
Exception Handling in Java

Rahul Deodhar
rahuldeodhar@gmail.com

www.rahuldeodhar.com
+91 9820213813

1

Chapter 14 - Exception Handling

n  Using try and catch Blocks to Handle "Dangerous" Method
Calls

n  NumberFormatException
n  Line Plot Example
n  try and catch Blocks - More Details
n  Two Types of Exceptions - Checked and Unchecked
n  Unchecked Exceptions
n  Checked Exceptions
n  Using API Documentation when Writing Exception-Handling Code
n  When a try Block Throws Different Types of Exceptions
n  The Exception Class and its getMessage Method
n  Multiple catch blocks
n  Understanding Exception Messages

1

Using try and catch Blocks to Handle "Dangerous" Method Calls

n  Some API method calls are "dangerous" in that they
might possibly lead to a runtime error.

n  Example of a "safe" API method call (no runtime error
possible):
System.out.println(<expression>)

n  Example of an API method call that might lead to a
runtime error:
Integer.parseInt(<string>)

n  Technique for handling such runtime errors:
n  Use exception handling. More specifically, surround the

method call with a try block and insert a catch block
immediately after the try block.

2

Using try and catch Blocks to Handle "Dangerous" Method Calls

n  Syntax for try and catch blocks:
try
{
 <statement(s)>
}
catch (<exception-class> <parameter>)
{
 <error-handling-code>
}

n  Example try and catch code fragment:
try
{
 quantity = Integer.parseInt(userEntry);
}
catch (NumberFormatException nfe)
{
 System.out.println("Invalid quantity entered." +
 " Must be a whole number.");
}

Normally, one or more of these statements will be a
"dangerous" API method call or constructor call.

The exception class should match the type of
exception that the try block might throw.

3

Using try and catch Blocks to Handle "Dangerous" Method Calls

n  Semantics for previous slide's try and catch code
fragment:
n  If the userEntry string contains all digits, then:

n  The int version of userEntry is assigned into quantity.
n  The JVM skips the catch block and continues below it.

n  If the userEntry string does not contain all digits, then:
n  The parseInt method throws a NumberFormatException

object.
n  The JVM looks for a catch block that will catch the thrown

exception object; that is, it looks for a matching catch block.
If it finds one, it executes it and continues below the catch
block. If there's no matching catch block, the program
crashes.

4

NumberFormatException

n  The NumberFormatException is well named
because it's thrown when a number's format is
inappropriate.

n  More specifically, it's thrown by one of the parse
methods (Integer.parseInt, Long.parseLong,
Double.parseDouble, etc.) when there's an
attempt to convert a string to a number and the
string's characters don't form a valid number.

n  These code fragments throw
NumberFormatExceptions:
int numOfPages = Integer.parseInt("962.0");
double height = Double.parseDouble("1.76m");

5

Line Plot Example

n  This program plots a line by reading in a series of point coordinate positions. It
works fine as long as the user enters valid input. But with invalid input, the
program crashes. Add code so as to avoid those crashes.

import java.util.Scanner;

public class LinePlot
{
 private int oldX = 0; // oldX, oldY save the previous point
 private int oldY = 0; // The starting point is the origin (0,0)

 //***

 // This method prints a line segment from the previous point
 // to the current point.

 public void plotSegment(int x, int y)
 {
 System.out.println("New segment = (" + oldX + "," + oldY +
 ")-(" + x + "," + y + ")");
 oldX = x;
 oldY = y;
 } // end plotSegment

6

Line Plot Example

 //***

 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 LinePlot line = new LinePlot();
 String xStr, yStr; // coordinates for a point (String form)
 int x, y; // coordinates for a point

 System.out.print("Enter x & y coordinates (q to quit): ");
 xStr = stdIn.next();
 while (!xStr.equalsIgnoreCase("q"))
 {
 yStr = stdIn.next();
 x = Integer.parseInt(xStr);
 y = Integer.parseInt(yStr);
 line.plotSegment(x, y);
 System.out.print("Enter x & y coordinates (q to quit): ");
 xStr = stdIn.next();
 } // end while
 } // end main
} // end class LinePlot

reads a group of characters
and stops at whitespace

7

try and catch Blocks - More Details

n  Deciding on the size of your try blocks is a bit of an art.
Sometimes it's better to use small try blocks and sometimes it's
better to use larger try blocks.

n  Note that it's legal to surround an entire method body with a
try block, but that's usually counterproductive because it makes
it harder to identify the "dangerous" code.

n  In general, you should make your try blocks small so that your
"dangerous" code is more obvious.

n  However, if a chunk of code has several "dangerous" method/
constructor calls:
n  Adding a separate try-catch structure for each such call might

result in cluttered code.
n  To improve program readability, consider using a single try block

that surrounds the calls.

