
Pointers, Classes, Inheritance &
Polymorphism

Rahul Deodhar
www.rahuldeodhar.com

rahuldeodhar@gmail.com
@rahuldeodhar

+91 9820213813

1

2

Procedural Concept	

•  The main program coordinates calls to
procedures and hands over appropriate data
as parameters. 	

3

Object-Oriented Concept	

•  Objects of the program interact by sending messages to
each other	

4

C++
•  Supports Data Abstraction
•  Supports OOP

–  Encapsulation
–  Inheritance
–  Polymorphism

•  Supports Generic Programming
–  Containers

•  Stack of char, int, double etc
–  Generic Algorithms

•  sort(), copy(), search() any container Stack/Vector/List

5

Pointers, Dynamic Data, and
Reference Types

•  Review on Pointers
•  Reference Variables
•  Dynamic Memory Allocation

– The new operator
– The delete operator
– Dynamic Memory Allocation for Arrays

6

C++ Data Types

structured

array struct union class

 address

pointer reference

simple

 integral enum

char short int long bool

floating

float double long double

7

Recall that . . .
char str [8];

•  str is the base address of the array.
•  We say str is a pointer because its value is an address.
•  It is a pointer constant because the value of str itself

cannot be changed by assignment. It “points” to the
memory location of a char.

 str [0] [1] [2] [3] [4] [5] [6] [7]

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

6000

8

Addresses in Memory

•  When a variable is declared, enough memory to hold a
value of that type is allocated for it at an unused memory
location. This is the address of the variable

 int x;
 float number;
 char ch;

 2000 2002 2006

 x number ch

9

Obtaining Memory Addresses

•  The address of a non-array variable can be obtained by using

the address-of operator &

int x;
float number;
char ch;

cout << “Address of x is “ << &x << endl;

cout << “Address of number is “ << &number << endl;

cout << “Address of ch is “ << &ch << endl;

 x number ch

2000 2002 2006

10

What is a pointer variable?

•  A pointer variable is a variable whose value is the address of a
location in memory.

•  To declare a pointer variable, you must specify the type of
value that the pointer will point to, for example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

11

Using a Pointer Variable

 int x;
 x = 12;

 int* ptr;
 ptr = &x;

NOTE: Because ptr holds the address of x,
 we say that ptr “points to” x

 2000

 12

 x

3000

 2000

 ptr

12

 int x;
 x = 12;

 int* ptr;
 ptr = &x;

 cout << *ptr;

NOTE: The value pointed to by ptr is denoted by *ptr

*: dereference operator
 2000

 12

 x

3000

 2000

 ptr

13

 int x;
 x = 12;

 int* ptr;
 ptr = &x;

 *ptr = 5;

Using the Dereference Operator

 2000

 12

 x

3000

 2000

 ptr

5

// changes the value at the
 address ptr points to 5

14

 char ch;
 ch = ‘A’;

 char* q;
 q = &ch;

 *q = ‘Z’;
 char* p;
 p = q;

Self –Test on Pointers
 4000

 A

 ch

5000

 4000

 q

Z

6000

p

4000

// the rhs has value 4000

// now p and q both point to ch

15

 ptr

Using a Pointer to Access the
Elements of a String

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char msg[] =“Hello”;
char* ptr;
ptr = msg;
*ptr = ‘M’ ;
ptr++;

*ptr = ‘a’;

msg
3000

3000

‘M’ ‘a’

3001

16

Reference Variables
Reference variable = alias for another variable

 - Contains the address of a variable (like a pointer)
 - No need to perform any dereferencing (unlike a pointer)
 - Must be initialized when it is declared

int x = 5;
int &z = x; // z is another name for x
int &y ; //Error: reference must be initialized
cout << x << endl; -> prints 5
cout << z << endl; -> prints 5

z = 9; // same as x = 9;

cout << x << endl; -> prints 9
cout << z << endl; -> prints 9

17

Why Reference Variables

•  Are primarily used as function parameters

•  Advantages of using references:

–  you don’t have to pass the address of a variable
–  you don’t have to dereference the variable inside the

called function

18

Reference Variables Example
#include <iostream.h>

// Function prototypes
(required in C++)

void p_swap(int *, int *);
void r_swap(int&, int&);

int main (void){
 int v = 5, x = 10;
 cout << v << x << endl;
 p_swap(&v,&x);
 cout << v << x << endl;
 r_swap(v,x);
 cout << v << x << endl;
 return 0;
}

void r_swap(int &a, int &b)
{
 int temp;
 temp = a; (2)
 a = b; (3)
 b = temp;
}

void p_swap(int *a, int *b)
{

 int temp;
 temp = *a; (2)
 *a = *b; (3)
 *b = temp;

