
Java Advanced

Rahul Deodhar
rahuldeodhar@gmail.com

www.rahuldeodhar.com
+91 9820213813

1

Chapter 6 - Object-Oriented Programming

n  Object-oriented programming overview
n  objects
n  classes
n  encapsulation

n  UML Class Diagram
n  First OOP Class
n  private and public Access
n  Driver Class
n  Reference Variables and Instantiation
n  Calling a Method
n  Calling Object

1

n  The this Reference
n  Default Values
n  Variable Persistence
n  OOP Tracing Procedure (hidden)
n  UML Class Diagram for Next Version of the Mouse Program
n  Local Variables
n  return statement
n  void Return Type
n  Empty return Statement
n  Argument Passing
n  Specialized methods:

n  accessor methods
n  mutator methods
n  boolean methods

Chapter 6 - Object-Oriented Programming
2

Object-Oriented Programming Overview

n  In the old days, the standard programming technique
was called "procedural programming."

n  That's because the emphasis was on the procedures
or tasks that made up a program.

n  You'd design your program around what you thought
were the key procedures.

n  Today, the most popular programming technique is
object-oriented programming (OOP).

n  With OOP, instead of thinking first about procedures,
you think first about the things in your problem. The
things are called objects.

3

Object-Oriented Programming Overview

n  An object is:
 A set of related data which identifies the current state of the
object.

+ a set of behaviors

n  Example objects:

n  Car object in a traffic-flow simulation:
n  data = ?
n  methods = ?

human entities physical objects mathematical entities

employees cars in a traffic-flow simulation points in a coordinate system

customers aircraft in an air-traffic control system complex numbers

students electrical components in a circuit-
design program

time

4

Object-Oriented Programming Overview

n  Benefits of OOP:
n  Programs are more understandable -

n  Since people tend to think about problems in terms of objects, it's easier
for people to understand a program that's split into objects.

n  Fewer errors -
n  Since objects provide encapsulation (isolation) for the data, it's harder

for the data to get messed up.

methods

data

rest of program

object

5

Object-Oriented Programming Overview

n  A class is a description for a set of objects.
n  On the next slide, note the three computers on a

conveyer belt in a manufacturing plant:
n  The three computers represent objects, and the

specifications document represents a class. The specifications
document is a blueprint that describes the computers: it lists
the computers' components and describes the computers'
features.

n  Think of an object as a physical example for a class's
description. More formally, we say that an object is an
instance of a class.

6

Object-Oriented Programming Overview

computer objects

Specifications for a computer

7

Object-Oriented Programming Overview

n  A class is a description for a set of objects. The
description consists of:

 a list of variables
+ a list of methods

n  Classes can define two types of variables – instance
variables and class variables. And classes can define
two types of methods – instance methods and class
methods. Instance variables and instance methods
are more common than class variables and class
methods, and we'll focus on instance variables and
instance methods in this chapter and the next several
chapters.

8

Object-Oriented Programming Overview

n  A class's instance variables specify the type of data
that an object can store.
n  For example, if you have a class for computer objects, and

the Computer class contains a hardDiskSize instance
variable, then each computer object stores a value for the
size of the computer's hard disk.

n  A class's instance methods specify the behavior that
an object can exhibit.
n  For example, if you have a class for computer objects, and

the Computer class contains a printSpecifications
instance method, then each computer object can print a
specifications report (the specifications report shows the
computer's hard disk size, CPU speed, cost, etc.).

9

Object-Oriented Programming Overview

n  Note the use of the term “instance” in “instance variable” and
“instance method.” That reinforces the fact that instance
variables and instance methods are associated with a particular
object instance. For example, each computer object has its own
value for the hardDiskSize instance variable.

n  That contrasts with class variables and class methods, which you
saw in Chapter 5. Class variables and class methods are
associated with an entire class. For example, the Math class
contains the PI class variable and the round class method. PI
and round are associated with the entire Math class, not with a
particular instance of the Math class. We'll cover class variables
and class methods in more detail in Chapter 9.

10

UML Class Diagram

n  UML:
n  Stands for Unified Modeling Language.
n  It's a diagrammatic methodology for describing classes, objects,

and the relationships between them.
n  It is widely accepted in the software industry as a standard for

modeling OOP designs.
n  Example:

n  UML class diagram for a Mouse class:

Mouse ← class name
age : int
weight : double
percentGrowthRate : double

← attributes /
variables

setPercentGrowthRate(percentGrowthRate : double)
grow()
display()

← operations /
methods

11

First OOP Class

/**
* Mouse.java
* Dean & Dean
*
* This class models a mouse for a growth simulation program.
**/

public class Mouse
{
 private int age = 0; // age of mouse in days
 private double weight = 1.0; // weight of mouse in grams
 private double percentGrowthRate; // % weight increase per day

 //***

 // This method assigns the mouse's percent growth rate.

 public void setPercentGrowthRate(double percentGrowthRate)
 {
 this.percentGrowthRate = percentGrowthRate;
 } // end setPercentGrowthRate

instance variable declarations

To access instance
variables, use
this dot.

parameter

method body

12

First OOP Class

 //***

 // This method simulates one day of growth for the mouse.

 public void grow()
 {
 this.weight += (.01 * this.percentGrowthRate * this.weight);
 this.age++;
 } // end grow

 //***

 // This method prints the mouses's age and weight.

 public void display()
 {
 System.out.printf(
 "Age = %d, weight = %.3f\n", this.age, this.weight);
 } // end display
} // end class Mouse

14

private and public Access

n  private and public are access modifiers. When you apply
an access modifier to a member of a class, you determine
how easy it is for the member to be accessed. Accessing a
member refers to either reading the member's value or
modifying it.

n  If you declare a member to be private, then the member
can be accessed only from within the member's class.
Instance variables are almost always declared with the
private modifier because you almost always want an
object's data to be hidden. Making the data hard to access is
what encapsulation is all about and it's one of the
cornerstones of OOP.

n  If you declare a member to be public, then the member
can be accessed from anywhere (from within the member's
class, and also from outside the member's class). Methods
are usually declared with the public modifier because you
normally want to be able to call them from anywhere.

15

Driver Class

/**
* MouseDriver.java

* Dean & Dean

*

* This is a driver for the Mouse class.

**/

import java.util.Scanner;

public class MouseDriver

{

 public static void main(String[] args)

 {

 Scanner stdIn = new Scanner(System.in);

 double growthRate;

 Mouse gus = new Mouse();

 Mouse jaq = new Mouse();

16

Driver Class

 System.out.print("Enter growth rate as a percentage: ");
 growthRate = stdIn.nextDouble();

 gus.setPercentGrowthRate(growthRate);

 jaq.setPercentGrowthRate(growthRate);

 gus.grow();

 jaq.grow();

 gus.grow();

 gus.display();

 jaq.display();

 } // end main

} // end class MouseDriver

17

Reference Variables and Instantiation

n  To declare a reference variable (which holds the
address in memory where an object is stored):

<class-name> <reference-variable>;

n  To instantiate/create an object and assign its address
into a reference variable:

<reference-variable> = new <class-name>()

n  Example code:
Mouse gus;

gus = new Mouse();

n  This single line is equivalent to the above two lines:
Mouse gus = new Mouse();

declaration

instantiation

initialization

18

Calling a Method

n  After instantiating an object and assigning its address
into a reference variable, call/invoke an instance
method using this syntax:

<reference-variable>.<method-name>(<comma-separated-arguments>);

n  Here are three example instance method calls from the
MouseDriver class:
gus.setPercentGrowthRate(growthRate);

gus.grow();

gus.display();

19

n  A calling object is the object that appears at the left of
the dot in a call to an instance method.

n  Can you find the calling objects below?
public static void main(String[] args)
{

 Scanner stdIn = new Scanner(System.in);

 double growthRate;

 Mouse gus = new Mouse();

 System.out.print("Enter growth rate as a percentage: ");

 growthRate = stdIn.nextDouble();

 gus.setPercentGrowthRate(growthRate);

 gus.grow();

 gus.display();

} // end main

Calling Object
20

n  The this reference:
n  When used in conjunction with a dot and an instance variable,

"this" is referred to as the this reference. Note this example from
the Mouse class's grow method:
this.weight += (.01 * this.percentGrowthRate * this.weight);

n  The this reference is used inside of a method to refer to
the object that called the method; in other words, the this
reference refers to the calling object.

n  So what’s so great about having a special name for the calling
object inside of a method? Why not just use the original name,
gus or jaq, inside the method?

n  Because if the original name were to be used, then the method
would only work for the one specified calling object. By using a
generic name (this) for the calling object, then the method is
more general purpose. For example, by using this, the grow
method is able to specify weight gain for any Mouse object that
calls it. If gus calls grow, then gus’s weight is updated, whereas
if jaq calls grow, then jaq’s weight is updated.

