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Procedural Concept	

•  The main program coordinates calls to 
procedures and hands over appropriate data 
as parameters. 	
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Object-Oriented Concept	

•  Objects of the program interact by sending messages to 
each other	
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C++ 
•  Supports Data Abstraction 
•  Supports OOP 

–  Encapsulation 
–  Inheritance 
–  Polymorphism 

•  Supports Generic Programming 
–  Containers 

•  Stack of char, int, double etc 
–  Generic Algorithms 

•  sort(), copy(), search() any container Stack/Vector/List 
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Pointers, Dynamic Data, and 
Reference Types 

•  Review on Pointers 
•  Reference Variables 
•  Dynamic Memory Allocation 

– The new operator 
– The delete operator 
– Dynamic Memory Allocation for Arrays 
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C++  Data Types 

structured 

array   struct   union   class 

 address 

pointer    reference 

simple 

 integral            enum 

char  short   int  long  bool 

floating 

float  double   long double 
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Recall that . . . 
char  str [ 8 ];    
 

•  str is the base address of the array.   
•  We say str is a pointer because its value is an address.   
•  It is a pointer constant because the value of str itself 

cannot be changed by assignment.  It “points” to the 
memory location of a char. 

         str [0]      [1]        [2]        [3]         [4]         [5]        [6]        [7] 

‘H’      ‘e’       ‘l’        ‘l’       ‘o’       ‘\0’ 

6000 
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Addresses in Memory 

•  When a variable is declared, enough memory to hold a 
value of that type is allocated for it at an unused memory 
location.  This is the address of the variable  

 

    int     x; 
     float   number; 
     char    ch; 
 

        2000                2002                              2006 
 

 x                        number                          ch 
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Obtaining Memory Addresses 
 
•  The address of a non-array variable can be obtained by using 

the address-of operator &    
 

int     x; 
float   number; 
char    ch; 
 

cout << “Address of x is “ << &x << endl; 
 

cout << “Address of number is “ << &number << endl; 
 

cout << “Address of ch is “ << &ch << endl; 

        

 x                        number                          ch 

2000   2002    2006 
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What is a pointer variable? 

•  A pointer variable is a variable whose value is the address of a 
location in memory. 

 

•  To declare a pointer variable, you must specify the type of 
value that the pointer will point to, for example,  

 
int*   ptr; // ptr will hold the address of an int 
 

char*  q;   // q will hold the address of a char 
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Using a Pointer Variable 

 int  x; 
 x = 12; 
 
 int*  ptr; 
 ptr = &x; 
 
 
 

NOTE:  Because ptr holds the address of x, 
             we say that ptr “points to” x 

                    2000 
 
                       12 
 

                     x 
 
3000 
 
    2000 
 

 ptr 
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 int  x; 
 x = 12; 
 
 

 int*  ptr; 
 ptr = &x; 
 

 cout  <<  *ptr; 
 

NOTE:  The value pointed to by ptr is denoted by *ptr  

*: dereference operator 
                    2000 
 
                       12 
 

                     x 
 
3000 
 
    2000 
 

 ptr 
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 int  x; 
 x = 12; 
 
 

 int*  ptr; 
 ptr = &x; 
 

 *ptr = 5;    

Using the Dereference Operator 

                    2000 
 
                       12 
 

                     x 
 
3000 
 
    2000 
 

 ptr 
            

5 

// changes the value at the  
   address ptr points to 5 
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 char  ch; 
 ch =  ‘A’; 
 
 char*  q; 
 q  = &ch;  
 
 *q = ‘Z’; 
 char*  p; 
 p = q;      

Self –Test on Pointers 
                    4000 
 
                     A 
 

                     ch 
 
5000 
 
   4000 
 

  q 
            

Z 

6000 

p 

4000 

// the rhs has value 4000 

// now p and q both point to ch  
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 ptr 

Using a Pointer to Access the 
Elements of a String 

‘H’    ‘e’     ‘l’      ‘l’      ‘o’    ‘\0’ 

char   msg[ ] =“Hello”;           
char*  ptr;  
ptr  =  msg;  
*ptr  = ‘M’ ;  
ptr++;   
 

*ptr = ‘a’; 

msg 
3000 

3000 

‘M’ ‘a’ 

3001 
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Reference Variables 
Reference variable = alias for another variable 

 - Contains the address of a variable (like a pointer) 
 - No need to perform any dereferencing (unlike a pointer) 
 - Must be initialized when it is declared 
  

int x = 5; 
int &z = x;   // z is another name for x 
int &y ;   //Error: reference must be initialized 
cout << x << endl;  -> prints 5 
cout << z << endl;  -> prints 5 
 
z = 9;   // same as x = 9; 
 
cout << x << endl;  -> prints 9 
cout << z << endl;  -> prints 9 
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Why Reference Variables 

•  Are primarily used as function parameters 
   
•  Advantages of using references: 

–  you don’t have to pass the address of a variable 
–  you don’t have to dereference the variable inside the 

called function 
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Reference Variables Example 
#include <iostream.h> 
 
// Function prototypes 
(required in C++) 

 
void p_swap(int *, int *); 
void r_swap(int&, int&); 
 
int main (void){ 
 int v = 5, x = 10; 
 cout << v << x << endl; 
 p_swap(&v,&x); 
 cout << v << x << endl; 
 r_swap(v,x); 
 cout << v << x << endl; 
 return 0; 
} 

void r_swap(int &a, int &b) 
{ 
 int temp; 
 temp = a;   (2) 
 a = b;   (3) 
 b = temp; 
} 

void p_swap(int *a, int *b) 
{ 

 int temp; 
  temp = *a;  (2) 
  *a = *b;   (3) 
  *b = temp; 