}

19

Dynamic Memory Allocation

•  Static memory - where global
and static variables live

•  Heap memory - dynamically
allocated at execution time
 - "managed" memory accessed
using pointers

•  Stack memory - used by

automatic variables

In C and C++, three types of memory are used by programs:

20

3 Kinds of Program Data

•  STATIC DATA: Allocated at compiler time

•  DYNAMIC DATA: explicitly allocated and
deallocated during program execution by C++
instructions written by programmer using operators
new and delete

•  AUTOMATIC DATA: automatically created at
function entry, resides in activation frame of the
function, and is destroyed when returning from
function

21

Dynamic Memory Allocation Diagram

static data

Stack

Heap
Run-time allocated

memory

Compile-time
allocated
memoryProgram

code

High-end

Low-end

22

Dynamic Memory Allocation

•  In C, functions such as malloc() are used to
dynamically allocate memory from the Heap.

•  In C++, this is accomplished using the new and
delete operators

•  new is used to allocate memory during execution time
–  returns a pointer to the address where the object is

to be stored
–  always returns a pointer to the type that follows the

new

Operator new Syntax

new DataType

new DataType [IntExpression]

•  If memory is available, in an area called the heap (or free
store) new allocates the requested object or array, and
returns a pointer to (address of) the memory allocated.

•  Otherwise, program terminates with error message.

•  The dynamically allocated object exists until the delete
operator destroys it.

23

24

Operator new

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

NOTE: Dynamic data has no variable name

2000

 ???

ptr

5000

5000

‘B’

25

The NULL Pointer

•  There is a pointer constant called the “null pointer”
denoted by NULL

•  But NULL is not memory address 0.

•  NOTE: It is an error to dereference a pointer whose
value is NULL. Such an error may cause your
program to crash, or behave erratically. It is the
programmer’s job to check for this.

 while (ptr != NULL) {
 . . . // ok to use *ptr here
 }

Operator delete Syntax

 delete Pointer

 delete [] Pointer

•  The object or array currently pointed to by Pointer is

deallocated, and the value of Pointer is undefined. The
memory is returned to the free store.

•  Good idea to set the pointer to the released
memory to NULL

•  Square brackets are used with delete to deallocate a
dynamically allocated array.

26

27

Operator delete

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

delete ptr;

5000

5000

‘B’

2000

ptr

???

NOTE:
 delete deallocates the
 memory pointed to by ptr

28

Example
char *ptr ;

ptr = new char[5];

strcpy(ptr, “Bye”);

ptr[0] = ‘u’;

delete [] ptr;

ptr = NULL;

‘B’ ‘y’ ‘e’ ‘\0’
‘u’

 ptr
3000

???

6000

6000 ??? NULL

// deallocates the array pointed to by ptr
// ptr itself is not deallocated
// the value of ptr becomes undefined

29

Pointers and Constants
char* p;
p = new char[20];

char c[] = “Hello”;
const char* pc = c; //pointer to a constant
pc[2] = ‘a’; // error
pc = p;

char *const cp = c; //constant pointer
cp[2] = ‘a’;
cp = p; // error

const char *const cpc = c; //constant pointer to a const
cpc[2] = ‘a’; //error
cpc = p; //error

30

Take Home Message

•  Be aware of where a pointer points to, and
what is the size of that space.

•  Have the same information in mind when
you use reference variables.

•  Always check if a pointer points to NULL
before accessing it.