The this Reference
21

n  A variable's default value is the value that the variable
gets if there's no explicit initialization.

n  Mouse class's instance variable declarations:
private int age = 0;

private double weight = 1.0;

private double percentGrowthRate;

n  Here are the default values for instance variables:
n  integer types get 0
n  floating point types get 0.0
n  boolean types get false
n  reference types get null

n  Note that a String is a reference type so it gets null by
default.

Default Values

explicit initializations

percentGrowthRate
gets default value of 0.0

22

n  A variable's persistence is how long a variable's value
survives before it's wiped out.

n  Instance variables persist for the duration of a
particular object. Thus, if an object makes two
method calls, the second called method does not
reset the calling object's instance variables to their
initialized values. Instead, the object's instance
variables retain their values from one method call to
the next.

Variable Persistence
23

UML Class Diagram for Next Version of the Mouse Program

Member accessibility:
Use "-" for private access and "+" for public access.

Method notes:
We use them here to
specify local variables.

Initialization values:
Use "= <value>".

32

Local Variables

n  A local variable is a variable that's declared inside a
method. That's different from an instance variable,
which is declared at the top of a class, outside all the
methods.

n  A local variable is called "local" because it can be used
only inside of the method in which it is declared – it is
completely local to the method.

n  In the Mouse2Driver class on the next slide, note
how the main method has three local variables -
stdIn , mickey, and days. And in the Mouse2
class, note how the grow method has one local
variable - i.

33

Mouse2Driver Class

import java.util.Scanner;

public class Mouse2Driver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Mouse2 mickey = new Mouse2();
 int days;

 mickey.setPercentGrowthRate(10);
 System.out.print("Enter number of days to grow: ");
 days = stdIn.nextInt();
 mickey.grow(days);
 System.out.printf("Age = %d, weight = %.3f\n",
 mickey.getAge(), mickey.getWeight());
 } // end main
} // end class Mouse2Driver

local variables

34

Mouse2 Class

import java.util.Scanner;

public class Mouse2
{
 private int age = 0; // age in days
 private double weight = 1.0; // weight in grams
 private double percentGrowthRate; // % daily weight gain

 //**

 public void setPercentGrowthRate(double percentGrowthRate)
 {
 this.percentGrowthRate = percentGrowthRate;
 } // end setPercentGrowthRate

 //**

 public int getAge()
 {
 return this.age;
 } // end getAge

35

Mouse2 Class

 //**

 public double getWeight()
 {
 return this.weight;
 } // end getWeight

 //**

 public void grow(int days)
 {
 for (int i=0; i<days; i++)
 {
 this.weight +=
 (.01 * this.percentGrowthRate * this.weight);
 }
 this.age += days;
 } // end grow
} // end class Mouse2

local variable

36

return Statement

n  The return statement allows you to pass a value
from a method back to the place where the method
was called. Note the following example.

n  From the Mouse2 class:
public int getAge()
{
 return this.age;
} // end getAge

n  From the Mouse2Driver class:
System.out.printf("Age = %d, weight = %.3f\n",
 mickey.getAge(), mickey.getWeight());

n  Note the return type in the above example. It has to
match the type of the value that's being returned in
the return statement.

return type
return statement

method
call

37

void Return Type

n  As shown in the below grow method from the
Mouse2 class, if a method does not return a value,
then the method must specify void for its return
type.
public void grow(int days)

{

 for (int i=0; i<days; i++)

 {

 this.weight +=

 (0.01 * this.percentGrowthRate * this.weight);

 }

 this.age += days;

} // end grow

38

Empty return Statement

n  For methods with a void return type, it's legal to
have an empty return statement. The empty
return statement looks like this:
return;

n  The empty return statement does what you'd
expect:

n  It terminates the current method and causes control to be
passed to the calling module at the point that immediately
follows the method call that called the current method.

39

Empty return Statement

n  Suppose you'd like to model mouse growth only up through
mouse adolescence. This grow method does that by stopping a
mouse's growth after 100 days:
public void grow(int days)
{
 int endAge;
 endAge = this.age + days;
 while (this.age < endAge)
 {
 if (this.age >= 100)
 {
 return;
 }
 this.weight +=
 .01 * this.percentGrowthRate * this.weight;
 this.age++;
 } // end while
} // end grow

empty return statement

40

Empty return Statement

n  Code that uses an empty return statement(s) can always be
replaced by code that does not use the empty return
statement(s). For example, here's a return-less version of the
previous grow method:
public void grow(int days)
{
 int endAge;
 endAge = this.age + days;
 if (endAge > 100)
 {
 endAge = 100;
 }
 while (this.age < endAge)
 {
 this.weight +=
 (.01 * this.percentGrowthRate * this.weight);
 this.age++;
 } // end while
} // end grow

41

return Statement Within a Loop

n  Software engineering observation:
n  Real-world programmers are often asked to maintain (fix and

improve) other people's code. In doing that, they oftentimes find
themselves having to examine the loops and, even more specifically,
the loop termination conditions in the program they're working on.
Therefore, it's important that the loop termination conditions are
clear. Normally, loop termination conditions appear in standard
places: while loop heading, do loop closing, for loop heading's
condition part. However, in using a return statement inside a loop,
the return statement introduces a loop termination that's not in
one of the standard places. For example, in the grow method two
slides ago, the return statement is "hidden" inside an if
statement that's embedded in a while loop.

n  In the interest of maintainability, you should use restraint when
considering the use of a return statement inside of a loop. Based
on the context, if inserting a return statement(s) inside a loop
improves clarity, then feel free to insert. However, if it simply makes
the coding chores easier and it does not add clarity, then don't
insert.

42

n  The default value for a local variable is garbage.
n  Garbage means that the variable's value is unknown - it's whatever just

happens to be in memory at the time that the variable is created.
n  When doing a trace, use a "?" to indicate garbage.
n  If a program attempts to access a variable that contains garbage, the

compiler generates an error. For example, what happens when the
following method is compiled?
public void grow(int days)
{
 for (int i; i<days; i++)
 {
 this.weight +=
 (.01 * this.percentGrowthRate * this.weight);
 }
 this.age += days;
} // end grow

n  Since i is no longer assigned zero, i contains garbage when the i<days
condition is tested. That causes the compiler to generate this error
message:
variable i might not have been initialized

Local Variable Default Values
43

n  Local variables persist only for the duration of the
method (or for loop) in which the local variable is
defined. The next time the method (or for loop) is
executed, the local variable's value resets to its initial
value.

Local Variable Persistence
44

Argument Passing

n  What is the output for the following Mouse3Driver
and Mouse3 classes?
public class Mouse3Driver

{

 public static void main(String[] args)

 {

 Mouse3 minnie = new Mouse3();

 int days = 365;

 minnie.grow(days);

 System.out.println("# of days aged = " + days);

 } // end main

} // end class Mouse3Driver

45

Argument Passing

public class Mouse3
{
 private int age = 0; // age in days
 private double weight = 1.0; // weight in grams
 private double percentGrowthRate = 10; // % daily weight gain

 //**

 public void grow(int days)
 {
 this.age += days;
 while (days > 0)
 {
 this.weight +=
 (.01 * this.percentGrowthRate * this.weight);
 days--;
 }
 } // end grow
} // end class Mouse3

46

Argument Passing

n  Java uses the pass-by-value mechanism to pass
arguments to methods.

n  Pass-by-value means that the JVM passes a copy of
the argument's value (not the argument itself) to the
parameter.

n  Thus, if the parameter's value changes within the
method, the argument in the calling module is
unaffected.

n  For example, in the previous two program slides, even
though the days value within the grow method
changes, the main method's days value is unaffected.

47

Argument Passing

n  An argument and its associated parameter often use the same
name. For example, we use days for the argument in
Mouse3Driver's grow method call, and we also use days for
the parameter in Mouse3's grow method heading.

n  But be aware that an argument and its associated parameter
don't have to use the same name. The only requirement is that
an argument and its associated parameter are the same type.

n  For example, if num is an int variable, then this method call
successfully passes num's value into the days parameter:
minnnie.grow(num);

n  As another example, since 365 is an int value, the following
method call successfully passes 365 into the days parameter:
minnie.grow(365);

48

Specialized Methods

n  Accessor methods -
n  They simply get/access the value of an instance variable.
n  Example:

public int getAge()

{

 return this.age;

}

n  Mutator methods -
n  They simply set/mutate the value of an instance variable.
n  Example:

public void setPercentGrowthRate(double percentGrowthRate)

{

 this.percentGrowthRate = percentGrowthRate;

} // end setPercentGrowthRate

49

Specialized Methods

n  boolean methods -
n  They check the truth or falsity of some condition.
n  They always return a boolean value.
n  They should normally start with "is".

n  For example, here's an
isAdolescent method that
determines whether a Mouse
object's age is ≤ 100:
public boolean isAdolescent()
{

 if (this.age <= 100)
 {
 return true;

 }
 else
 {
 return false;

 }
} // end isAdolescent

n  Here's how the isAdolescent
method might be used in main:

Mouse pinky = new Mouse();

...
if (pinky.isAdolescent() == false)
{

 System.out.println(
 "The Mouse's growth is no longer" +
 " being simulated - too old.");

}

50

Chapter 7
Object-Oriented Programming – Additional Details

n  Object Creation - a Detailed Analysis
n  Assigning a Reference
n  Testing Objects For Equality
n  Passing References as Arguments
n  Method-Call Chaining
n  Overloaded Methods
n  Constructors
n  Overloaded Constructors

1

Object Creation - a Detailed Analysis

n  Let's start the chapter with a behind-the-scenes detailed look at
what happens when a program instantiates an object and stores
its address in a reference variable.

n  Code fragment:
1. Car car;
2. car = new Car();
3. car.year = 2008;

1.  Space is allocated in memory for the car reference variable. The
car reference variable will hold the address of an object, but
since there's no object created for it yet, it doesn't yet hold a
legitimate address.