}   
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Dynamic Memory Allocation 

•  Static memory - where global 
and static variables live 

•  Heap memory - dynamically  
allocated at execution time 
 - "managed" memory accessed 
using pointers 

          
•  Stack memory - used by 

automatic variables  

In C and C++, three types of memory are used by programs: 
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3 Kinds of Program Data 

•  STATIC DATA: Allocated at compiler time 

•  DYNAMIC DATA:  explicitly allocated and 
deallocated during program execution by C++ 
instructions written by programmer using operators 
new and delete 

  

•  AUTOMATIC DATA: automatically created at 
function entry, resides in activation frame of the 
function, and is destroyed when returning from 
function  
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Dynamic Memory Allocation Diagram 

static data

Stack

Heap
Run-time allocated

memory

Compile-time
allocated
memoryProgram

code

High-end

Low-end
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Dynamic Memory Allocation  

•  In C, functions such as malloc() are used to 
dynamically allocate memory from the Heap. 

•  In C++, this is accomplished using the new and 
delete operators 

•  new is used to allocate memory during execution time 
–  returns a pointer to the address where the object is 

to be stored 
–  always returns a pointer to the type that follows the 

new 
 



Operator new Syntax 
 

new   DataType 
 

new   DataType  [IntExpression] 
 

•  If memory is available, in an area called the heap (or free 
store) new allocates the requested object or array, and 
returns a pointer to (address of ) the memory allocated. 

 

•  Otherwise, program terminates with error message.   
 

•  The dynamically allocated object exists until the delete 
operator destroys it. 

23 
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Operator new 
 
 

char*  ptr; 
 

 
ptr = new char; 
 

*ptr = ‘B’;   
 

cout  <<  *ptr; 
 
NOTE:  Dynamic data has no variable name 

2000 
 
  ??? 
 
ptr 

5000 

5000 

‘B’ 
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The  NULL Pointer 

•  There is a pointer constant called the “null pointer” 
denoted by NULL 

•  But NULL is not memory address 0. 
 

•  NOTE:  It is an error to dereference a pointer whose 
value is NULL.  Such an error may cause your 
program to crash, or behave erratically.   It is the 
programmer’s job to check for this. 

 

   while (ptr != NULL) { 
      . . .          // ok to use *ptr here 
    } 



Operator delete Syntax 
 

   delete    Pointer  
 
   delete  [ ]    Pointer 
 
•  The object or array currently pointed to by Pointer is 

deallocated, and the value of Pointer is undefined.  The 
memory is returned to the free store. 

•  Good idea to set the pointer to the released 
memory to NULL 

 

•  Square brackets are used with delete to deallocate a 
dynamically allocated array.  

26 
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Operator delete 
 
 

char*  ptr; 
 

 
ptr = new char; 
 

*ptr = ‘B’;   
 

cout  <<  *ptr; 
 

delete  ptr; 
 
 

   

5000 

5000 

‘B’ 

2000 
 
  
 
ptr 

??? 

NOTE:   
      delete deallocates the      
      memory pointed to by ptr  
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Example  
char  *ptr ; 
 
ptr  =  new  char[ 5 ];     
 
strcpy( ptr, “Bye” ); 
 
ptr[ 0 ] = ‘u’;  

  
 
delete [] ptr;  
 
ptr = NULL; 

‘B’    ‘y’     ‘e’     ‘\0’ 
‘u’ 

 ptr 
3000 

??? 

6000 

6000 ??? NULL 

// deallocates the array pointed to by ptr 
// ptr itself is not deallocated 
// the value of ptr becomes undefined 
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Pointers and Constants  
char* p; 
p = new char[20]; 
 
char c[] = “Hello”; 
const char* pc = c; //pointer to a constant 
pc[2] = ‘a’; // error 
pc = p; 
 
char  *const cp = c; //constant pointer 
cp[2] = ‘a’;  
cp = p; // error 
 
const char *const cpc = c; //constant pointer to a const 
cpc[2] = ‘a’; //error 
cpc = p; //error 
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Take Home Message 

•  Be aware of where a pointer points to, and 
what is the size of that space. 

•  Have the same information in mind when 
you use reference variables. 

•  Always check if a pointer points to NULL 
before accessing it. 
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•  A pointer variable is a variable whose value is the address of a location in 
memory 

     int x; 
x = 5; 

   
  int* ptr1; 

      ptr1 = &x; 
 

  int* ptr2; 
      ptr2 = ptr1; 

  *ptr1 = 6; 
 
      cout << ptr1 << endl; 
      cout << *ptr2 << endl; 
 
   

Review: Pointers & Dynamic Data 

int* ptr3; 
ptr3 = new int; 
*ptr3 = 5; 
delete ptr3; 
ptr3 = NULL; 
 
int *ptr4; 
ptr4 = new int[5]; 
ptr4[0] = 100; 
ptr4[4] = 123; 
delete [] ptr4; 
ptr4 = NULL; 
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void increment(int b1, int &b2, int *b3) 
{ 
        b1 += 2; 
        b2 += 2 
        *b3 += 2; 
} 

