an archive package created with all libraries contained in it.

7) C++, alike C, follows convention of header files (extension “.h”) carrying declarations and
source files (extension “.c” or “.cpp”) which carry definitions. C++ therefore is vulnerable
to cyclic dependency problems where in A and B both could be indirectly dependent on
each other. Java follows convention of single source code file with extension “.java”.

8) C++ supports multiple inheritance and is amenable to Diamond-of-death problem. Java
does not support multiple inheritance at class level, however permits multiple
inheritance at Interface level.

9) Contract establishment in Java is through creation of Interfaces while in C++ is through
Abstract Classes with pure virtual functions. While C++ does not have support for
interfaces, Java does not have support for “struct” (structures).

10) C++ compilers exists for various architecture which requires code to be written once and
then ported + compiled on the specific architecture (quite often through cross-
compiling). Native objects produced by C++ compilers are not executable across varying
architectures. In contrast, Java provides with JVM on different architectures. Presence
of JVM enables portability of bytecode. The limitation of how much the bytecode would
work on the given architecture will depend upon the JVM capabilities.

Structured Language
Ashish, Bhupinder & Peeyush

63

11) Modern day Java support generic programming like C++. JDK prior to 5 did not have

support for Generic Programming.

Q5b) Write brief note on

1. JVM
Bytecode is a highly optimized set of instructions designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as an
interpreter for bytecode. Translating a Java program into bytecode makes it much easier to run a
program in a wide variety of environments because only the JVM needs to be implemented for each
platform. Once the run-time package exists for a given system, any Java program can run on it.
Remember, although the details of the JVM will differ from platform to platform, all understand the
same Java bytecode. If a Java program were compiled to native code, then different versions of the
same program would have to exist for each type of CPU connected to the Internet. This is, of course, not
a feasible solution. Thus, the execution of bytecode by the JVM is the easiest way to create truly
portable programs. The fact that a Java program is executed by the JVM also helps to make it secure.
Because the JVM is in control, it can contain the program and prevent it from generating side effects
outside of the system.

Although Java was designed as an interpreted language, there is nothing about Java that prevents on-
the-fly compilation of bytecode into native code in order to boost performance. For this reason, Sun
began supplying its HotSpot technology not long after Java’s initial release. HotSpot provides a Just-In-
Time (JIT) compiler for bytecode. When a JIT compiler is part of the JVM, selected portions of bytecode
are compiled into executable code in real time, on a piece-by-piece, demand basis. It is important to
understand that it is not practical to compile an entire Java program into executable code all at once,
because Java performs various run-time checks that can be done only at run time. Instead, a JIT compiler
compiles code as it is needed, during execution. Furthermore, not all sequences of bytecode are
compiled—only those that will benefit from compilation. The remaining code is simply interpreted.
However, the just-in-time approach still yields a significant performance boost. Even when dynamic
compilation is applied to bytecode, the portability and safety features still apply, because the JVM is still
in charge of the execution environment.

2. Development tools for JDK
[Self written. Reader may take necessary caution...]

There are different development tools that can be used with JDK. While most developers are
comfortable with use of IDE such as Eclipse or Netbeans (or Developer Studio) which provides with
following facilities

a) Auto-alignment or beautification of code to improve readability of source code.
b) Use a disciplined framework for creation of binaries (.class files and/or .jar libraries) in specific

directories instead of placing them with source code itself.
c) Linkage with compiler wherein compilation and debugging can be invoked from within IDE itself.
d) Plugins for facilitating development of different types of applications viz., Rich UI applications,

JEE applications, Struts development, Springs framework etc.
e) Linkage with Application or Web Servers such as Oracle Application Server, JBoss Application

Server, Glassfish Application Server, Tomcat etc
f) Creation of API documentations through doxygen etc

Structured Language
Ashish, Bhupinder & Peeyush

64

Source code editors:

Apart from such IDEs, one may use standard editors such as wordpad/notepad (or emacs/vim
on Linux) to create source code files.

Compilers:

There are different flavors of Java Compilers available in addition to the Oracle’s JDK viz.,
OpenJDK, Icedtea, Gnu Java, JRockit etc

Documentation generators:

Doxygen is the most popularly used documentation generator which parses source code for
comment blocks starting with “///” to locate developer’s intentional comments/instructions in
the documentation.