9

try and catch Blocks - More Details

n  In our LinePlot program solution, we surrounded the
two parseInt statements with a single try block
because they were conceptually related and physically
close together. We also included the
line.plotSegment() call within that same try
block. Why?

n  Our single try block solution is perfectly acceptable,
but wouldn't it be nice to have a more specific
message that identified which entry was invalid (x, y,
or both)?.

n  To have that sort of message, you'd have to have a
separate try-catch structure for each parseInt
statement.

10

try and catch Blocks - More Details

n  If an exception is thrown, the JVM immediately jumps out of the
current try block and looks for a matching catch block. The
immediacy of the jump means that if there are statements in the
try block after the exception-throwing statement, those
statements are skipped.

n  The compiler is a pessimist. It knows that statements inside a
try block might possibly be skipped, and it assumes the worst.
It assumes that all statements inside a try block get skipped.

n  Consequently, if there's a try block that contains an assignment
for x, the compiler assumes that the assignment is skipped. If
there's no assignment for x outside of the try block and x's
value is needed outside of the try block, you'd get this
compilation error:
variable x might not have been initialized

n  If you get that error, you can usually fix it by initializing the
variable prior to the try block.

11

try and catch Blocks - More Details

n  This method reads a value from a user, makes sure it's an integer, and returns it.
Note the compilation errors. What are the fixes?
public static int getIntFromUser()
{
 Scanner stdIn = new Scanner(System.in);
 String xStr; // user entry
 boolean valid; // is user entry a valid integer?
 int x; // integer form of user entry

 System.out.print("Enter an integer: ");
 xStr = stdIn.next();
 do
 {
 try
 {
 valid = false;
 x = Integer.parseInt(xStr);
 valid = true;
 }
 catch (NumberFormatException nfe)
 {
 System.out.print("Invalid entry. Enter an integer: ");
 xStr = stdIn.next();
 }
 } while (!valid);

 return x;
} // end getIntFromUser

compilation error: variable valid might not have been initialized

compilation error: variable x might not have been initialized

12

Two Types of Exceptions - Checked and Unchecked

n  There are two types of exceptions – checked and
unchecked.
n  Checked exceptions are required to be checked with a try-
catch mechanism.

n  Unchecked exceptions are not required to be checked with a
try-catch mechanism (but, as an option, unchecked
exceptions may be checked with a try-catch mechanism).

n  How can you tell whether a particular exception is
classified as checked or unchecked?
n  To find out if a particular exception is checked or unchecked,

look up its associated class in the API documentation.
n  On the class's API page, look at its class hierarchy tree. If

you find that the class is derived from the
RuntimeExeption class or from the Error exception
class, then it's an unchecked exception. Otherwise, it's a
checked exception.

13

Two Types of Exceptions - Checked and Unchecked

The parseInt, parseLong, parseDouble, etc. methods
all throw a NumberFormatException object.

RuntimeException

Error Exception

Throwable

checked exceptions
(e.g., IOException)

unchecked exceptions
(e.g., NumberFormatException,

ArithmeticException)

unchecked exceptions for
system errors (e.g.,

VirtualMachineError)

Class Hierarchy For Exception Classes

14

Unchecked Exceptions

n  As you know, unchecked exceptions are not required
to be checked with a try-catch mechanism.
However, at runtime, if an unchecked exception is
thrown and not caught, then the program will crash
(terminate ungracefully).

n  How to handle code that might throw an unchecked
exception:
n  Use a try-catch mechanism (see prior GetIntFromUser

example).
or

n  Don't attempt to catch the exception, but write the code
carefully so as to avoid the possibility of the exception being
thrown (see upcoming example).

15

Unchecked Exceptions

n  The following method attempts to remove a specified student
from a list of student names. The list of student names is stored
in an ArrayList instance variable named students.
public void removeStudent(int index)

{

 students.remove(index);

} // end removeStudent

n  The students.remove method call is dangerous because it
throws an unchecked exception,
IndexOutOfBoundsException, if its argument holds an invalid
index.

n  On the upcoming slides, we address that problem by providing
improved versions of the removeStudent method.

16

Unchecked Exceptions

n  Improved removeStudent method using a try-
catch mechanism:

public void removeStudent(int index)
{
 try
 {
 students.remove(index);
 }
 catch (IndexOutOfBoundsException e)
 {
 System.out.println(
 "Can't remove student because " + index +
 " is an invalid index position.");
 }
} // end removeStudent

17

Unchecked Exceptions

n  Improved removeStudent method, using careful
code:

public void removeStudent(int index)
{
 if (index >= 0 && index < students.size())
 {
 students.remove(index);
 }
 else
 {
 System.out.println(
 "Can't remove student because " + index +
 " is an invalid index position.");
 }
} // end removeStudent

18

Checked Exceptions

n  If a code fragment has the potential of throwing a
checked exception, then the compiler requires that
the code fragment has an associated try-catch
mechanism. If there is no associated try-catch
mechanism, then the compiler generates an error.

n  The program on the next slide contains code that
might possibly throw a checked exception and there's
no try-catch mechanism. Thus, it generates a
compilation error. What code should be added to fix
the program?