Review: Reference Types 

•  Reference Types 
–  Alias for another variable 
–  Must be initialized when declared 
–  Are primarily used as function parameters 

 int main (void){ 
      int a1 = 5, a2 = 10; 
      int *a3 = new int; 
      *a3 = 15; 
      int &a4 = a3; 
      cout << a1 << a2 << a3 << endl; 
      increment(a1, a2, a3); 
      cout << a1 << a2 << a3 << endl; 
      delete a3; a3 = NULL; 
      return 0; 
} 
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Object-Oriented Programming 
Introduction to Classes 

•  Class Definition 
•  Class Examples 
•  Objects 
•  Constructors 
•  Destructors 



34 

Class 
•  The class is the cornerstone of C++  

–  It makes possible encapsulation, data hiding and inheritance  
•  Type 

–  Concrete representation of a concept 
•  Eg. float with operations like -, *, + (math real numbers) 

•  Class 
–  A user defined type 
–  Consists of both data and methods 
–  Defines properties and behavior of that type 

•  Advantages 
–  Types matching program concepts 

•  Game Program (Explosion type) 
–  Concise program 
–  Code analysis easy 
–  Compiler can detect illegal uses of types 

•  Data Abstraction 
–  Separate the implementation details from its essential properties 



35 

class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

}; 

Classes & Objects 

Rectangle  r1; 
Rectangle  r2; 
Rectangle  r3; 
 …

…
 

 
int   a; 

Objects: Instance of a class 
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Define a Class Type 

 
 class class_name  
 {  
  permission_label:  
         member;  
  permission_label:  
         member;  
  ...  
 };  

class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

}; 

Body 

Header 
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Class Definition 
Data Members 

•  Can be of any type, built-in or user-defined 
•  non-static data member 

– Each class object has its own copy 
•  static data member 

– Acts as a global variable 
– One copy per class type, e.g. counter 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
    static int count; 
 public: 
    void set(int w, int l); 
    int area(); 
 } 

Static Data Member  
Rectangle  r1; 
Rectangle  r2; 
Rectangle  r3; 
 

width 
length 

width 
length 

width 
length 

r1 

r3 

r2 

count 
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Class Definition  
Member Functions 

•  Used to 
–  access the values of the data members (accessor) 
–  perform operations on the data members (implementor) 

•  Are declared inside the class body 
•  Their definition can be placed inside the class body, 

or outside the class body 
•  Can access both public and private members of the 

class  
•  Can be referred to using dot or arrow member access 

operator 
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Define a Member Function 
class Rectangle 
{ 

 private: 
    int width, length; 
 public: 
    void set (int w, int l); 
    int area() {return width*length; } 

}; 

void Rectangle :: set (int w, int l) 
{ 

 width = w; 
 length = l; 

} 

inline 

class name 

member function name 

scope operator 

 
r1.set(5,8); 

 
rp->set(8,10); 
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•  const member function 
–  declaration 

•  return_type func_name (para_list) const; 

–  definition 
•  return_type func_name (para_list) const { … } 
•  return_type class_name :: func_name (para_list) const { … } 

–  Makes no modification about the data members (safe 
function) 

–  It is illegal for a const member function to modify a class 
data member 

Class Definition  
Member Functions 
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Const Member Function 
 

class  Time 
{     

  private :   

 int     hrs, mins, secs ; 
 
  public :   
 

 void      Write ( )  const ; 
 

} ;   

void Time :: Write( ) const 
{ 
     cout <<hrs << “:” << mins << “:” << secs 
<< endl; 
} 

function declaration 

function definition 
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•  Information hiding 
–  To prevent the internal representation from direct 

access from outside the class 
•  Access Specifiers 

–  public 
•  may be accessible from anywhere within a program 

–  private 
•  may be accessed only by the member functions, and friends of 

this class 
–  protected 

•  acts as public for derived classes 
•  behaves as private for the rest of the program 

Class Definition - Access Control 
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class Time Specification 
 

class  Time 
{        
 

  public :      
 

 void     Set ( int  hours , int  minutes , int  seconds ) ; 
 void      Increment ( ) ; 

 void      Write ( )  const ; 

 Time    ( int  initHrs, int  initMins,  int  initSecs ) ;   //  constructor  
 Time    ( ) ;                          //  default constructor 

 

  private :      
 

 int             hrs ;            
 int             mins ;           
 int           secs ; 

} ;   
44 
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 Class Interface Diagram 

Private data: 
 

hrs 
 
mins 
 
secs 

Set 

Increment 

Write 

   Time 

Time 

Time  class 



46 

•  The default access specifier is private  
•  The data members are usually private or protected 
•  A private member function is a helper, may only be 

accessed by another member function of the same class 
(exception friend function) 

•  The public member functions are part of the class 
interface 

•  Each access control section is optional, repeatable, and 
sections may occur in any order 

Class Definition  
 Access Control 
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What is an object?  