2.  Space is allocated in memory for a new Car object. The address
of the allocated space is assigned to car.

3.  The car variable's value (the address of a Car object) is used to
find the Car object in memory, and then 2008 can be stored in
the Car object. Note that for this assignment to work, we're
making the simplifying assumption that year is a public
instance variable.

reference variable
declaration
object instantiaton

Assign 2008 to car's year instance
variable

2

car
memory

Object Creation - a Detailed Analysis

n  Code fragment:
1. Car car;
2. car = new Car();
3. car.year = 2008;

1062

1062

2008

?

3

Assigning a Reference

n  The result of assigning one reference variable to
another is that both reference variables then point to
the same object.

n  With both reference variables pointing to the same
object, if the object is updated by one of the
reference variables, then the other reference variable
will notice that change when it attempts to access
the object.

n  That can be disconcerting!

4

Assigning a Reference

n  Suppose you want to create two Car objects
that are the same except for their color. Your
plan is to create the first car, copy the first car
to the second car, and then update the second
car's color instance variable. Will this code
accomplish that?
Car stacyCar;
Car johnCar = new Car();
johnCar.setMake("Toyota");
johnCar.setYear(2008);
johnCar.setColor("silver");
stacyCar = johnCar;
stacyCar.setColor("peach");

5

Assigning a Reference

n  The problem with the previous slide's code is that the
stacyCar = johnCar; statement causes the two
references to point to the same single Car object. Thus,
johnCar's color becomes "peach" (and that was not
intended).
johnCar = new Car();

...
stacyCar = johnCar;
stacyCar.setColor("peach");

6

Assigning a Reference

n  If you want to make a copy of a reference variable, you
should not assign the reference to another reference.
Instead, you should instantiate a new object for the
second reference and then assign the two objects'
instance variables one at a time.
johnCar = new Car();
stacyCar = new Car();
<assign johnCar instance variables to stacyCar instance variables>

7

Assigning a Reference

n  On the next slide, we make a copy of the johnCar
reference variable by calling a makeCopy method.

n  The makeCopy method implements the strategy
outlined on the previous slide - it instantiates a new
object and then copies instance variables into it one
at a time. More specifically, the makeCopy method:
n  Instantiates a local variable named car.
n  Copies the calling object car's instance variables into the local

variable car's instance variables.
n  Returns the local variable car to the calling module.

8

Assigning a Reference

public static void main(String[] args)

{

 Car johnCar = new Car();

 Car stacyCar;

 johnCar.setMake("Toyota");

 johnCar.setYear(2008);

 johnCar.setColor("silver");

 stacyCar = johnCar.makeCopy();

 stacyCar.setColor("peach");

} // end main

9

Assigning a Reference

public class Car

{

 private String make;

 private int year;

 private String color;

 ...

 public Car makeCopy()

 {

 Car car = new Car();

 car.make = this.make;

 car.year = this.year;

 car.color = this.color;

 return car;

 } // end makeCarCopy

} // end class Car

10

Testing Objects for Equality

n  Using the == operator:
n  When comparing two reference variables with ==, you'd

probably expect == to return true if the data in the two
reference variables is the same. Unfortunately, that's not how
things work. For example, this prints "different":
Car car1 = new Car();
car1.setColor("red");

Car car2 = new Car();

car2.setColor("red");

if (car1 == car2)

{

 System.out.println("the same");

}

else

{

 System.out.println("different");

}

The car1 == car2
expression returns
false. Why?

11

Testing Objects for Equality

n  Using the == operator (continued):
n  The == operator returns true if the two reference variables

point to the same object; i.e., the two reference variables
contain the same address. For example, what does this code
fragment print?
Car car1 = new Car();
Car car2 = car1;

if (car1 == car2)

{

 System.out.println("the same");

}

else

{

 System.out.println("different");

}

12

Testing Objects for Equality

n  Usually, the == operator is not good enough. You'll
usually want to compare the contents of two objects
rather than just whether two reference variables
point to the same object.

n  To do that, you'll need to have an equals method in
the object's class definition that compares the
contents of the two objects.

13

Testing Objects for Equality

n  Write an equals method for a Car2 class. Use this skeleton:
public class Car2
{
 private String make;
 private int year;
 private String color;

 <equals method goes here>

} // end class Car2

public class Car2Driver
{
 public static void main(String[] args)
 {
 Car2 hamoudCar = new Car2();
 Car2 jessicaCar = new Car2();
 ...
 if (hamoudCar.equals(jessicaCar))
 {
 System.out.println("cars have identical features");
 }

14

Passing References as Arguments

n  Suppose you pass a reference variable to a method, and inside
the method you update the reference variable's instance
variables. What happens? …

n  Remember that a reference variable holds the address of an
object, not the object itself.

n  So in passing a reference variable argument to a method, a copy
of the object's address (not a copy of the object itself) is passed
to the method and stored in the method's parameter.

n  Since the parameter and the argument hold the same address
value, they point to the same object. Thus, if one of the
parameter's instance variables is updated, then the update will
simultaneously update the argument's instance variable in the
calling module.

16

Passing References as Arguments

public class PersonDriver
{
 public static void main(String[] args)
 {
 Person person1 = new Person();
 Person person2 = new Person();

 person1.setName("Kamal");
 person2.setName("Luis");
 System.out.println(person1.getName()
 + ", " + person2.getName());

 person1.swapPerson(person2);
 System.out.println(person1.getName()
 + ", " + person2.getName());
 } // end main
} // end PersonDriver

17

Aside: Swapping algorithm

n  Write a pseudocode fragment that swaps the contents
of the x and y variables. More specifically, fill in the
swap code below such that the output is "x=8, y=3".
x ← 3
y ← 8
<swap code goes here>
print "x=" + x + ", y=" + y

18

Passing References as Arguments

public class Person
{
 private String name;

 public void setName(String name)
 {
 this.name = name;
 }

 public String getName()
 {
 return this.name;
 }

 public void swapPerson(Person otherPerson)
 {
 String temp;
 temp = otherPerson.name;
 otherPerson.name = this.name;
 this.name = temp;
 } // end swapPerson
} // end Person

19

Method-Call Chaining

n  Up to this point, we've called methods one at a time.
In an earlier example, we had a johnCar reference
variable and we set its make and year like this:
johnCar.setMake("Toyota");

johnCar.setYear(2008);

n  Let's now discuss how you can chain the two method
calls together, like this:
johnCar.setMake("Toyota").setYear(2008);

n  That's called method-call chaining. It's when you use
a dot to concatenate a method call to the end of
another method call.

20

Method-Call Chaining

public class Car3Driver
{
 public static void main(String[] args)
 {
 Car3 car = new Car3();

 car.setMake("Toyota").setYear(2008).printIt();
 } // end main
} // end class Car3Driver

a method-call
chain

21

Method-Call Chaining

public class Car3
{
 private String make;
 private int year;

 //***

 public Car3 setMake(String make)
 {
 this.make = make;
 return this;
 } // end setMake

 public Car3 setYear(int year)
 {
 this.year = year;
 return this;
 } // end setYear

 //***

 public void printIt()
 {
 System.out.println(make + ", " + year);
 } // end printIt
} // end class Car3

The return type is the same as the class
name.

Return the calling
object.

22

Method-Call Chaining

n  In Car3's setMake and setYear methods, note
how we enable method-call chaining. In each method
definition:
n  The last line in the method body returns the calling object:

return this;

n  The method heading specifies the method's class name for
the return type:
public Car3 setMake(String make);

n  Method-call chaining is optional. So why bother with
it?

23

Overloaded Methods

n  Suppose there's a need to perform the same sort of
task on different sets of arguments. For example,
suppose you want to find the average for these
different sets of arguments:
n  two integers
n  three integers
n  two doubles

n  One solution is to write three methods with three
different names. Here's how you might call those
methods:
x = findAverageFor2Ints(20, 8);
y = findAverageFor3Ints(5, -3, 18);
z = findAverageFor2Doubles(1.2, 4.0);

n  What's wrong with that solution?