Q5c) What are the uses of Keyword final in Java? Give example (4 marks)
Final Variable

A variable can be declared as final. Doing so prevents its contents from being modified. This means that
you must initialize a final variable when it is declared. For example:

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

final int FILE_SAVE = 3;

final int FILE_SAVEAS = 4;

final int FILE_QUIT = 5;

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were constants, without fear
that a value has been changed. It is a common coding convention to choose all uppercase identifiers for
final variables. Variables declared as final do not occupy memory on a per-instance basis. Thus, a final
variable is essentially a constant.

Final Method

Using final to Prevent Overriding While method overriding is one of Java’s most powerful features, there
will be times when you will want to prevent it from occurring. To disallow a method from being
overridden, specify final as a modifier at the start of its declaration. Methods declared as final cannot be
overridden. The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

Structured Language
Ashish, Bhupinder & Peeyush

65

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a compile-time
error will result. Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden by a subclass.
When a small final method is called, often the Java compiler can copy the bytecode for the subroutine
directly inline with the compiled code of the calling method, thus eliminating the costly overhead
associated with a method call. Inlining is only an option with final methods. Normally, Java resolves calls
to methods dynamically, at run time. This is called late binding. However, since final methods cannot be
overridden, a call to one can be resolved at compile time. This is called early binding.

Using final to Prevent Inheritance

Final is also used to prevent a class from being inherited. To do this, precede the class declaration with
final. Declaring a class as final implicitly declares all of its methods as final, too. As you might expect, it is
illegal to declare a class as both abstract and final since an abstract class is incomplete by itself and relies
upon its subclasses to provide complete implementations.

Here is an example of a final class:

final class A {

// ...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Q6a) What is array? Write example for each type of array. Describe 2 ways to
declare array in Java. How do you get size of an array? Is index checking
supported by Java? (8 marks)
An array is a group of like-typed variables that are referred to by a common name. Arrays of any type
can be created and may have one or more dimensions. Aspecific element in an array is accessed by its
index. Arrays offer a convenient means of grouping related information.

Structured Language
Ashish, Bhupinder & Peeyush

66

One dimensional Array

Aone-dimensional array is, essentially, a list of like-typed variables. To create an array, you first must
create an array variable of the desired type. The general form of a one-dimensional array declaration is

type var-name[];

Here, type declares the base type of the array. The base type determines the data type of each element
that comprises the array. Thus, the base type for the array determines what type of data the array will
hold. For example, the following declares an array named month_days with the type “array of int”:

int month_days[];

Although this declaration establishes the fact that month_days is an array variable, no array actually
exists. In fact, the value of month_days is set to null, which represents an array with no value. To link
month_days with an actual, physical array of integers, you must allocate one using new and assign it to
month_days. new is a special operator that allocates memory. You need to use it now to allocate
memory for arrays. The general form of new as it applies to one-dimensional arrays appears as follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements in the array,
and array-var is the array variable that is linked to the array. That is, to use new to allocate an array, you
must specify the type and number of elements to allocate. The elements in the array allocated by new
will automatically be initialized to zero. This example allocates a 12-element array of integers and links
them to month_days.

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all elements in
the array will be initialized to zero. It is also possible to combine the declaration of the array variable
with the allocation of the array itself, as shown here:

int month_days[] = new int[12];

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. To declare a multidimensional array
variable, specify each additional index using another set of square brackets. For example, the following
declares a twodimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as an array of
arrays of int.

Structured Language
Ashish, Bhupinder & Peeyush

67

When you allocate memory for a multidimensional array, you need only specify the memory for the first
(leftmost) dimension. You can allocate the remaining dimensions separately. For example, this following
code allocates memory for the first dimension of twoD when it is declared. It allocates the second
dimension manually.

int twoD[][] = new int[4][];

twoD[0] = new int[5];

twoD[1] = new int[5];

twoD[2] = new int[5];

twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension arrays in this example, there
may be in others. For example, when you allocate dimensions manually, you do not need to allocate the
same number of elements for each dimension. As stated earlier, since multidimensional arrays are
actually arrays of arrays, the length of each array is under your control.

Alternative array declaration

There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable. For example,
the following two declarations are equivalent:

int al[] = new int[3];

Structured Language
Ashish, Bhupinder & Peeyush

68

int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the same time. For
example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for a method.