OBJECT 

Operations 
 
     Data 

set of methods 
(member functions) 
 
 
internal state 
(values of private data members) 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

}; 

Declaration of an Object 
 

main() 
{ 

 Rectangle r1; 
 Rectangle r2; 
  

    r1.set(5, 8);  
 cout<<r1.area()<<endl; 

 
 r2.set(8,10); 
 cout<<r2.area()<<endl; 

} 
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Another Example 
 
   #include <iostream.h> 
 
   class circle 
   { 

   private: 
      double radius; 

 
   public: 
      void store(double); 
      double area(void); 
      void display(void); 

 
   }; 

 
// member function definitions 
 
void circle::store(double r) 
{ 
    radius = r; 
} 
 

double circle::area(void) 
{ 
    return 3.14*radius*radius; 
} 
 

void circle::display(void) 
{ 
    cout << “r = “ << radius << endl; 
} 

int main(void) { 
    circle c;   // an object of circle class 
    c.store(5.0); 
    cout << "The area of circle c is " << c.area() << endl; 
    c.display(); 
} 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

}; 

Declaration of an Object 

 

main() 
{ 

  Rectangle r1; 
  

     r1.set(5, 8);  
} 

r1 is statically allocated 

width 
length 

r1 width = 5 
length = 8 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

}; 

Declaration of an Object 

 

 main() 
 { 
      Rectangle r1; 

          r1.set(5, 8);  
 

     Rectangle *r2; 
      r2 = &r1; 
      r2->set(8,10); 
 } 

r2 is a pointer to a Rectangle object 

width 
length 

r1 
width = 5 
length = 8 

5000 

??? 

r
2 6000 

5000 
width = 8 
length = 10 

//dot notation 

//arrow notation 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

}; 

Declaration of an Object 

main() 
{ 

  Rectangle *r3; 
  r3 = new Rectangle(); 

 

  r3->set(80,100); 
 

  delete r3; 
  r3 = NULL; 

} 

r3 is dynamically allocated 

??? 

r3 
6000 

width 
length 

5000 
5000 

width = 80 
length = 100 

NULL 

//arrow notation 
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   #include <iostream.h> 
 

   class circle 
   { 

   public: 
      double radius; 

   }; 

Object Initialization 

int main() 
{ 
    circle c1;      // Declare an instance of the class circle 
    c1.radius = 5;    // Initialize by assignment 
 
} 

1. By Assignment 

•    Only work for public data  
     members 

•    No control over the operations  
    on data members 
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   #include <iostream.h> 
 

   class circle 
   { 
     private: 
      double radius; 
 

     public: 
    void set (double r) 
    {radius = r;} 
    double get_r () 
    {return radius;} 

 

   }; 
int main(void) { 
    circle c;     // an object of circle class 
    c.set(5.0);   // initialize an object with a public member function 
    cout << "The radius of circle c is " << c.get_r() << endl;  

  // access a private data member with an accessor 
} 

Object Initialization 

2. By Public Member Functions 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

} 

Declaration of an Object 

 

 main() 
 { 
      Rectangle r1; 

          r1.set(5, 8);  
 

     Rectangle *r2; 
      r2 = &r1; 
      r2->set(8,10); 
 } 

r2 is a pointer to a Rectangle object 

//dot notation 

//arrow notation 

r1 and r2 are both initialized by  
public member function set 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    Rectangle(); 
    Rectangle(const Rectangle &r); 
    Rectangle(int w, int l); 
    void set(int w, int l); 
    int area(); 

} 

Object Initialization 
3. By Constructor 

•   Default constructor 

•   Copy constructor 

•   Constructor with parameters 

There is no return type 
Are used to initialize class data  
members 

Have the same name as the class 
They are publicly accessible 

They have different signatures 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

}; 

Object Initialization 

•   Default constructor 

When a class is declared with no constructors, 
the compiler automatically assumes default  
constructor and copy constructor for it. 

 

Rectangle :: Rectangle() { }; 

•   Copy constructor 

 

Rectangle :: Rectangle (const Rectangle & 
r)  

{  
 width = r.width;  length = r.length; 

}; 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    void set(int w, int l); 
    int area(); 

} 

Object Initialization 

•   Initialize with default constructor 

 

Rectangle r1; 
 

Rectangle *r3 = new Rectangle(); 

•   Initialize with copy constructor 

 

Rectangle r4; 
r4.set(60,80); 
 

Rectangle r5 = r4; 
Rectangle r6(r4); 
 

Rectangle *r7 = new Rectangle(r4); 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    Rectangle(int w, int l) 
  {width =w; length=l;} 
    void set(int w, int l); 
    int area(); 

} 

Object Initialization 

If any constructor with any number 
of parameters is declared, no default 
constructor will exist, unless you 
define it. 

 

Rectangle r4;  // error 

•   Initialize with constructor 

 

Rectangle r5(60,80); 
 

Rectangle *r6 = new Rectangle(60,80); 
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class Rectangle 
{ 

 private: 
    int width; 
    int length; 
 public: 
    Rectangle(); 
    Rectangle(int w, int l); 
    void set(int w, int l); 
    int area(); 

} 

Object Initialization 
Write your own constructors 

 

Rectangle :: Rectangle()  
{ 

 width = 20; 
 length = 50; 

}; 

 

Rectangle  *r7 = new Rectangle(); 

width 
length 
width = 20 
length = 50 

5000 ??? 
r
7 

6000 
5000 
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class Account 
{ 

 private: 
   char *name; 
   double balance; 
   unsigned int id;  
 public: 
   Account(); 
   Account(const Account &a); 
   Account(const char *person); 

} 

Object Initialization 
With constructors, we have more  
control over the data members 

Account :: Account()  
{ 

 name = NULL; balance = 0.0; 
 id = 0; 

}; 

 

Account :: Account(const Account &a)  
{ 

 name = new char[strlen(a.name)+1]; 
 strcpy (name, a.name); 
 balance = a.balance; 
 id = a.id; 

}; 

 

Account :: Account(const char *person)  
{ 

 name = new char[strlen(person)+1]; 
 strcpy (name, person); 
 balance = 0.0; 
 id = 0; 

}; 
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So far, … 
•  An object can be initialized by a class 

constructor 
–  default constructor 
–  copy constructor 
–  constructor with parameters 