24

Overloaded Methods

n  The better solution is to use overloaded methods.
That's where you have two or more methods with the
same name and different parameters (different
number of parameters or different types of
parameters).

n  For the find-the-average example, you could write
three overloaded findAverage methods and call
them like this:
x = findAverage(20, 8);

y = findAverage(5, -3, 18);

z = findAverage(1.2, 4.0);

25

Overloaded Methods

class Height
{
 double height; // a person's height
 String units; // unit of measurement (e.g., cm for centimeters)

 public void setHeight(double height)
 {
 this.height = height;
 this.units = "cm";
 }

 public void setHeight(double height, String units)
 {
 this.height = height;
 this.units = units;
 }

 public void print()
 {
 System.out.println(this.height + " " + this.units);
 }
} // end class Height

Note that the
overloaded
setHeight methods
have different
numbers of
parameters.

26

Overloaded Methods

public class HeightDriver
{
 public static void main(String[] args)
 {
 Height myHeight = new Height();

 myHeight.setHeight(72.0, "in");
 myHeight.print();
 myHeight.setHeight(180);
 myHeight.print();
 } // end main
} // end class HeightDriver

n  For each setHeight call, which method is called on
the previous slide?

n  What is the program's output?

27

Overloaded Methods

n  Suppose that you have overloaded methods and
you're inside one of the methods. Note that it's OK to
call one of the other overloaded methods.

n  For example, you can replace the original one-
parameter setHeight method with the following
implementation, which calls the two-parameter
setHeight method.
public void setHeight(double height)
{
 setHeight(height, "cm");
}

No need for a reference variable dot prefix
here.

28

Constructors

n  Up to this point, we have used mutators to assign values to the
instance variables in newly instantiated objects. That works OK,
but it requires having and calling one mutator for each instance
variable.

n  As an alternative, you could use a single method to initialize all
of an object's instance variables after you create that object.
For example, you could define a single initCar method to
initialize Car objects and use it like this::
Car brandonCar = new Car();
brandonCar.initCar("Porsche", 2006, "beige");

n  The above code fragment uses one statement to allocate space
for a new object, and it uses another statement to initialize that
object's instance variables. Since the instantiation and
initialization of an object is so common, wouldn't it be nice if
there were a single statement that could handle both of these
operations?
Car brandonCar = new Car("Porsche", 2006, "beige");

29

Constructors

n  A constructor lets you specify what happens to an
object when it is instantiated with new.

n  A constructor is called automatically when an object
is instantiated.

n  A constructor's name = the object's class name.
n  Don't put a return type at the left of a constructor

heading (because constructors never return
anything).

30

Example Car Class with a Constructor

public class Car4Driver
{
 public static void main(String[] args)
 {
 Car4 chrisCar = new Car4("Prius", 2008, "blue");
 Car4 goldengCar = new Car4("Volt", 2011, "red");

 System.out.println(chrisCar.getMake());
 } // end main
} // end class Car4Driver constructo

r calls

31

Example Car Class with a Constructor

public class Car4
{
 private String make; // car's make
 private int year; // car's manufacturing year
 private String color; // car's primary color

 //**

 public Car4(String m, int y, String c)
 {
 this.make = m;
 this.year = y;
 this.color = c;
 } // end constructor

 //**

 public String getMake()
 {
 return this.make;
 } // end getMake
} // end class Car4

constructo
r definition

Style requirement:
Put constructors
above a class's
methods.

32

Constructors

n  Any time you instantiate an object (with new), there
must be a matching constructor. That is, the number
and types of arguments in your constructor call must
match the number and types of parameters in a
defined constructor.

n  Until recently, we've instantiated objects without any
explicit constructor. So were those examples wrong?

n  The Java compiler automatically provides an empty-
bodied zero-parameter default constructor for a class
if and only if the class contains no explicitly defined
constructors.

n  The Employee program on the next slide illustrates
the use of Java's implicit zero-parameter default
constructor.

33

Will this program compile successfully?
Will the next slide’s program compile
successfully?

import java.util.Scanner;

public class Employee
{
 private String name;

 public void readName()
 {
 Scanner stdIn = new Scanner(System.in);
 System.out.print("Name: ");
 this.name = stdIn.nextLine();
 } // end readName
} // end class Employee

public class EmployeeDriver
{
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.readName();
 } // end main
} // end class EmployeeDriver

34

Will this program compile successfully?

import java.util.Scanner;

public class Employee2
{
 private String name;

 public Employee2(String n)
 {
 this.name = n;
 } // end constructor

 public void readName()
 {
 Scanner stdIn = new Scanner(System.in);
 System.out.print("Name: ");
 this.name = stdIn.nextLine();
 } // end readName
} // end class Employee2

public class Employee2Driver
{
 public static void main(String[] args)
 {
 Employee2 waiter = new Employee2("Derrick");
 Employee2 hostess = new Employee2();

 hostess.readName();
 } // end main
} // end class Employee2Driver

35

Overloaded Constructors

n  Constructor overloading occurs when there are two
or more constructors with the same name and
different parameters.

n  To call an overloaded constructor from another
overloaded constructor, use this syntax:
this(<arguments for target constructor>);

n  A this(<arguments-for-target-constructor>)
constructor call may appear only in a constructor
definition, and it must appear as the very first
statement in the constructor definition.

n  See the example on the next slide.…

36

Overloaded Constructors

public class Fraction
{
 private int numerator;
 private int denominator;
 private double quotient;

 public Fraction(int n)
 {
 this(n, 1);
 }

 public Fraction(int n, int d)
 {
 this.numerator = n;
 this.denominator = d;
 this.quotient =
 (double) this.numerator
 / this.denominator;
 }

 public void printIt()
 {
 System.out.println(

 this.numerator +
 " / " + this.denominator +
 " = " + this.quotient;
 } // end printIt

} // end Fraction class

public class FractionDriver
{
 public static void main(String[] args)
 {
 Fraction a = new Fraction(3, 4);
 Fraction b = new Fraction(3);
// Fraction c = new Fraction(); // error
 a.printIt();
 b.printIt();
 } // end main
} // end class FractionDriver

37

Chapter 9 - Classes with Class Members

n  Class Variables
n  Class Methods
n  How to Access Class Members
n  When to Use Class Members
n  Class Constants
n  Example Program Using Class Members

1

Class Variables

n  Based on what you've learned so far, when you're working on an
object-oriented program, you should envision separate objects, each
with their own set of data and behaviors (instance variables and
instance methods, respectively).

n  That's a valid picture, but you should be aware that in addition to data
and behaviors that are specific to individual objects, you can also have
data and behaviors that relate to an entire class. Since they relate to an
entire class, such data and behaviors are referred to as class variables
and class methods, respectively.

n  For a particular class, each of the class's objects has its own copy of the
class's instance variables.

n  For a particular class, each of the class's objects shares a single copy of
the class's class variables.

n  For a mouse growth simulation program, name some appropriate
instance variables and some appropriate class variables.

2

Class Variables

n  If you'd like a variable to be shared by all the objects
within the variable's class, make it a class variable by
using the static modifier in its declaration:
<private or public> static <type> <variable-name>;

n  Example:
public class Mouse

{

 private static int mouseCount;

 private static double averageLifeSpan;

 ...

n  Class variables are declared at the top of the class,
above all the methods.

3

Class Variables

n  Class variables use the same default values as
instance variables:
n  integer types get 0
n  floating point types get 0.0
n  boolean types get false
n  reference types get null

n  What are the default values for the class variables in
this code fragment?
public class Mouse
{
 private static int mouseCount;
 private static double averageLifeSpan;
 private static String researcher;
 private static int simulationDuration = 730;
 ...

Initializatio
ns are
allowed.

4

Scope

n  You can access a class variable from anywhere
within its class; i.e., you can access class variables
from instance methods as well as from class
methods.

n  That contrasts with instance variables, which you
can access only from instance methods.

n  Thus, class variables have broader scope than
instance variables. Local variables, on the other
hand, have narrower scope than instance variables.
They can be accessed only within one particular
method.

5

Scope

n  Here is the scope continuum:

n  Narrower scope equates to more encapsulation, and
encapsulation means you are less vulnerable to inappropriate
changes.

n  Class variables, with their broad scope and lack of
encapsulation, can be accessed and updated from many
different places, and that makes programs hard to understand
and debug. Having broader scope is necessary at times, but in
general you should try to avoid broader scope.

n  Thus, you should prefer local variables over instance variables
and instance variables over class variables.

local variables instance
variables

class variables

narrowest
scope

broadest scope

6

Class Methods

n  If you have a method that accesses class variables and
not instance variables, then you should declare the
method to be a class method. To do so, add static to
the method's heading like this:
<private-or-public> static <return-type> <method-name>(<parameters>)

n  Example:
public class Mouse
{
 private static int mouseCount;
 private static double averageLifeSpan;

 public static void printMouseCount()
 {
 System.out.println("Total mice = " +
 Mouse.mouseCount);
 }
}

To access a class variable,
prefix it with <class-name>
dot.