Q6b) What is friend function? Describe their benefits and limitations. Give
suitable example (6 marks) [Not applicable]

Q6c) What is the need of dynamic method dispatch? Explain with Example (6
marks)
Method overriding forms the basis for one of Java’s most powerful concepts: dynamic method dispatch.
Dynamic method dispatch is the mechanism by which a call to an overridden method is resolved at run
time, rather than compile time. Dynamic method dispatch is important because this is how Java
implements run-time polymorphism.

It is based on important principle wherein a superclass reference variable can refer to a subclass object.
Java uses this fact to resolve calls to overridden methods at run time. When an overridden method is
called through a superclass reference, Java determines which version of that method to execute based
upon the type of the object being referred to at the time the call occurs. Thus, this determination is
made at run time. When different types of objects are referred to, different versions of an overridden
method will be called. In other words, it is the type of the object being referred to (not the type of the
reference variable) that determines which version of an overridden method will be executed. Therefore,
if a superclass contains a method that is overridden by a subclass, then when different types of objects
are referred to through a superclass reference variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch
class A {
void callme() {
System.out.println("Inside A's callme method");
}
}
class B extends A {
// override callme()
void callme() {
System.out.println("Inside B's callme method");
}
}
class C extends A {
// override callme()
void callme() {

Structured Language
Ashish, Bhupinder & Peeyush

69

System.out.println("Inside C's callme method");

}
}
class Dispatch {
public static void main(String args[]) {
A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C
A r; // obtain a reference of type A

r = a; // r refers to an A object
r.callme(); // calls A's version of callme
r = b; // r refers to a B object
r.callme(); // calls B's version of callme
r = c; // r refers to a C object
r.callme(); // calls C's version of callme
}
}

The output from the program is shown here:

Inside A’s callme method
Inside B’s callme method
Inside C’s callme method

This program creates one superclass called A and two subclasses of it, called B and C. Subclasses B and C
override callme() declared in A. Inside the main() method, objects of type A, B, and C are declared.
Also, a reference of type A, called r, is declared. The program then in turn assigns a reference to each
type of object to r and uses that reference to invoke callme(). As the output shows, the version of
callme() executed is determined by the type of object being referred to at the time of the call. Had it
been determined by the type of the reference variable, r, you would see three calls to A’s callme()
method.

Structured Language
Ashish, Bhupinder & Peeyush

70

2004

Q2) What are constructors? How are objects created and destroyed in JVM?
Explain briefly the functioning of Garbage Collection in JVM.

Java allows objects to initialize themselves when they are created. This automatic initialization is
performed through the use of a constructor. A constructor initializes an object immediately upon
creation. It has the same name as the class in which it resides and is syntactically similar to a method.
Once defined, the constructor is automatically called immediately after the object is created, before the
new operator completes. Constructors they have no return type, not even void. This is because the
implicit return type of a class’ constructor is the class type itself. It is the constructor’s job to initialize
the internal state of an object so that the code creating an instance will have a fully initialized, usable
object immediately.

Default Constructor

When you do not explicitly define a constructor for a class, then Java creates a default constructor for
the class. The default constructor is often sufficient for simple classes, but it usually won’t do for more
sophisticated ones. Once you define your own constructor, the default constructor is no longer used.

Parameterized Constructor

One can add parameters to Constructor in order to initialize the member variables.

Object Creation (New)

The new operator dynamically allocates memory for an object. It has this general form:

class-var = new classname();

Here, class-var is a variable of the class type being created. The classname is the name of the class that is
being instantiated. The class name followed by parentheses specifies the constructor for the class. A
constructor defines what occurs when an object of a class is created. If no explicit constructor is
specified, then Java will automatically supply a default constructor.

Object Destruction (Finalize)

Sometimes an object will need to perform some action when it is destroyed. For example, if an object is
holding some non-Java resource such as a file handle or character font, then you might want to make
sure these resources are freed before an object is destroyed. By using finalization, you can define
specific actions that will occur when an object is just about to be reclaimed by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time calls that method
whenever it is about to recycle an object of that class. Inside the finalize() method, you will specify
those actions that must be performed before an object is destroyed. The garbage collector runs
periodically, checking for objects that are no longer referenced by any running state or indirectly
through other referenced objects. Right before an asset is freed, the Java run time calls the finalize()
method on the object. The finalize() method has this general form:

protected void finalize()

Structured Language
Ashish, Bhupinder & Peeyush

71

{

// finalization code here

}

It is important to understand that finalize() is only called just prior to garbage collection. It is not called
when an object goes out-of-scope, for example. This means that you cannot know when—or even if—
finalize() will be executed. Therefore, your program should provide other means of releasing system
resources, etc., used by the object. It must not rely on finalize() for normal program operation.