19

import java.util.Scanner;
import java.io.File;
import java.io.IOException;

public class CreateNewFile
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String fileName; // user-specified file name
 File file;
 System.out.print("Enter file to be created: ");
 fileName = stdIn.nextLine();
 file = new File(fileName);
 if (file.exists())
 {
 System.out.println("Sorry, can't create that file. It already exists.");
 }
 else
 {
 file.createNewFile();
 System.out.println(fileName + " created.");
 }
 } // end main
} // end CreateNewFile class

Checked Exceptions
Program synopsis:

Prompt the user for the name of a file
that is to be created.

If the file exists, print a "Sorry" message.

If the file does not exist, create the file.

API constructor call

API method call

API method call

20

Using API Documentation when Writing Exception-Handling Code

n  Whenever you want to use a method or constructor from one of
the API classes and you're not sure about it, you should look it
up in the API documentation so you know whether to add
exception-handling code.

n  More specifically, use the API documentation to figure out these
things:
n  Can the method/constructor call possibly throw an exception?

n  On the API documentation page for the method/constructor, look for a
throws section. If there's a throws section, that means the method/
constructor can possibly throw an exception.

n  If the method/constructor call throws an exception, is it checked or
unchecked?

n  On the API documentation page for the method/constructor, drill down
on the exception class's name.

n  On the API documentation page for the exception class, look at the
exception class's class hierarchy.

n  If you find RuntimeException is an ancestor of the exception, then
the exception is an unchecked exception. Otherwise, it's a checked
exception.

22

Using API Documentation when Writing Exception-Handling Code

n  If the method/constructor call can possibly throw a
checked exception, you must add a try-catch
mechanism to handle it.

n  If the method/constructor call can possibly throw an
unchecked exception, you should read the API
documentation to figure out the nature of the
exception. And then, depending on the situation, 1)
use a try-catch mechanism or 2) use careful code
so that the exception won't be thrown.

23

When a try Block Throws Different Types of Exceptions

n  If several statements within a try block can possibly
throw an exception and the exceptions are of
different types, you should:
n  Provide a generic catch block that handles every type of

exception that might be thrown.
or

n  Provide a sequence of specific catch blocks, one for each
type of exception that might be thrown.

24

n  How to provide a generic catch block:
n  Define a catch block with an Exception parameter.
n  Inside the catch block, call the Exception class's getMessage

method.
n  For example:

catch (Exception e)
{
 System.out.println(e.getMessage());
}

n  Why do all thrown exceptions match up with an Exception
parameter?
n  A thrown exception will be caught by a catch block if the thrown

exception equals the catch heading's parameter or the thrown
exception is a subclass of the catch heading's parameter.

n  Since every thrown exception is a subclass of the Exception class,
all thrown exceptions will match up with a generic Exception
parameter.

The Exception Class and its getMessage Method
25

n  The Exception class's getMessage method returns
a description of the thrown exception. For example, if
you attempt to open a file using the FileReader
constructor call and you pass in a file name for a file
that doesn't exist, the getMessage call returns this:

<filename> (The system cannot find the file specified)

The Exception Class and its getMessage Method
26

n  The program on the next slide opens a user-specified
file and prints the file's first character.
n  The FileReader constructor is in charge of opening the

file. In your constructor call, if you pass in a file name for a
file that doesn't exist, the JVM throws a
FileNotFoundException.

n  The read method is in charge of reading a single character
from the opened file. If the file is corrupted and unreadable,
the JVM throws an IOException.

n  Note the generic catch block. It handles the different
types of exceptions that might be thrown from within
the try block.

The Exception Class and its getMessage Method
27

/***
* PrintCharFromFile.java
* Dean & Dean
*
* Open an existing text file and print a character from it.
***/

import java.util.Scanner;
import java.io.BufferedReader;
import java.io.FileReader;

public class PrintCharFromFile
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String fileName; // name of target file
 BufferedReader fileIn; // target file
 char ch; // first character from fileIn

The Exception Class and its getMessage Method
28

 System.out.print("Enter a filename: ");
 fileName = stdIn.nextLine();

 try

 {

 fileIn = new BufferedReader(new FileReader(fileName));

 ch = (char) fileIn.read();

 System.out.println("First character: " + ch);

 } // end try

 catch (Exception e)

 {

 System.out.println(e.getMessage());

 }

 } // end main

} // end PrintCharFromFile class

The Exception Class and its getMessage Method
29

Multiple catch Blocks

n  If several statements within a try block can possibly throw an
exception and the exceptions are of different types, and you don't
want to use a generic catch block, you should:
n  Provide a sequence of specific catch blocks, one for each type of

exception that might be thrown.
n  For example:

catch (FileNotFoundException e)
{
 System.out.println("Invalid filename: " + fileName);
}
catch (IOException e)
{
 System.out.println("Error reading from file: " + fileName);
}

n  What's a benefit of using specific catch blocks rather than a
generic catch block?