7

How to Access Class Members

n  Normally, to access a class member (a class variable or a
class method), prefix it with <class-name> dot.

n  Shortcut syntax for a class member:
n  In accessing a class member, you may omit the <class-name>

dot prefix if the class member is in the same class as where
you're trying to access it from. For example:

public class Mouse
{
 private static int mouseCount;
 private static void printMouseCount()
 {
 System.out.println("Total mice = " + Mouse.mouseCount);
 }
 public static void main(String[] args)
 {
 Mouse.printMouseCount();
 }
} // end Mouse class

OK to access
mouseCount without
<class-name> dot.

OK to access
printMouseCount without
<class-name> dot.

8

When to Use Class Methods

n  You should make a method a class method:
n  If you have a method that uses class variables and/or calls

class methods, then it's a good candidate for being a class
method. Warning: If in addition to accessing class members,
the method also accesses instance members, then the
method must be an instance method, not a class method.

n  If you might need to call a method even when there are no
objects from the method's class, then you should make it a
class method.

n  The main method has to be a class method. If a main
method uses helper methods that don't involve instance
members, then the helper methods should be class methods
as well.

9

Class Constants

n  Sometimes, you'll want a class variable to be fixed/constant. That
type of "variable" is called a class constant.

n  To make a class constant, declare a variable with the static and
final modifiers like this:

<private or public> static final <type> <variable-name> = <initial value>;

n  Note that class constants should be assigned as part of an
initialization statement. If you attempt to assign a value to a class
constant later on, that generates a compilation error.

n  As with most variables, class constants usually use the private
modifier. However, if the constant is so important that more than
one class needs to use it, then you should use the public
modifier.

10

Class Constants

n  In the Human class below, we make NORMAL_TEMP a class constant
(with the static and final modifiers) because all Human objects
have the same normal temperature of 98.6° Fahrenheit.
public class Human
{
 private static final double NORMAL_TEMP = 98.6;
 ...
 public boolean isHealthy()
 {
 return Math.abs(currentTemp - NORMAL_TEMP) < 1;
 } // end isHealthy

 public void diagnose()
 {
 if ((currentTemp - NORMAL_TEMP) > 5)
 {
 System.out.println("Go to the emergency room now!");
 ...

} // end class Human

class
constant

11

Class Constants

n  Prior to this chapter, you used named constants that were
declared locally within a method. For example:
public void calculateSignalDelay(double cableDistance)
{
 final double SPEED_OF_LIGHT = 299792458.0;
 double propagationDelay; // time for electron to travel
 // length of cable
 ...
 propagationDelay = cableDistance / SPEED_OF_LIGHT;
 ...
}

n  So when should you use a local variable named constant and
when should you use a class constant?
n  Use a local variable named constant if the constant is needed only

within one method.
n  Use a class constant if the constant is a property of the collection

of all the objects in the class or of the class in general.

12

Example Program Using Class Members

/***
* PennyJar.java
* Dean & Dean
*
* This class counts pennies for individual penny jars and for
* all penny jars combined.
***/

public class PennyJar
{
 public static final int GOAL = 10000;
 private static int allPennies = 0;
 private int pennies = 0;

 //**

 public int getPennies()
 {
 return this.pennies;
 }

 //**

 public void addPenny()
 {
 System.out.println("Clink!");
 this.pennies++;
 PennyJar.allPennies++;

 if (PennyJar.allPennies >= PennyJar.GOAL)
 {
 System.out.println("Time to spend!");
 }
 } // end addPenny

13

Example Program Using Class Members

 //**

 public static int getAllPennies()
 {
 return PennyJar.allPennies;
 }
} // end class PennyJar

/***
* PennyJarDriver.java
* Dean & Dean
*
* This class drives the PennyJar class.
***/

public class PennyJarDriver
{
 public static void main(String[] args)
 {
 PennyJar pennyJar1 = new PennyJar();
 PennyJar pennyJar2 = new PennyJar();

 pennyJar1.addPenny();
 pennyJar1.addPenny();
 pennyJar2.addPenny();
 System.out.println(pennyJar1.getPennies());
 System.out.println(PennyJar.getAllPennies());
 } // end main
} // end class PennyJarDriver

14

Chapter 12 – Aggregation, Composition, and Inheritance

n  Composition
n  Aggregation
n  UML Class Diagram for Composition and Aggregation
n  Car Dealership Program
n  Inheritance Overview
n  Inheritance Example - People in a Department Store
n  Inheritance Terminology
n  UML Class Diagrams for Inheritance Hierarchies
n  Benefits of Inheritance
n  Inheritance For a Superclass's private Instance Variables
n  Using super to Call Superclass Constructor
n  Calling a Superclass's Method from Within a Subclass
n  Default Call to Superclass Constructor
n  Method Overriding
n  The final Access Modifier
n  Aggregation , Composition, and Inheritance Compared
n  Aggregation, Composition, and Inheritance Combined
n  Card Game Program

1

Composition

n  Prior to this chapter, all of our objects have been
relatively simple, so we've been able to describe each
object with just a single class.

n  But for an object that's more complex, you should
consider breaking up the object into its constituent
parts and defining one class as the whole and other
classes as parts of the whole. When the whole class is
the exclusive owner of the parts classes, then that
class organization is called a composition.

2

Composition

n  The concept of composition is not new; that's what we do to
describe complex objects in the real world:
n  Every living creature and most manufactured products are made up

of parts. Often, each part is a subsystem that is itself made up of its
own set of subparts. Together, the whole system forms a
composition hierarchy.

n  Note the human body composition hierarchy on the next slide.

n  Remember that with a composition relationship, a component
part is limited to just one owner at a time. For example, a heart
can be in only one body at a time.

3

Composition

n  A partial composition hierarchy for the human body:

4

Aggregation

n  In a composition hierarchy, the relationship between a containing
class and one of its part classes is known as a has-a relationship.
For example, each human body has a brain and has a heart.

n  There's another has-a relationship, called aggregation, which is a
weaker form of composition. With aggregation, one class is the
whole and other classes are parts of the whole (as with
composition), but there is no additional constraint that requires
parts to be exclusively owned by the whole.

n  An aggregation example where the parts are not exclusively
owned by the whole –
n  You can implement a school as an aggregation by creating a whole

class for the school and part classes for the different types of people
who work and study at the school.

n  The people aren’t exclusively owned by the school because a person
can be part of more than one aggregation.

n  For example, a person can attend classes at two different schools
and be part of two school aggregations. The same person might
even be part of a third aggregation, of a different type, like a
household aggregation.

5

Car Dealership Program

n  Suppose you're trying to model a car dealership with a computer
program. Since the car dealership is made from several distinct
non-trivial parts, it's a good candidate for being implemented
with composition and aggregation relationships.

n  The car dealership's "non-trivial parts" are a group of cars, a
sales manager, and a group of sales people.

n  In implementing the program, define four classes:
n  The Car, Manager, and SalesPerson classes implement the car

dealership's non-trivial parts.
n  The Dealership class contains the three parts classes.

n  For each of the three class relationships, Dealership-Car,
Dealership-SalesPerson, and Dealership-Manager, is the
relationship composition or aggregation?

6

UML Class Diagram for Composition and Aggregation

n  Universal Modeling Language (UML) class diagrams show the
relationships between a program's classes:

n  A solid line between two classes represents an association – a
relationship between classes.

n  On an association line, a solid diamond indicates a composition
relationship, and a hollow diamond indicates an aggregation
relationship. The diamond goes next to the container class.

n  The labels on the association lines are called multiplicity values. They
indicate the number of object instances for each of the two
connected classes.

n  The * multiplicity value represents any size number, zero through
infinity.

7

Car Dealership Program

n  To implement a program that uses aggregation and composition:
n  Define one class for the whole and define separate classes for each

of the parts.
n  For a class that contains another class, declare an instance variable

inside the containing class such that the instance variable holds a
reference to one or more of the contained class's objects.

n  Typically, for association lines with * multiplicity values, use an
ArrayList to implement the instance variable associated with the
asterisked class.

n  If two classes have an aggregation relationship with non-exclusive
ownership, then store the contained class's object in an instance
variable in the containing class, but also store it in another variable
outside of the containing class, so the object can be added to
another aggregation and have two different "owners."

n  If two classes have a composition relationship, then store the
contained class's object in an instance variable in the containing
class, but do not store it elsewhere. That way, the object can have
only one "owner."