31

•  A pointer variable is a variable whose value is the address of a location in
memory

 int x;
x = 5;

 int* ptr1;

 ptr1 = &x;

 int* ptr2;
 ptr2 = ptr1;

 *ptr1 = 6;

 cout << ptr1 << endl;
 cout << *ptr2 << endl;

Review: Pointers & Dynamic Data

int* ptr3;
ptr3 = new int;
*ptr3 = 5;
delete ptr3;
ptr3 = NULL;

int *ptr4;
ptr4 = new int[5];
ptr4[0] = 100;
ptr4[4] = 123;
delete [] ptr4;
ptr4 = NULL;

32

void increment(int b1, int &b2, int *b3)
{
 b1 += 2;
 b2 += 2
 *b3 += 2;
}

Review: Reference Types

•  Reference Types
–  Alias for another variable
–  Must be initialized when declared
–  Are primarily used as function parameters

 int main (void){
 int a1 = 5, a2 = 10;
 int *a3 = new int;
 *a3 = 15;
 int &a4 = a3;
 cout << a1 << a2 << a3 << endl;
 increment(a1, a2, a3);
 cout << a1 << a2 << a3 << endl;
 delete a3; a3 = NULL;
 return 0;
}

33

Object-Oriented Programming
Introduction to Classes

•  Class Definition
•  Class Examples
•  Objects
•  Constructors
•  Destructors

34

Class
•  The class is the cornerstone of C++

–  It makes possible encapsulation, data hiding and inheritance
•  Type

–  Concrete representation of a concept
•  Eg. float with operations like -, *, + (math real numbers)

•  Class
–  A user defined type
–  Consists of both data and methods
–  Defines properties and behavior of that type

•  Advantages
–  Types matching program concepts

•  Game Program (Explosion type)
–  Concise program
–  Code analysis easy
–  Compiler can detect illegal uses of types

•  Data Abstraction
–  Separate the implementation details from its essential properties

35

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

};

Classes & Objects

Rectangle r1;
Rectangle r2;
Rectangle r3;
 …

…

int a;

Objects: Instance of a class

36

Define a Class Type

 class class_name
 {
 permission_label:
 member;
 permission_label:
 member;
 ...
 };

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

};

Body

Header

37

Class Definition
Data Members

•  Can be of any type, built-in or user-defined
•  non-static data member

– Each class object has its own copy
•  static data member

– Acts as a global variable
– One copy per class type, e.g. counter

38

class Rectangle
{

 private:
 int width;
 int length;
 static int count;
 public:
 void set(int w, int l);
 int area();
 }

Static Data Member
Rectangle r1;
Rectangle r2;
Rectangle r3;

width
length

width
length

width
length

r1

r3

r2

count

39

Class Definition
Member Functions

•  Used to
–  access the values of the data members (accessor)
–  perform operations on the data members (implementor)

•  Are declared inside the class body
•  Their definition can be placed inside the class body,

or outside the class body
•  Can access both public and private members of the

class
•  Can be referred to using dot or arrow member access

operator

40

Define a Member Function
class Rectangle
{

 private:
 int width, length;
 public:
 void set (int w, int l);
 int area() {return width*length; }

};

void Rectangle :: set (int w, int l)
{

 width = w;
 length = l;

}

inline

class name

member function name

scope operator

r1.set(5,8);

rp->set(8,10);

41

•  const member function
–  declaration

•  return_type func_name (para_list) const;

–  definition
•  return_type func_name (para_list) const { … }
•  return_type class_name :: func_name (para_list) const { … }

–  Makes no modification about the data members (safe
function)

–  It is illegal for a const member function to modify a class
data member

Class Definition
Member Functions

42

Const Member Function

class Time
{

 private :

 int hrs, mins, secs ;

 public :

 void Write () const ;

} ;

void Time :: Write() const
{
 cout <<hrs << “:” << mins << “:” << secs
<< endl;
}

function declaration

function definition

43

•  Information hiding
–  To prevent the internal representation from direct

access from outside the class
•  Access Specifiers

–  public
•  may be accessible from anywhere within a program

–  private
•  may be accessed only by the member functions, and friends of

this class
–  protected

•  acts as public for derived classes
•  behaves as private for the rest of the program

Class Definition - Access Control

44

class Time Specification

class Time
{

 public :

 void Set (int hours , int minutes , int seconds) ;
 void Increment () ;

 void Write () const ;

 Time (int initHrs, int initMins, int initSecs) ; // constructor
 Time () ; // default constructor

 private :

 int hrs ;
 int mins ;
 int secs ;

} ;
44

45

 Class Interface Diagram

Private data:

hrs

mins

secs

Set

Increment

Write

 Time

Time

Time class

46

•  The default access specifier is private
•  The data members are usually private or protected
•  A private member function is a helper, may only be

accessed by another member function of the same class
(exception friend function)

•  The public member functions are part of the class
interface

•  Each access control section is optional, repeatable, and
sections may occur in any order

Class Definition
 Access Control

47

What is an object?