•  Resources are allocated when an object is 
initialized 

•  Resources should be revoked when an object is 
about to end its lifetime 



63 

Cleanup of An Object 
 

class Account 
{ 

 private: 
   char *name; 
   double balance; 
   unsigned int id;  //unique 
 public: 
   Account(); 
   Account(const Account &a); 
   Account(const char *person); 
   ~Account(); 

} 

Destructor 
 

Account :: ~Account() 
{ 

 delete[] name; 
} 

•  Its name is the class name preceded 
by a ~ (tilde) 

•  It has no argument 
•  It is used to release dynamically 

allocated memory and to perform 
other "cleanup" activities 

•  It is executed automatically when the 
object goes out of scope 
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Putting Them Together 
class Str  
{ 

 char *pData; 
 int nLength; 

  public: 
  //constructors 
 Str();  
 Str(char *s); 
 Str(const Str &str); 

 

  //accessors 
 char* get_Data(); 

  int get_Len();  
 

  //destructor 
  ~Str(); 

}; 

 

Str :: Str() { 
 pData = new char[1]; 
 *pData = ‘\0’; 
 nLength = 0; 

}; 

 

Str :: Str(const Str &str) { 
 int n = str.nLength; 
 pData = new char[n+1]; 
 nLength = n; 
strcpy(pData,str.pData); 

}; 

 

Str :: Str(char *s) { 
 pData = new char[strlen(s)+1]; 
 strcpy(pData, s); 
 nLength = strlen(s); 

}; 
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Putting Them Together 
class Str  
{ 

 char *pData; 
 int nLength; 

  public: 
  //constructors 
 Str();  
 Str(char *s); 
 Str(const Str &str); 

 

  //accessors 
 char* get_Data(); 

  int get_Len();  
 

  //destructor 
  ~Str(); 

}; 

 

   char* Str :: get_Data()  
   { 

    return pData; 
   }; 

 

Str :: ~Str()  
{ 
 delete[] pData; 

}; 

 

   int Str :: get_Len()  
   { 

    return nLength; 
   }; 
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Putting Them Together 
class Str  
{ 

 char *pData; 
 int nLength; 

  public: 
  //constructors 
 Str();  
 Str(char *s); 
 Str(const Str &str); 

 

  //accessors 
 char* get_Data(); 

  int get_Len();  
 

  //destructor 
  ~Str(); 

}; 

 

int main() 
{ 

 int x=3; 
 Str *pStr1 = new Str(“Joe”); 
 Str *pStr2 = new Str(); 

} 
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Interacting Objects 
Class A Class B

Private:
data members

Private:
data members

Member methods Member methods

Constructor

Other
public methods

Public:

Destructor
Constructor

Other
public methods

Public:

Destructor
Message passing

Private:
methods

Private:
methods
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 class Rectangle{ 
     private: 
        int numVertices; 
        float *xCoord, *yCoord; 
     public: 
        void set(float *x, float *y, int nV); 
        float area(); 
 }; 

Inheritance Concept 

Rectangle Triangle 

Polygon 

 class Polygon{ 
    private: 

          int numVertices; 
          float *xCoord, *yCoord; 

    public: 
          void set(float *x, float *y, int nV); 

 }; 

 class Triangle{ 
    private: 
       int numVertices; 

           float *xCoord, *yCoord; 
    public: 

           void set(float *x, float *y, int nV); 
      float area(); 
 }; 
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Rectangle Triangle 

Polygon 
class Polygon{ 

 protected: 
   int numVertices; 
   float *xCoord, float *yCoord; 
 public: 
    void set(float *x, float *y, int nV); 

}; 

 

class Rectangle : public Polygon{ 
 public:  
    float area(); 

}; 

class Rectangle{ 
 protected: 
   int numVertices; 
   float *xCoord, float *yCoord; 
 public: 
    void set(float *x, float *y, int nV); 
    float area(); 

}; 
 

Inheritance Concept 
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Rectangle Triangle 

Polygon 
class Polygon{ 

 protected: 
   int numVertices; 
   float *xCoord, float *yCoord; 
 public: 
    void set(float *x, float *y, int nV); 

}; 
 

 

class Triangle : public Polygon{ 
 public: 
  float area(); 

}; 

class Triangle{ 
 protected: 
   int numVertices; 
   float *xCoord, float *yCoord; 
 public: 
    void set(float *x, float *y, int nV); 
    float area(); 

}; 
 

Inheritance Concept 
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Inheritance Concept 

Point 

Circle 3D-Point 

class Point{ 
 protected: 
    int x, y; 
 public: 
    void set (int a, int b); 

}; 

class Circle : public Point{ 
 private:  
  double r; 

}; 

class 3D-Point: public Point{ 
 private:  
  int z; 

}; 

x 
y 

x 
y 
r 

x 
y 
z 
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•  Augmenting the original class 

•  Specializing the original class 

Inheritance Concept 

RealNumber 

ComplexNumber 

ImaginaryNumber 

Rectangle Triangle 

Polygon Point 

Circle 

real 
imag 

real imag 

3D-Point 
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Why Inheritance ? 