8

Car Dealership Program

/***
* Dealership.java
* Dean & Dean
*
* This represents an auto retail sales organization.
***/

import java.util.ArrayList;

public class Dealership
{
 private String company;
 private Manager manager;
 private ArrayList<SalesPerson> people = new ArrayList<SalesPerson>();
 private ArrayList<Car> cars = new ArrayList<Car>();

 //**

 public Dealership(String company, Manager manager)
 {
 this.company = company;
 this.manager = manager;
 }

9

Car Dealership Program

 //**

 public void addCar(Car car)
 {
 cars.add(car);
 }

 public void addPerson(SalesPerson person)
 {
 people.add(person);
 }

 //**

 public void printStatus()
 {
 System.out.println(company + "\t" + manager.getName());
 for (SalesPerson person : people)
 System.out.println(person.getName());
 for (Car car : cars)
 System.out.println(car.getMake());
 } // end printStatus
} // end Dealership class

10

Car Dealership Program
/***
* Car.java
* Dean & Dean
*
* This class implements a car.
***/

public class Car
{
 private String make;

 //**

 public Car(String make)
 {
 this.make = make;
 }

 //**

 public String getMake()
 {
 return make;
 }
} // end Car class

11

Car Dealership Program
/***
* Manager.java
* Dean & Dean
*
* This class implements a car dealership sales manager.
***/

public class Manager
{
 private String name;

 //**

 public Manager(String name)
 {
 this.name = name;
 }

 //**

 public String getName()
 {
 return name;
 }
} // end Manager class

12

Car Dealership Program
/***
* SalesPerson.java
* Dean & Dean
*
* This class implements a car sales person
***/

public class SalesPerson
{
 private String name;
 private double sales = 0.0; // sales to date

 //**

 public SalesPerson(String name)
 {
 this.name = name;
 }

 //**

 public String getName()
 {
 return name;
 }
} // end SalesPerson class

13

Car Dealership Program

/**
* DealershipDriver.java
* Dean & Dean
*
* This class demonstrates car dealership composition.
**/

public class DealershipDriver
{
 public static void main(String[] args)
 {
 Manager ahmed = new Manager("Ahmed Abdi");
 SalesPerson ash = new SalesPerson("Ash Lawrence");
 SalesPerson jeffrey = new SalesPerson("Jeffrey Leung");
 Dealership dealership = new Dealership("OK Used Cars", ahmed);

 dealership.addPerson(ash);
 dealership.addPerson(jeffrey);
 dealership.addCar(new Car("GMC"));
 dealership.addCar(new Car("Yugo"));
 dealership.addCar(new Car("Dodge"));
 dealership.printStatus();
 } // end main
} // end DealershipDriver class

14

Inheritance Overview

n  There are different ways that classes can be related.
We've covered aggregation and composition, where
one class is the whole and other classes are parts of
the whole. Inheritance is another type of class
relationship….

n  Suppose you're in charge of designing cars for a car
manufacturer:
n  You could create independent design blueprints for the

manufacturer's five car models, but to save time, it's better to
first make a master blueprint that describes features that are
common to all the models.

n  Then make additional blueprints, one for each model. The
additional blueprints describe features that are specific to the
individual models.

15

Inheritance Overview

n  Creating a more specific blueprint that's based on an
existing master blueprint is analogous to the concept
of inheritance, in which a new class is derived from an
existing class.

n  It's called inheritance because the new class inherits/
borrows all the features (data and methods) of the
existing class.

n  Inheritance is a very important feature of Java (and all
OOP languages) because it allows programmers to
reuse existing software. More specifically, the existing
class is used by all of the classes that are derived from
it.

16

Inheritance Example - People in a Department Store

n  Here's a UML class diagram for an inheritance hierarchy that keeps track
of people in a department store:

-name : String
Person

-address : String
Customer

-id : Integer
Employee

-salary : Double
FullTime

-hourlyWage : Double
PartTime

The Person class is
generic - it contains data
and methods that are
common to all classes in
the hierarchy.

As you go down the
hierarchy, the classes get
more specific. For
example, the Customer
and Employee classes
describe specific types of
people in the store.

17

Inheritance Terminology

n  Within an inheritance hierarchy, pairs of classes are linked
together. For each pair of linked classes, the more generic class
is called the superclass and the more specific class is called the
subclass.

n  We say that subclasses are derived from superclasses. That
makes sense when you realize that subclasses inherit all of the
superclass's data and methods.

n  Unfortunately, the terms superclass and subclass can be
misleading. The "super" in superclass could imply that
superclasses have more capability and the "sub" in subclass
could imply that subclasses have less capability. Actually, it's the
other way around - subclasses have more capability. Subclasses
can do everything that superclasses can do, plus more.

n  We'll stick with the terms superclass and subclass since those
are the formal terms used by Oracle, but be aware of this
alternative terminology:
n  Programmers often use the terms parent class or base class when

referring to a superclass.
n  Programmers often use the terms child class or derived class when

referring to a subclass.

18

UML Class Diagrams for Inheritance Hierarchies

n  Usually, UML class diagrams show superclasses above
subclasses. That's a common practice, but not a requirement.
The following is a requirement….

n  UML class diagrams use an arrow for inheritance relationships,
with a hollow arrowhead pointing to the superclass.

n  Warning:
n  The direction of arrows in UML class diagrams is opposite to the

direction in which inheritance flows. In the previous slide, the
Customer class inherits the name variable from the Person class.
And yet the arrow does not go from Person to Customer; it goes
from Customer to Person. That's because the arrow points to the
superclass, and Person is the superclass.

n  UML class diagram review:
n  What are the class boxes' minus signs for?
n  What are the class boxes' third compartments for?

19

Benefits of Inheritance

n  Benefits of inheritance:
n  It helps with code reusability -

n  A superclass's code can be used for multiple subclasses. That
eliminates code redundancy and makes debugging and
upgrading easier.

n  A programmer can use an existing class to easily create a new
subclass (no need to "reinvent the wheel.")

n  Smaller modules (because classes are split into superclasses
and subclasses) -

n  That makes debugging and upgrading easier.

20

Person-Employee Example

n  Implement a Person superclass with an Employee
subclass.

n  The Person class should:
n  Declare a name instance variable.
n  Define appropriate constructors.
n  Define a getName accessor method.

n  The Employee class should:
n  Inherit Person's members.
n  Declare an id instance variable.
n  Define appropriate constructors.
n  Define a display method.

21

Person-Employee Example

public class Person
{
 private String name = "";

 //**

 public Person()
 { }

 public Person(String name)
 {
 this.name = name;
 }

 //**

 public String getName()
 {
 return this.name;
 }
} // end Person class

22

Person-Employee Example

public class Employee extends Person
{
 private int id = 0;

 //**

 public Employee()
 { }

 public Employee(String name, int id)
 {

 }

 //**

 public void display()
 {

 }
} // end Employee class

23

Inheritance for a superclass's private Instance Variables

n  Since name is a private instance variable in the
Person superclass, the Employee class's methods and
constructors cannot access name directly (that's the
same interpretation of private that we've always
had).

n  So how can Employee methods and constructors
access name?

n  By using the Person class's public methods and
constructors!

n  Aside - even though a superclass's private instance
variables are not directly accessible from a subclass,
private instance variables are still considered to be
"inherited" by the subclass. So for this example, each
Employee object does indeed contain a name instance
variable.

25

Using super to Call Superclass Constructor

n  A constructor may call a constructor in its superclass
by using this syntax:

super(<arguments>);

n  A constructor call is allowed only if it's the very first
line in the constructor's body. This rule is applicable
for constructor calls to constructors in the same class
(using this) and also for constructor calls to
constructors in the superclass (using super).

n  What happens if you have a super constructor call
and then a this constructor call as the first two lines
in a constructor?

26

Calling a Superclass's Method from Within a Subclass

n  As you may recall, in an instance method, if you call a
method that's in the same class as the class you're
currently in, the reference variable dot prefix is
unnecessary.

n  Likewise, in an instance method, if you call a method
that's in the superclass of the class you're currently in,
the reference variable dot prefix is unnecessary.

n  Thus, in the Employee class's display method, call
the Person class's getName method like this:
System.out.println("name: " + getName());

27

Default Call to Superclass Constructor

n  The Java designers at Oracle are fond of calling superclass
constructors since that promotes software reuse.

n  If you write a subclass constructor and don't include a call to
another constructor (with this or with super), the Java
compiler will sneak in and insert a superclass zero-parameter
constructor call by default.

n  Thus, although we showed nothing in Employee's zero-parameter
constructor, the Java compiler automatically inserts super(); in
it for us. So these two constructors are functionally equivalent:

public Employee()
{ }

public Employee()
{
 super();
}

28

Method Overriding

n  Method overriding is when a subclass has a method
with the same name and the same parameter types
as a method in its superclass.

n  If a subclass contains an overriding method:
n  By default, an object of the subclass will use the subclass's

overriding method (and not the superclass's overridden
method).

n  Sometimes, an object of the subclass may need to call the
superclass's overridden method. To do that, preface the
method call with "super." (don't forget the dot).

n  If a subclass and a superclass have methods with the
same name, same parameter types, and different
return types, that generates a compilation error.