Garbage Collection

Java handles deallocation automatically. The technique that accomplishes this is called garbage
collection. It works like this: when no references to an object exist, that object is assumed to be no
longer needed, and the memory occupied by the object can be reclaimed. Garbage collection only
occurs sporadically (if at all) during the execution of your program. It will not occur simply because one
or more objects exist that are no longer used. Furthermore, different Java run-time implementations will
take varying approaches to garbage collection,

Q3) What is method/constructor overloading? How is it used in
Programming?
It is possible to define two or more methods (or Constructors) within the same class that share the same
name, as long as their parameter declarations are different. When this is the case, the methods (or
Constructors) are said to be overloaded, and the process is referred to as method overloading. Method
overloading is one of the ways that Java supports polymorphism. When an overloaded method is
invoked, Java uses the type and/or number of arguments as its guide to determine which version of the
overloaded method to actually call. Thus, overloaded methods must differ in the type and/or number of
their parameters. While overloaded methods may have different return types, the return type alone is
insufficient to distinguish two versions of a method. When Java encounters a call to an overloaded
method, it simply executes the version of the method whose parameters match the arguments used in
the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

Structured Language
Ashish, Bhupinder & Peeyush

72

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

double test(double a) {

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

This program generates the following output:

No parameters

a: 10

Structured Language
Ashish, Bhupinder & Peeyush

73

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

In this example, test() is overloaded four times. The first version takes no parameters, the second takes
one integer parameter, the third takes two integer parameters, and the fourth takes one double
parameter. The fact that the fourth version of test() also returns a value is of no consequence relative to
overloading, since return types do not play a role in overload resolution. When an overloaded method is
called, Java looks for a match between the arguments used to call the method and the method’s
parameters.

Q6) What is Threading? Explain the applications and common problems in
threading.
A multithreaded program contains two or more parts that can run concurrently. Each part of such a
program is called a thread, and each thread defines a separate path of execution. Thus, multithreading is
a specialized form of multitasking. In a thread-based multitasking environment, the thread is the
smallest unit of dispatchable code. This means that a single program can perform two or more tasks
simultaneously. For instance, a text editor can format text at the same time that it is printing, as long as
these two actions are being performed by two separate threads.

The Java Thread model

The value of a multithreaded environment is best understood in contrast to its counterpart. Single-
threaded systems use an approach called an event loop with polling. In this model, a single thread of
control runs in an infinite loop, polling a single event queue to decide what to do next. Once this polling
mechanism returns with, say, a signal that a network file is ready to be read, then the event loop
dispatches control to the appropriate event handler. Until this event handler returns, nothing else can
happen in the system. This wastes CPU time. It can also result in one part of a program dominating the
system and preventing any other events from being processed. In general, in a singled-threaded
environment, when a thread blocks (that is, suspends execution) because it is waiting for some resource,
the entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is eliminated. One thread
can pause without stopping other parts of your program. For example, the idle time created when a
thread reads data from a network or waits for user input can be utilized elsewhere. Multithreading
allows animation loops to sleep for a second between each frame without causing the whole system to
pause. When a thread blocks in a Java program, only the single thread that is blocked pauses. All other
threads continue to run.

Threads exist in several states. A thread can be running. It can be ready to run as soon as it gets CPU
time. A running thread can be suspended, which temporarily suspends its activity. A suspended thread
can then be resumed, allowing it to pick up where it left off. A thread can be blocked when waiting for a
resource. At any time, a thread can be terminated, which halts its execution immediately. Once
terminated, a thread cannot be resumed.

Thread Priorities

Structured Language
Ashish, Bhupinder & Peeyush

74

Java assigns to each thread a priority that determines how that thread should be treated with respect to
the others. Thread priorities are integers that specify the relative priority of one thread to another. As
an absolute value, a priority is meaningless; a higher-priority thread doesn’t run any faster than a lower-
priority thread if it is the only thread running. Instead, a thread’s priority is used to decide when to
switch from one running thread to the next. This is called a context switch. The rules that determine
when a context switch takes place are simple:

 A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping, or
blocking on pending I/O. In this scenario, all other threads are examined, and the highest-
priority thread that is ready to run is given the CPU.