 
Inheritance is a mechanism for  
 

•  building class types from existing class types 

•  defining new class types to be a  
– specialization  
– augmentation  

 of existing types 
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Define a Class Hierarchy 

•  Syntax: 
 class DerivedClassName : access-level BaseClassName 

 

 where  
–  access-level specifies the type of derivation 

•  private by default, or 
•  public 

•  Any class can serve as a base class 
–  Thus a derived class can also be a base class 
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Class Derivation 
Point 

3D-Point 

class Point{ 
 protected: 
    int x, y; 
 public: 
    void set (int a, int b); 

}; 

class 3D-Point : public Point{ 
 private:  

         double z; 
 … … 

}; 

class Sphere : public 3D-Point{ 
 private:   

        double r; 
 … … 

}; 

Sphere 

Point is the base class of 3D-Point, while 3D-Point is the base class of Sphere 



76 

What to inherit? 

•  In principle, every member of a base class is 
inherited by a derived class 
–   just with different access permission 
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Access Control Over the Members 
•  Two levels of access control 

over class members 
–  class definition 
–  inheritance type 

base class/ superclass/
parent class

derived class/ subclass/
child class

d
e
ri
v
e
 f

ro
m

m
e
m

b
e
rs

 g
o
e
s
 t
o

class Point{ 
 protected: int x, y; 
 public: void set(int a, int b); 

}; 

class Circle : public Point{ 
 … … 

}; 
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•  The type of inheritance defines the  access level for the 
members of derived class that are inherited from the base 
class 

Access Rights of Derived Classes 

private protected public 
private - - - 

protected private protected protected 
public private protected public 

Type of Inheritance 

A
ccess C

ontrol 
for M

em
bers 
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class daughter : --------- mother{ 
 private: double dPriv; 
 public: void mFoo ( ); 

}; 

Class Derivation 
class mother{ 

 protected: int mProc; 
 public: int mPubl; 
 private: int  mPriv; 

}; 

class daughter : --------- mother{ 
 private: double dPriv; 
 public: void dFoo ( ); 

}; 

void daughter :: dFoo ( ){ 
 mPriv = 10;   //error 
 mProc = 20; 

}; 

private/protected/public int main() {   
 /*….*/ 

} 

class grandDaughter : public daughter { 
 private: double gPriv; 
 public: void gFoo ( ); 

}; 
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What to inherit? 

•  In principle, every member of a base class is 
inherited by a derived class 
–   just with different access permission 

•  However, there are exceptions for 
–  constructor and destructor  
–  operator=() member  
–  friends 

 Since all these functions are class-specific 
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Constructor Rules for Derived Classes  
 The default constructor and the destructor of the 
base class are always called when a new object 
of a derived class is created or destroyed.  

class A { 
   public: 

 A ( ) 
   {cout<< “A:default”<<endl;} 
 A (int a) 
   {cout<<“A:parameter”<<endl;} 

}; 

class B : public A  
{ 
   public:  

 B (int a) 
     {cout<<“B”<<endl;} 

}; 

B test(1); 
A:default 
B 

output: 
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Constructor Rules for Derived Classes  
 You can also specify an constructor of the 
base class other than the default constructor 

class A { 
   public: 

 A ( ) 
   {cout<< “A:default”<<endl;} 
 A (int a) 
   {cout<<“A:parameter”<<endl;} 

}; 

class C : public A { 
   public:  

 C (int a) : A(a) 
     {cout<<“C”<<endl;} 

}; 

C test(1); 
A:parameter 
C 

output: 

 

DerivedClassCon ( derivedClass args ) : BaseClassCon ( baseClass 
args )   

 {  DerivedClass constructor body   } 
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Define its Own Members 

Point 

Circle 

class Point{ 
 protected: 
    int x, y; 
 public: 
    void set(int a, int b); 

}; 

class Circle : public Point{ 
 private:  
  double r; 
 public: 
  void set_r(double c); 

}; 

x 
y 

x 
y 
r 

class Circle{   
     protected: 

    int x, y; 
 private: 
    double r; 
 public: 
    void set(int a, int b); 
    void set_r(double c); 

}; 

The derived class can also define 
its own members,  in addition to 
the members inherited from the 
base class 
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Even more … 
•  A derived class can override methods defined in its parent 

class. With overriding,  
–  the method in the subclass has the identical signature to the method 

in the base class.  
–  a subclass implements its own version of a base class method.  

class A { 
   protected: 

 int x, y; 
   public: 

 void print () 
  {cout<<“From A”<<endl;} 

}; 

class B : public A { 
   public:  

 void print () 
     {cout<<“From B”<<endl;} 

}; 
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class Point{ 
 protected: 
    int x, y; 
 public: 
    void set(int a, int b) 
  {x=a; y=b;} 
    void foo (); 
    void print(); 

}; 

class Circle : public Point{ 
  private:  double r; 
  public: 

 void set (int a, int b, double c) { 
      Point :: set(a, b); //same name function call 

      r = c; 
 } 
 void print();  }; 

 Access a Method 

 Circle C; 
 C.set(10,10,100);   // from class Circle 
 C.foo ();  // from base class Point 
 C.print(); // from class Circle 

Point A; 
A.set(30,50);  // from base class Point 

A.print(); // from base class Point 
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Putting Them Together 
•  Time is the base class 
•  ExtTime is the derived class with 

public inheritance 
•  The derived class can 

–  inherit all members from the base 
class, except the constructor 

–  access all public and protected  
members of the base class 

–  define its private data member 
–  provide its own constructor 
–  define its public member functions 
–  override functions inherited from 

the base class 

ExtTime 

Time 
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class Time Specification 
 
class  Time{        
 

  public :      
 

 void     Set ( int h, int m, int s ) ; 
 void      Increment ( ) ; 

 void      Write ( )  const ; 