29

FullTime Class

n  Complete the implementation of the FullTime class below. In
particular, provide a 3-parameter constructor and a display method.

public class FullTime extends Employee
{
 private double salary = 0.0;

 public FullTime()
 { }

 public static void main(String[] args)
 {
 FullTime fullTimer = new FullTime("Alan O'Brien", 5733, 80000);
 fullTimer.display();
 System.out.println(fullTimer.getName());
 }
} // end FullTime class

30

FullTime Class

n  From the previous slide's main method, note this
getName call:
System.out.println(fullTimer.getName());

n  fullTimer is a FullTime reference variable, so you
would expect it to call methods defined in the
FullTime class.

n  But fullTimer calls getName, which is defined in
the Person class, not the FullTime class. So how
can fullTimer call the getName method?

n  The Employee class inherits the getName method
from the Person class and the FullTime class
inherits the inherited getName method from the
Employee class.

31

The final Access Modifier

n  If you want to specify that a method definition cannot
be overridden with a new definition in a subclass, use
the final modifier in the method heading. For
example:
public class Person
{
 ...
 public final String getName()
 {
 ...

public class Employee extends Person
{
 ...
 public String getName()
 {
 ...

compilation
error

32

The final Access Modifier

n  Why would you ever want to use final?
n  If you think that your method is perfect, then you might want to use

final to prevent anyone else from overriding it in the future.
n  final methods might run faster since the compiler can generate

more efficient code for them (because there's no need to prepare
for the possibility of inheritance).

n  If you want to specify that a class cannot have any subclasses,
use the final access modifer in the class heading. For example:
public final class FullTime
{
 ...

public class FullTimeNightShift extends FullTime
{
 ... compilati

on error

33

Aggregation, Composition, and Inheritance Compared

n  We've covered two basic types of class relationships:
n  Aggregation and composition relationships are when one

class is a whole and other classes are parts of that whole.
n  An inheritance relationship is when one class is a more

detailed version of another class. The more detailed class is
a subclass, and the other class is a superclass. The subclass
inherits the superclass's members (variables and methods).

n  We call aggregation and composition relationships
"has a" relationships because one class, the
container class, has a component class inside of it.

n  We call an inheritance relationship an "is a"
relationship because one class, a subclass, is a more
detailed version of another class.

34

Aggregation, Composition, and Inheritance Combined

n  In the real world, it's fairly common to have aggregation,
composition, and inheritance relationships in the same program.

n  For example, what sort of inheritance relationship could/should
be added to our earlier Dealership program, shown below?

35

Card Game Program

n  Provide a class diagram for a card game program:
n  Assume it's a game like war or gin rummy where you have a deck

of cards and two players.
n  Decide on appropriate classes. For each class, draw a UML-notation

three-partition rectangle and put the class name in the top
partition.

n  Look for composition relationships between classes. For each pair
of classes related by composition, draw a composition connecting
line with a diamond next to the containing class. For example, the
left composition association line below is for Game, the containing
class, and Deck, the contained class.

Deck

Game

Hand

36

Card Game Program

n  Provide a class diagram for a card-game program
(continued):
n  For each class, decide on appropriate instance variables and

put them in the middle partition of the class's rectangle.
n  For each class, decide on appropriate public methods and

put their declarations in the bottom partition of the class's
rectangle.

n  Look for common instance variables and methods. If two or
more classes contain a set of common instance variables
and/or methods, implement a superclass and move the
common entities to the superclass. For each subclass/
superclass pair, draw an arrow from the subclass to the
superclass to indicate an inheritance relationship.

37

Card Game Program

public class Deck extends GroupOfCards

{

 public static final int

 TOTAL_CARDS = 52;

 public Deck()

 {

 for (int i=0; i<TOTAL_CARDS; i++)

 {

 addCard(

 new Card((2 + i%13), i/13));

 }

 } // end constructor

 ...

} // end class Deck

inheritance
implementation

public class Deck

{

 public static final int

 TOTAL_CARDS = 52;

 GroupOfCards groupOfCards =

 new GroupOfCards();

 public Deck()

 {

 for (int i=0; i<TOTAL_CARDS; i++)

 {

 groupOfCards.addCard(

 new Card((2 + i%13), i/13));

 }

 } // end constructor

 ...

} // end class Deck

composition
implementati
on

39

Card Game Program

n  Here's a main method for the card game program:
public static void main(String[] args)
{
 Scanner stdIn = new Scanner(System.in);
 String again;
 Game game;

 do
 {
 game = new Game();
 game.playAGame();
 System.out.print("Play another game (y/n)?: ");
 again = stdIn.nextLine();
 } while (again.equals("y"));
} // end main

40

Card Game Program

n  Here's a playAGame method for the Game class:
public void playAGame()
{
 Card card;
 deck.shuffle();

 while (deck.getCurrentSize() > 0)
 {
 card = deck.dealCard();
 player1.addCard(card);
 card = deck.dealCard();
 player2.addCard(card);
 }
 ...
} // end playAGame

41

Chapter 13 - Inheritance and Polymorphism

n  The Object Class
n  The equals Method
n  The toString Method
n  Polymorphism
n  Dynamic Binding
n  Compilation Details
n  Polymorphism with Arrays
n  Abstract Methods And Classes

1

The Object Class

n  The Object class is a superclass for all other classes.
n  When declaring your own classes, you don't have to

specify the Object class as a superclass - it's
automatically a superclass.

n  We're covering just two of Object's methods. The
equals and toString methods are the most
important Object methods.…

2

The equals Method

n  For a class that doesn't have its own equals method,
if an object from that class calls the equals method,
it inherits and uses the Object class's equals
method.

n  The Object class's equals method returns true if
the two reference variables that are being compared
point to the same object; that is, if the two reference
variables contain the same address.

3

The equals Method

n  Assuming that the Car class does not have its own equals
method, what does this code fragment print?
Car car1 = new Car("Honda");
Car car2 = car1;

if ((car1.equals(car2) && (car1 == car2))

{

 System.out.println("cars are equal - first time");

}

car2 = new Car("Honda");

if ((car1.equals(car2) || (car1 == car2))

{

 System.out.println("cars are equal - second time");

}

n  Aside: the == operator works the same as the Object class's
equals method; == returns true if the two reference
variables point to the same object.

4

The equals Method

n  Usually, the Object class's equals method is not
good enough. You'll usually want to compare the
contents of two objects rather than just whether two
reference variables point to the same object.

n  To do that, you'll need to have an equals method in
the object's class definition that compares the
contents of the two objects.

5

Defining Your Own equals Method

n  Write an equals method for a Car class. Use this skeleton:
public class Car
{
 private String make;
 private int year;
 private String color;

 <equals method goes here>

} // end class Car

public class CarDriver
{
 public static void main(String[] args)
 {
 Car[] cars = new Car[100];
 cars[0] = new Car("Chevrolet", 2010, "black");
 if (cars[0].equals(cars[1]))
 {
 System.out.println("cars have identical features");
 }
 ...

6

The equals Method

n  Note that equals methods are built into lots of Java's API
classes.

n  For example, the String class and the wrapper classes
implement their own equals methods.

n  As you'd expect, those equals methods test whether the
contents of the two compared objects are the same (not
whether the addresses of the two compared objects are the
same).

n  What does this code fragment print?
String s1 = "hello", s2 = "he";
s2 += "llo";
if (s1 == s2)
{
 System.out.println("\"==\" works");
}
if (s1.equals(s2))
{
 System.out.println("\"equals\" works");
}

7

The toString Method

n  The Object class's toString method returns a
string that's a concatenation of the calling object's
class name, an @ sign, and a sequence of digits and
letters (called a hashcode).

n  Consider this code fragment:
Object obj = new Object();
System.out.println(obj.toString());
Car car = new Car();
System.out.println(car.toString());

n  Here's the output:
java.lang.Object@601bb1
Car@1ba34f2

n  If a class is stored in a package, toString prefixes
the class name with the class's package.

The Object class is in
the java.lang
package.
hashcode

8

The toString Method

n  Retrieving the class name, an @ sign, and a hashcode is usually
worthless, so you'll almost always want to avoid calling the
Object class's toString method and instead call an
overriding toString method.

n  In general, toString methods should return a string that
describes the calling object's contents.

n  You'll find lots of overriding toString methods in the Java API
classes.
n  For example, the Date class's toString method returns a
Date object's month, day, year, hour, and second values as a
single concatenated string.

n  Since retrieving the contents of an object is such a common
need, you should get in the habit of providing a toString
method for most of your programmer-defined classes.
n  Typically, your toString methods should simply concatenate the

calling object's stored data and return the resulting string.
n  Note that toString methods should not print the concatenated

string value; they should just return it!!!