 A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread that
does not yield the processor is simply preempted—no matter what it is doing— by a higher-
priority thread. Basically, as soon as a higher-priority thread wants to run, it does. This is called
preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the situation is a bit
complicated. For operating systems such as Windows, threads of equal priority are time-sliced
automatically in round-robin fashion. For other types of operating systems, threads of equal priority
must voluntarily yield control to their peers. If they don’t, the other threads will not run.

Synchronization

Because multithreading introduces an asynchronous behavior to your programs, there must be a way
for you to enforce synchronicity when you need it. For example, if you want two threads to
communicate and share a complicated data structure, such as a linked list, you need some way to
ensure that they don’t conflict with each other. That is, you must prevent one thread from writing data
while another thread is in the middle of reading it. For this purpose, Java implements an elegant twist on
an age-old model of interprocess synchronization: the monitor. The monitor is a control mechanism first
defined by C.A.R. Hoare. You can think of a monitor as a very small box that can hold only one thread.
Once a thread enters a monitor, all other threads must wait until that thread exits the monitor. In this
way, a monitor can be used to protect a shared asset from being manipulated by more than one thread
at a time.

Most multithreaded systems expose monitors as objects that your program must explicitly acquire and
manipulate. Java provides a cleaner solution. There is no class “Monitor”; instead, each object has its
own implicit monitor that is automatically entered when one of the object’s synchronized methods is
called. Once a thread is inside a synchronized method, no other thread can call any other synchronized
method on the same object. This enables you to write very clear and concise multithreaded code,
because synchronization support is built into the language.

Messaging

After you divide your program into separate threads, you need to define how they will communicate
with each other. When programming with most other languages, you must depend on the operating
system to establish communication between threads. This, of course, adds overhead. By contrast, Java
provides a clean, low-cost way for two or more threads to talk to each other, via calls to predefined
methods that all objects have. Java’s messaging system allows a thread to enter a synchronized method
on an object, and then wait there until some other thread explicitly notifies it to come out.

Structured Language
Ashish, Bhupinder & Peeyush

75

The Thread Class and the Runnable Interface

Java’s multithreading system is built upon the Thread class, its methods, and its companion interface,
Runnable. Thread encapsulates a thread of execution. Since you can’t directly refer to the ethereal state
of a running thread, you will deal with it through its proxy, the Thread instance that spawned it. To
create a new thread, your program will either extend Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads list of which is provided below

The Main Thread

When a Java program starts up, one thread begins running immediately. This is usually called the main
thread of your program, because it is the one that is executed when your program begins. The main
thread is important for two reasons:

• It is the thread from which other “child” threads will be spawned.
• Often, it must be the last thread to finish execution because it performs various shutdown

actions.

Common Problems

Some common problems pertaining to multi-threading are

 Designing parallel execution is not intuitive: Humans are trained to perform in sequential mode
and hence it is not very forthcoming to think of writing parallel code. A poorly designed
multithreaded code can degrade the efficiency and performance of the program instead of
improving it.

 Synchronizing concurrent access: If two or more threads are operating upon same shared data
then data may get corrupted due to nonconsistent access and updates made by concurrent
threads. Possible solution is to enforce synchronized access which protects shared data from
becoming inconsistent but at the cost of performance overhead as well as risk of entering
deadlock.

 Deadlock: This condition occurs when two or more threads are waiting indefinitely for each
other to release the lock. Consider this example wherein there are two resources (say R1 and
R2) and two threads (say T1 and T2). Assuming that synchronized access is enforced on both
resources thereby enabling the first thread to get access to resource holds lock on it. If T1 gets
lock on R1 and is waiting for access to R2 which is locked by T2 which in turn is waiting for

Structured Language
Ashish, Bhupinder & Peeyush

76

access to R1. In this situation neither T1 and T2 are releasing lock and are waiting for other
thread to release the lock.

Q7) What is loop (control) Structure. Explain the 3 types of loop with small
code snippets.
Java’s iteration statements are for, while, and do-while. These statements create what we commonly
call loops. In other words, loop structures are employed when repetitive tasks are to be performed in
some predetermined count or till some condition is met.

while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block while its
controlling expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the
conditional expression is true. When condition becomes false, control passes to the next line of code
immediately following the loop. The curly braces are unnecessary if only a single statement is being
repeated.