 Time    ( int initH, int initM, int initS ) ;   //  constructor  
 Time    ( ) ;                      //  default constructor 

 

  protected :      
 

 int             hrs ;            
 int             mins ;           
 int           secs ; 

} ;   

// SPECIFICATION   FILE    ( time.h) 
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 Class Interface Diagram 

Protected data: 
 

hrs 
 
mins 
 
secs 

Set 

Increment 

Write 

   Time 

Time 

Time  class 
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Derived Class ExtTime  
// SPECIFICATION   FILE    ( exttime.h) 
 
 

#include   “time.h” 
 

enum  ZoneType {EST, CST, MST, PST, EDT, CDT, MDT, PDT } ; 
 
class  ExtTime  :  public  Time         

  // Time is the base class and use public inheritance 
{ 
   public : 
 

 void           Set ( int h, int m, int s, ZoneType timeZone ) ; 
 void           Write ( )  const;    //overridden 

     ExtTime    (int initH, int initM, int initS, ZoneType initZone ) ;    
     ExtTime    ();   // default constructor 
 
 

private :      
 ZoneType  zone ;  //  added data member 

 

} ; 
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 Class Interface Diagram 

Protected data: 
 

hrs 
 
mins 
 
secs 

ExtTime  class 

Set 

Increment 

Write 

   Time 

Time 

Set 

Increment 

Write 

   ExtTime 

ExtTime 

Private data: 
zone 
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Implementation of ExtTime 

Default Constructor 

ExtTime :: ExtTime (  ) 
{ 

    zone  =  EST ; 
} 

The default constructor of 
base class, Time(), is 
automatically called, when an 
ExtTime object is created. 

  ExtTime et1; 

hrs = 0 
mins = 0 
secs = 0 
zone = EST 

et1 
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Implementation of ExtTime 
Another Constructor 

ExtTime :: ExtTime (int initH, int initM, int initS, ZoneType initZone)   
    : Time (initH, initM, initS)    
    // constructor initializer 

{ 
            zone  = initZone ; 
} 

ExtTime *et2 =  
 new ExtTime(8,30,0,EST); 

hrs = 8 
mins = 30 
secs = 0 
zone = EST 

et2 

5000 

??? 
6000 

5000 
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Implementation of ExtTime 
void  ExtTime :: Set (int h, int m, int s, ZoneType timeZone)  
{ 
      Time :: Set (hours, minutes, seconds);  // same name function call 

      zone  = timeZone ; 
} 

void  ExtTime :: Write ( )   const  // function overriding 
{ 
   string  zoneString[8] =  

  {“EST”, “CST”, MST”, “PST”, “EDT”, “CDT”, “MDT”, 
“PDT”} ; 

 

  Time :: Write ( ) ; 
  cout  <<‘  ‘<<zoneString[zone]<<endl; 
} 
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Working with ExtTime 

     #include  “exttime.h” 
 … … 

 

 int main() 
     { 
 

   ExtTime    thisTime ( 8, 35, 0, PST ) ; 
   ExtTime    thatTime ;                 // default constructor called 

 

  thatTime.Write( ) ;         // outputs 00:00:00 EST 
  

  thatTime.Set (16, 49, 23, CDT) ;    
  thatTime.Write( ) ;         // outputs 16:49:23 CDT 

 

  thisTime.Increment ( ) ; 
  thisTime.Increment ( ) ; 
  thisTime.Write ( ) ;         // outputs 08:35:02  PST 
 } 
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Take Home Message 

•  Inheritance is a mechanism for defining new 
class types to be a specialization or an 
augmentation of existing types. 

•  In principle, every member of a base class is 
inherited by a derived class with different 
access permissions, except for the constructors 
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Polymorphism 
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Object-Oriented Concept	

•  Encapsulation 
– ADT, Object 

•  Inheritance 
– Derived object 

•  Polymorphism 
– Each object knows what it is 
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Polymorphism – An Introduction 

•  noun, the quality or state of being able to 
assume different forms  - Webster 

•  An essential feature of an OO Language 
•  It builds upon Inheritance 
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Before we proceed….  
•  Inheritance – Basic Concepts 

– Class Hierarchy 
•  Code Reuse, Easy to maintain 

– Type of inheritance : public, private 
– Function overriding 
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 Class Interface Diagram 

Protected data: 
 

hrs 
 
mins 
 
secs 

ExtTime  class 

Set 

Increment 

Write 

   Time 

Time 

Set 

Increment 

Write 

   ExtTime 

ExtTime 

Private 
data: 
zone 

Time  class 
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Why Polymorphism?--Review:  
Time and ExtTime Example by Inheritance 

void  Print  (Time   someTime )  //pass an object by value 
{ 

  cout  <<  “Time is  “ ; 
  someTime.Write (  ) ;    
  cout  <<  endl ; 

} 
 

      
 
CLIENT  CODE     
 
Time        startTime ( 8, 30, 0 ) ;     
ExtTime    endTime (10, 45, 0, CST) ;    
 
Print ( startTime ) ; 
Print ( endTime ) ; 
 
 

  OUTPUT 
 

    Time is  08:30:00 
    Time is  10:45:00  

// Time :: write() 
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Static Binding  
•  When the type of a formal parameter is a parent class, the argument 

used can be: 
 

  the same type as the formal parameter, 
  or, 
  any derived class type. 