9

The toString Method

n  Write a toString method for a Car class. Use this skeleton:
public class Car
{
 private String make;
 private int year;
 private String color;
 ...

 <toString method goes here>

} // end class Car

public class CarDriver
{
 public static void main(String[] args)
 {
 Car car = new Car("Honda", 1998, "silver");
 System.out.println(car);
 ...

10

The toString Method

n  The toString method is automatically called when a
reference variable is an argument in a System.out
print, println, or printf call. For example:
System.out.println(car);

n  The toString method is automatically called when a
reference variable is concatenated (+ operator) to a
string. For example:
String carInfo = "Car data:\n" + car;

n  Note that you can also call an object's toString
method using the standard method-call syntax. For
example:
car.toString();

11

The toString Method

n  Write a toString method for a Counter class. Use
this skeleton:
public class Counter
{
 private int count;
 ...

 <toString method goes here>

} // end class Counter

public class CounterDriver
{
 public static void main(String[] args)
 {
 Counter counter = new Counter(100);
 String message = "Current count = " + counter;
 ...

12

Wrapper Classes' toString Methods

n  All the primitive wrapper classes have toString
methods that return a string representation of the
given primitive value. For example:
Integer.toString(22) : evaluates to string "22"

Double.toString(123.45) : evaluates to string "123.45"

14

Polymorphism

n  Polymorphism is when different types of objects respond
differently to the same method call.

n  To implement polymorphic behavior, declare a general type of
reference variable that is able to refer to objects of different
types.

n  To declare a "general type of reference variable," use a
superclass. Later, we'll use a programmer-defined superclass.
For now, we'll keep things simple and use the predefined
Object superclass.

n  In the following Pets program, note how obj is declared to be
an Object and note how the obj.toString() method call
exhibits polymorphic behavior:
n  If obj contains a Dog object, toString returns "Woof! Woof!"
n  If obj contains a Cat object, toString returns "Meow! Meow!"

15

Polymorphism

import java.util.Scanner;

public class Pets
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Object obj;

 System.out.print("Which type of pet do you prefer?\n" +
 "Enter d for dogs or c for cats: ");
 if (stdIn.next().equals("d"))
 {
 obj = new Dog();
 }
 else
 {
 obj = new Cat();
 }
 System.out.println(obj.toString());
 System.out.println(obj);
 } // end main
} // end Pets class

Declare obj as
a generic
Object.

Polymorph
ic method
call.

16

Polymorphism

public class Dog
{

 public String toString()

 {

 return "Woof! Woof!";

 }

} // end Dog class

public class Cat

{

 public String toString()

 {

 return "Meow! Meow!";

 }

} // end Cat class

17

Dynamic Binding

n  Polymorphism is a concept. Dynamic binding is a description of
how that concept is implemented.

n  More specifically, polymorphism is when different types of
objects respond differently to the exact same method call.
Dynamic binding is what the JVM does in order to match up a
polymorphic method call with a particular method. We'll now
describe how that "matching up" process works.

n  Just before the JVM executes a method call, it looks at the
method call's calling object. More specifically, it looks at the type
of the object that's been assigned into the calling object's
reference variable. If the assigned object is from class X, the
JVM binds class X's method to the method call. If the assigned
object is from class Y, the JVM binds class Y's method to the
method call. After the JVM binds the appropriate method to the
method call, the JVM executes the bound method.

18

Dynamic Binding Compilation Details

n  If Dog implements a display method that prints
"I'm a dog", would the following code work?
Object obj = new Dog();
obj.display();

n  Be aware of these compiler issues when dynamic
binding takes place:
1.  When the compiler sees a method call, <reference-

variable>.<method-name>(), it checks to see if the
reference variable's class contains a method definition for
the called method.

2.  Normally, when you assign an object into a reference
variable, the object's class and the reference variable's class
are the same. But in the above example, note how an object
of type Dog is assigned into a reference variable of type
Object. Such assignments only work if the right side's class
is a subclass of the left side's class.

19

Polymorphism with Arrays

n  The real usefulness of polymorphism comes when you
have an array of generic reference variables and
assign different types of objects to different elements
in the array.

n  That allows you to step through the array and for
each array element, you call a polymorphic method.

n  At runtime, the JVM uses dynamic binding to pick out
the particular methods that apply to the different
types of objects that are in the array.

n  To illustrate polymorphism with arrays, we present a
payroll program that stores payroll data in an
employees array….

20

Polymorphism with Arrays

n  UML class diagram for the Payroll program:

21

Polymorphism with Arrays

public class Payroll
{

 public static void main(String[] args)

 {

 Employee[] employees = new Employee[100];

 int day; // day of week (Sun=0, Mon=1, ..., Sat=6)

 Hourly hourly; // an hourly employee

 employees[0] = new Hourly("Kamal", 25.00);

 employees[1] = new Salaried("Matt", 48000);

 employees[2] = new Hourly("Jason", 20.00);

22

Polymorphism with Arrays

 // This driver arbitrarily assumes that the payroll's month
 // starts on a Tuesday (day = 2) and contains 30 days.

 day = 2;

 for (int date=1; date<=30; date++)

 {

 day++; // change to the next day of the week

 day %= 7; // causes day of week to cycle from 0-6 repeatedly

 // Loop through all the employees

 for (int i=0; i<employees.length && employees[i] != null; i++)

 {

23

Polymorphism with Arrays

 if (day > 0 && day < 6 && employees[i] instanceof Hourly)
 {

 hourly = (Hourly) employees[i];

 hourly.addHours(8);

 }

The instanceof
operator returns true if
the object at its left is an
instance of the class at
its right.

The cast operator is necessary because without it, you'd get a
compilation error.

Why? Because we're attempting to assign a superclass-declared
object into a subclass reference variable (employees is declared with
an Employee superclass type and hourly is declared with an Hourly
subclass type).

If you want to assign a superclass object into a superclass reference
variable, you can do it, but only if the "superclass object" really
contains a subclass object and you include a cast operator.

24

Polymorphism with Arrays

 // Print hourly employee paychecks on Fridays.
 // Print salaried employee paychecks on 15th and 30th.

 if ((day == 5 && employees[i] instanceof Hourly) ||

 (date%15 == 0 && employees[i] instanceof Salaried))

 {

 employees[i].printPay(date);

 }

 } // end for i

 } // end for date

 } // end main

} // end class Payroll

25

Polymorphism with Arrays

public class Employee
{
 private String name;

 //***

 public Employee(String name)
 {
 this.name = name;
 }

 //***

 public void printPay(int date)
 {
 System.out.printf("%2d %10s: %8.2f\n", date, name, getPay());
 } // end printPay

 //***

 // This dummy method is needed to satisfy the compiler.

 public double getPay()
 {
 System.out.println("error! in dummy");
 return 0.0;
 } // end getPay
} // end class Employee

This method never
executes; it's
provided to satisfy
the compiler.

polymorphic method
call

26

Polymorphism with Arrays

public class Salaried extends Employee
{

 private double salary;

 //***

 public Salaried(String name, double salary)

 {

 super(name);

 this.salary = salary;

 } // end constructor

 //***

 public double getPay()

 {

 return this.salary / 24;

 } // end getPay

} // end class Salaried

27

Polymorphism with Arrays

public class Hourly extends Employee
{
 private double hourlyRate;
 private double hours = 0.0;

 //***

 public Hourly(String name, double rate)
 {
 super(name);
 hourlyRate = rate;
 } // end constructor

 //***

 public double getPay()
 {
 double pay = hourlyRate * hours;
 hours = 0.0;
 return pay;
 } // end getPay

 //***

 public void addHours(double hours)
 {
 this.hours += hours;
 } // end addHours
} // end class Hourly

28

abstract Methods and Classes

n  Declare a method to be abstract if the method's class is a
superclass and the method is merely a "dummy" method for an
overriding method(s) in a subclass(es).

n  Java requires that when you define a method to be abstract,
you must:
n  Use an abstract method heading instead of a method definition. An

abstract method heading is the same as a standard method heading
except that it includes the abstract modifier and a trailing
semicolon.

n  Define an overriding version of that method in each of the
superclass's subclasses.

n  Define the superclass to be abstract by using the abstract
modifier.

n  In defining a class to be abstract, you're telling the compiler
to not allow the class to be instantiated; i.e., if a program
attempts to instantiate an abstract class, a compilation error
will be generated.

29

abstract Methods and Classes

public abstract class Employee
{
 private String name;

 public abstract double getPay();

 //***

 public Employee(String name)
 {
 this.name = name;
 }

 //***

 public void printPay(int date)
 {
 System.out.printf("%2d %10s: %8.2f\n", date, name, getPay());
 } // end printPay
} // end class Employee

30