Since the while loop evaluates its conditional expression at the top of the loop, the body of the loop will
not execute even once if the condition is false to begin with. For example, in the following fragment, the
call to println() is never executed:

int a = 10, b = 20;

while(a > b)

System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because a null statement (one
that consists only of a semicolon) is syntactically valid in Java.

do-while

Sometimes it is desirable to execute the body of a loop at least once, even if the conditional expression
is false to begin with. In other words, there are times when you would like to test the termination
expression at the end of the loop rather than at the beginning. The do-while loop always executes its
body at least once, because its conditional expression is at the bottom of the loop. Its general form is

do {

// body of loop

} while (condition);

Structured Language
Ashish, Bhupinder & Peeyush

77

Each iteration of the do-while loop first executes the body of the loop and then evaluates the
conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop terminates. As
with all of Java’s loops, condition must be a Boolean expression.

// Demonstrate the do-while loop.

class DoWhile {

public static void main(String args[]) {

int n = 10;

do {

System.out.println("tick " + n);

n--;

} while(n > 0);

}

}

For loop

Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form that has been
in use since the original version of Java. The second is the new “for-each” form.

Traditional form

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {

// body

}

If only one statement is being repeated, there is no need for the curly braces. The for loop operates as
follows. When the loop first starts, the initialization portion of the loop is executed. Generally, this is an
expression that sets the value of the loop control variable, which acts as a counter that controls the
loop. It is important to understand that the initialization expression is only executed once. Next,
condition is evaluated. This must be a Boolean expression. It usually tests the loop control variable
against a target value. If this expression is true, then the body of the loop is executed. If it is false, the
loop terminates.

Next, the iteration portion of the loop is executed. This is usually an expression that increments or
decrements the loop control variable. The loop then iterates, first evaluating the conditional expression,
then executing the body of the loop, and then executing the iteration expression with each pass. This
process repeats until the controlling expression is false.

Structured Language
Ashish, Bhupinder & Peeyush

78

// Demonstrate the for loop.

class ForTick {

public static void main(String args[]) {

int n;

for(n=10; n>0; n--)

System.out.println("tick " + n);

}

}

The For-Each Version of the for Loop

Beginning with JDK 5, a second form of for was defined that implements a “for-each” style loop. A
foreach style loop is designed to cycle through a collection of objects, such as an array, in strictly
sequential fashion, from start to finish. The advantage of this approach is that no new keyword is
required, and no preexisting code is broken. The for-each style of for is also referred to as the enhanced
for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive the
elements from a collection, one at a time, from beginning to end. The collection being cycled through is
specified by collection. With each iteration of the loop, the next element in the collection is retrieved
and stored in itr-var. The loop repeats until all elements in the collection have been obtained. Because
the iteration variable receives values from the collection, type must be the same as (or compatible with)
the elements stored in the collection. Thus, when iterating over arrays, type must be compatible with
the base type of the array.

Q8) What is JDBC? What are the different types of JDBC drivers?
[Ref: http://en.wikipedia.org/wiki/Java_Database_Connectivity]

JDBC stands for Java Database Connectivity. This technology is an API for the Java programming
language that defines how a client may access a database. It provides methods for querying and
updating data in a database. JDBC is oriented towards relational databases.

The API provides a mechanism for dynamically loading the correct Java packages and registering them
with the JDBC Driver Manager. The Driver Manager is used as a connection factory for creating JDBC
connections. JDBC connections support creating and executing statements. These may be update
statements such as SQL's CREATE, INSERT, UPDATE and DELETE, or they may be query statements such
as SELECT. Additionally, stored procedures may be invoked through a JDBC connection. JDBC represents
statements using one of the following classes:

 Statement – the statement is sent to the database server each and every time.

Structured Language
Ashish, Bhupinder & Peeyush

79

 PreparedStatement – the statement is cached and then the execution path is pre-determined on
the database server allowing it to be executed multiple times in an efficient manner.

 CallableStatement – used for executing stored procedures on the database.

Update statements such as INSERT, UPDATE and DELETE return an update count that indicates how
many rows were affected in the database. These statements do not return any other information.

Query statements return a JDBC row result set. The row result set is used to walk over the result set.
Individual columns in a row are retrieved either by name or by column number. There may be any
number of rows in the result set. The row result set has metadata that describes the names of the
columns and their types.

There are 4 types of JDBC drivers viz.,

1. Type 1 that calls native code of the locally available ODBC driver.
2. Type 2 that calls database vendor native library on a client side. This code then talks to database

over network.
3. Type 3, the pure-java driver that talks with the server-side middleware that then talks to

database.
4. Type 4, the pure-java driver that uses database native protocol.