30

import java.util.Scanner;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.IOException;

public class PrintCharFromFile2
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String fileName; // name of target file
 BufferedReader fileIn; // target file
 char ch; // first character from fileIn

 System.out.print("Enter a filename: ");
 fileName = stdIn.nextLine();

The Exception Class and its getMessage Method
31

 try
 {
 fileIn = new BufferedReader(new FileReader(fileName));
 ch = (char) fileIn.read();
 System.out.println("First character: " + ch);
 } // end try

 catch (FileNotFoundException e)
 {
 System.out.println("Invalid filename: " + fileName);
 }
 catch (IOException e)
 {
 System.out.println("Error reading from file: " + fileName);
 }
 } // end main
} // end PrintCharFromFile2 class

The Exception Class and its getMessage Method
32

Multiple catch Blocks

n  If multiple catch blocks are used, the first catch block that
matches the type of the exception thrown is the one that is
executed; the other catch blocks are then skipped.

n  Whenever you use more than one catch block after a given
try block, and one catch block's exception class is derived from
another catch block's exception class, to avoid a compilation
error, you must arrange the catch blocks with the more general
exception classes at the bottom (the superclasses go at the
bottom).

n  For example, in the prior PrintCharFromFile2 program, you must
put the IOException catch block at the bottom because the
IOException class is a superclass of the
FileNotFoundException class.

33

Understanding Exception Messages

n  As you know, if your code involves a checked
exception being thrown, you must include a try/
catch for that code. Without the try/catch, your
program won't compile successfully.

n  On the other hand, if your code involves an
unchecked exception being thrown, it's optional
whether you include a try/catch for that code.
Without the try/catch, your program will compile
successfully, but if an exception is thrown, your
program will crash.

n  If such a crash occurs, the JVM prints a runtime error
message that describes the thrown exception.

34

Understanding Exception Messages

import java.util.Scanner;

public class NumberList
{
 private int[] numList = new int[100]; // array of numbers
 private int size = 0; // number of numbers

 //***************************************

 public void readNumbers()
 {
 Scanner stdIn = new Scanner(System.in);
 String xStr; // user-entered number (String form)
 int x; // user-entered number

 System.out.print("Enter a whole number (q to quit): ");
 xStr = stdIn.next();

 while (!xStr.equalsIgnoreCase("q"))
 {
 x = Integer.parseInt(xStr);
 numList[size] = x;
 size++;
 System.out.print("Enter a whole number (q to quit): ");

35

Understanding Exception Messages

 xStr = stdIn.next();
 } // end while
 } // end readNumbers

 //***************************************

 public double getMean()
 {
 int sum = 0;
 for (int i=0; i<size; i++)
 {
 sum += numList[i];
 }
 return sum / size;
 } // end getMean

 //***************************************

 public static void main(String[] args)
 {
 NumberList list = new NumberList();
 list.readNumbers();
 System.out.println("Mean = " + list.getMean());
 } // end main
} // end class NumberList

36

Understanding Exception Messages

n  The NumberList program compiles and runs, but it's
not very robust. See below:

If this happens: Approximate error message:
User enters a
non-integer
(e.g., hi).

Exception in thread "main" java.lang.NumberFormatException: For
input string: "hi"
 at java.lang.Integer.parseInt(Integer.java:468)

 at NumberList.readNumbers(NumberList.java:28)
 at NumberList.main(NumberList.java:73)

User
immediately
enters q to quit.

Exception in thread "main" java.lang.ArithmeticException:
/ by zero
 at NumberList.getMean(NumberList.java:49)
 at NumberList.main(NumberList.java:58)

User enters
more than 100
numbers.

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 100
 at NumberList.readNumbers(NumberList.java:29)

 at NumberList.main(NumberList.java:73)

call-
stack
trace

thrown exception

37

Understanding Exception Messages

n  As part of a runtime error, the JVM prints the exception
that was thrown and then prints the call-stack trace.
The call-stack trace shows the methods that were
called prior to the crash.

n  If you perform integer division with a denominator of
zero, the JVM throws an ArithmeticException
object.

n  If you access an array element with an array index
that's < 0 or >= the array's size, the JVM throws an
ArrayIndexOutOfBoundsException object.

38