•  Static binding is the compile-time determination of 
which function to call for a particular object based on the 
type of the formal parameter  

 

•  When pass-by-value is used, static binding occurs  
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Can we do better?      
void  Print  (Time   someTime )  //pass an object by value 
{ 

  cout  <<  “Time is  “ ; 
  someTime.Write (  ) ;    
  cout  <<  endl ; 

} 
 

      
 
CLIENT  CODE     
 
Time        startTime ( 8, 30, 0 ) ;     
ExtTime    endTime (10, 45, 0, CST) ;    
 
Print ( startTime ) ; 
Print ( endTime ) ; 
 
 

  OUTPUT 
 

    Time is  08:30:00 
    Time is  10:45:00  

// Time :: write() 
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Polymorphism – An Introduction 
•  noun, the quality or state of being able to 

assume different forms  - Webster 
•  An essential feature of an OO Language 
•  It builds upon Inheritance 

•  Allows run-time interpretation of object type 
for a given class hierarchy 
– Also Known as “Late Binding” 

•  Implemented in C++ using virtual functions 
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Dynamic Binding  

•  Is the run-time determination of which function to call for a 
particular object of a derived class based on the type of the 
argument  

 

•  Declaring a member function to be virtual instructs the 
compiler to generate code that guarantees dynamic binding  

•  Dynamic binding requires pass-by-reference 
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Virtual Member Function 
//  SPECIFICATION FILE        ( time.h ) 
 

class  Time 
{        
 

public :      
 

 .  .  . 
 

 virtual   void   Write ( )  ;            //  for dynamic binding 
 virtual ~Time();        // destructor 

 

private :      
 

 int             hrs ;            
 int             mins ;           
 int           secs ; 

} ;   
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This is the way we like to 
see… 

 void  Print  (Time *   someTime ) 
 { 

 cout  <<  “Time is  “ ; 
 someTime->Write (  ) ; 
 cout  <<  endl ; 

 } 

CLIENT  CODE    
  

Time          startTime( 8, 30, 0 ) ;  
ExtTime    endTime(10, 45, 0, CST) ; 
 
Time *timeptr; 
timeptr = &startTime; 
Print ( timeptr ) ; 
 
timeptr = &endTime; 
Print ( timeptr ) ; 

  OUTPUT 
 

    Time is  08:30:00 
    Time is  10:45:00  CST 

Time::write() 

ExtTime::write() 
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Virtual Functions  
•  Virtual Functions overcome the problem of run time object 

determination 
•  Keyword virtual instructs the compiler to use late binding and delay 

the object interpretation 
•  How ? 

–  Define a virtual function in the base class. The word virtual appears 
only in the base class 

–  If a base class declares a virtual function, it must implement that 
function, even if the body is empty  

–  Virtual function in base class stays virtual in all the derived classes 
–  It can be overridden in the derived classes 
–  But, a derived class is not required to re-implement a virtual 

function.  If it does not, the base class version is used  
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Polymorphism Summary: 
•  When you use virtual functions, compiler store 

additional information about the types of object 
available and created 

•  Polymorphism is supported at this additional overhead 
•  Important : 

–  virtual functions work only with pointers/references 
–  Not with objects even if the function is virtual 
–  If a class declares any virtual methods, the destructor of the 

class should be declared as virtual as well.  
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Abstract Classes & Pure Virtual Functions 
•  Some classes exist logically but not physically. 
•  Example : Shape 

–  Shape s; // Legal but silly..!! : “Shapeless shape” 

–  Shape makes sense only as a base of some classes derived from it. Serves as 
a “category” 

–  Hence instantiation of such a class must be prevented  

class Shape    //Abstract  
{ 
  public : 
  //Pure virtual Function 
  virtual void draw() = 0; 
} 

 A class with one or more pure virtual   
   functions is an Abstract Class 

 Objects of abstract class can’t be   
   created 

Shape s; // error : variable of an abstract class 
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Example 
Shape 

 virtual void draw() 

Circle 

public void draw() 

Triangle 

public void draw() 
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•  A pure virtual function not defined in the 
derived class remains a pure virtual function. 

•  Hence derived class also becomes abstract 
class Circle : public Shape { //No draw() - Abstract 

public : 
void print(){ 
  cout << “I am a circle” << endl; 
}} 

class Rectangle : public Shape { 
public : 
void draw(){ // Override Shape::draw() 
  cout << “Drawing Rectangle” << endl; 
}} 

Rectangle r; // Valid 
Circle c; // error : variable of an abstract class 
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Pure virtual functions : Summary 

•  Pure virtual functions are useful because they 
make explicit the abstractness of a class 

•  Tell both the user and the compiler how it was 
intended to be used   

•  Note : It is a good idea to keep the common 
code as close as possible to the root of you 
hierarchy 
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Summary ..continued 
•  It is still possible to provide definition of a pure virtual function in 

the base class 
•  The class still remains abstract and functions must be redefined in 

the derived classes, but a common piece of code can be kept there to 
facilitate reuse 

•  In this case, they can not be declared inline 

class Shape { //
Abstract  
public : 
  virtual void 
draw() = 0; 
}; 
 
// OK, not defined 
inline void 
Shape::draw(){ 
 cout << “Shape" << 
endl; 
} 

class Rectangle : 
public Shape  

{ 
  public : 
   void draw(){ 
     Shape::draw(); //
Reuse 
     cout 
<<“Rectangle”<< endl; 
} 
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Take Home Message 
•  Polymorphism is built upon class inheritance 

•  It allows different versions of a function to be 
called in the same manner, with some 
overhead 

•  Polymorphism is implemented with virtual 
functions, and requires pass-by-reference 