OBJECT

Operations

 Data

set of methods
(member functions)

internal state
(values of private data members)

48

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

};

Declaration of an Object

main()
{

 Rectangle r1;
 Rectangle r2;

 r1.set(5, 8);
 cout<<r1.area()<<endl;

 r2.set(8,10);
 cout<<r2.area()<<endl;

}

49

Another Example

 #include <iostream.h>

 class circle
 {

 private:
 double radius;

 public:
 void store(double);
 double area(void);
 void display(void);

 };

// member function definitions

void circle::store(double r)
{
 radius = r;
}

double circle::area(void)
{
 return 3.14*radius*radius;
}

void circle::display(void)
{
 cout << “r = “ << radius << endl;
}

int main(void) {
 circle c; // an object of circle class
 c.store(5.0);
 cout << "The area of circle c is " << c.area() << endl;
 c.display();
}

50

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

};

Declaration of an Object

main()
{

 Rectangle r1;

 r1.set(5, 8);
}

r1 is statically allocated

width
length

r1 width = 5
length = 8

51

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

};

Declaration of an Object

 main()
 {
 Rectangle r1;

 r1.set(5, 8);

 Rectangle *r2;
 r2 = &r1;
 r2->set(8,10);
 }

r2 is a pointer to a Rectangle object

width
length

r1
width = 5
length = 8

5000

???

r
2 6000

5000
width = 8
length = 10

//dot notation

//arrow notation

52

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

};

Declaration of an Object

main()
{

 Rectangle *r3;
 r3 = new Rectangle();

 r3->set(80,100);

 delete r3;
 r3 = NULL;

}

r3 is dynamically allocated

???

r3
6000

width
length

5000
5000

width = 80
length = 100

NULL

//arrow notation

53

 #include <iostream.h>

 class circle
 {

 public:
 double radius;

 };

Object Initialization

int main()
{
 circle c1; // Declare an instance of the class circle
 c1.radius = 5; // Initialize by assignment

}

1. By Assignment

•  Only work for public data
 members

•  No control over the operations
 on data members

54

 #include <iostream.h>

 class circle
 {
 private:
 double radius;

 public:
 void set (double r)
 {radius = r;}
 double get_r ()
 {return radius;}

 };
int main(void) {
 circle c; // an object of circle class
 c.set(5.0); // initialize an object with a public member function
 cout << "The radius of circle c is " << c.get_r() << endl;

 // access a private data member with an accessor
}

Object Initialization

2. By Public Member Functions

55

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

}

Declaration of an Object

 main()
 {
 Rectangle r1;

 r1.set(5, 8);

 Rectangle *r2;
 r2 = &r1;
 r2->set(8,10);
 }

r2 is a pointer to a Rectangle object

//dot notation

//arrow notation

r1 and r2 are both initialized by
public member function set

56

class Rectangle
{

 private:
 int width;
 int length;
 public:
 Rectangle();
 Rectangle(const Rectangle &r);
 Rectangle(int w, int l);
 void set(int w, int l);
 int area();

}

Object Initialization
3. By Constructor

•  Default constructor

•  Copy constructor

•  Constructor with parameters

There is no return type
Are used to initialize class data
members

Have the same name as the class
They are publicly accessible

They have different signatures

57

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

};

Object Initialization

•  Default constructor

When a class is declared with no constructors,
the compiler automatically assumes default
constructor and copy constructor for it.

Rectangle :: Rectangle() { };

•  Copy constructor

Rectangle :: Rectangle (const Rectangle &
r)

{
 width = r.width; length = r.length;

};

58

class Rectangle
{

 private:
 int width;
 int length;
 public:
 void set(int w, int l);
 int area();

}

Object Initialization

•  Initialize with default constructor

Rectangle r1;

Rectangle *r3 = new Rectangle();

•  Initialize with copy constructor

Rectangle r4;
r4.set(60,80);

Rectangle r5 = r4;
Rectangle r6(r4);

Rectangle *r7 = new Rectangle(r4);

59

class Rectangle
{

 private:
 int width;
 int length;
 public:
 Rectangle(int w, int l)
 {width =w; length=l;}
 void set(int w, int l);
 int area();

}

Object Initialization

If any constructor with any number
of parameters is declared, no default
constructor will exist, unless you
define it.

Rectangle r4; // error

•  Initialize with constructor

Rectangle r5(60,80);

Rectangle *r6 = new Rectangle(60,80);

60

class Rectangle
{

 private:
 int width;
 int length;
 public:
 Rectangle();
 Rectangle(int w, int l);
 void set(int w, int l);
 int area();

}

Object Initialization
Write your own constructors

Rectangle :: Rectangle()
{

 width = 20;
 length = 50;

};

Rectangle *r7 = new Rectangle();

width
length
width = 20
length = 50

5000 ???
r
7

6000
5000

61

class Account
{

 private:
 char *name;
 double balance;
 unsigned int id;
 public:
 Account();
 Account(const Account &a);
 Account(const char *person);

}

Object Initialization
With constructors, we have more
control over the data members

Account :: Account()
{

 name = NULL; balance = 0.0;
 id = 0;

};

Account :: Account(const Account &a)
{

 name = new char[strlen(a.name)+1];
 strcpy (name, a.name);
 balance = a.balance;
 id = a.id;

};

Account :: Account(const char *person)
{

 name = new char[strlen(person)+1];
 strcpy (name, person);
 balance = 0.0;
 id = 0;

};

62

So far, …
•  An object can be initialized by a class

constructor
–  default constructor
–  copy constructor
–  constructor with parameters

•  Resources are allocated when an object is
initialized

•  Resources should be revoked when an object is
about to end its lifetime

63

Cleanup of An Object

class Account
{

 private:
 char *name;
 double balance;
 unsigned int id; //unique
 public:
 Account();
 Account(const Account &a);
 Account(const char *person);
 ~Account();

}

Destructor

Account :: ~Account()
{

 delete[] name;
}

•  Its name is the class name preceded
by a ~ (tilde)

•  It has no argument
•  It is used to release dynamically

allocated memory and to perform
other "cleanup" activities

•  It is executed automatically when the
object goes out of scope

64

Putting Them Together
class Str
{

 char *pData;
 int nLength;

 public:
 //constructors
 Str();
 Str(char *s);
 Str(const Str &str);

 //accessors
 char* get_Data();

 int get_Len();

 //destructor
 ~Str();

};

Str :: Str() {
 pData = new char[1];
 *pData = ‘\0’;
 nLength = 0;

};

Str :: Str(const Str &str) {
 int n = str.nLength;
 pData = new char[n+1];
 nLength = n;
strcpy(pData,str.pData);

};

Str :: Str(char *s) {
 pData = new char[strlen(s)+1];
 strcpy(pData, s);
 nLength = strlen(s);

};

65

Putting Them Together
class Str
{

 char *pData;
 int nLength;

 public:
 //constructors
 Str();
 Str(char *s);
 Str(const Str &str);

 //accessors
 char* get_Data();

 int get_Len();

 //destructor
 ~Str();

};

 char* Str :: get_Data()
 {

 return pData;
 };

Str :: ~Str()
{
 delete[] pData;

};

 int Str :: get_Len()
 {

 return nLength;
 };

66

Putting Them Together
class Str
{

 char *pData;
 int nLength;

 public:
 //constructors
 Str();
 Str(char *s);
 Str(const Str &str);

 //accessors
 char* get_Data();

 int get_Len();

 //destructor
 ~Str();

};

int main()
{

 int x=3;
 Str *pStr1 = new Str(“Joe”);
 Str *pStr2 = new Str();

}

67

Interacting Objects
Class A Class B

Private:
data members

Private:
data members

Member methods Member methods

Constructor

Other
public methods

Public:

Destructor
Constructor

Other
public methods

Public:

Destructor
Message passing

Private:
methods

Private:
methods

68

 class Rectangle{
 private:
 int numVertices;
 float *xCoord, *yCoord;
 public:
 void set(float *x, float *y, int nV);
 float area();
 };

Inheritance Concept

Rectangle Triangle

Polygon

 class Polygon{
 private:

 int numVertices;
 float *xCoord, *yCoord;

 public:
 void set(float *x, float *y, int nV);

 };

 class Triangle{
 private:
 int numVertices;

 float *xCoord, *yCoord;
 public:

 void set(float *x, float *y, int nV);
 float area();
 };

69

Rectangle Triangle

Polygon
class Polygon{

 protected:
 int numVertices;
 float *xCoord, float *yCoord;
 public:
 void set(float *x, float *y, int nV);

};

class Rectangle : public Polygon{
 public:
 float area();

};

class Rectangle{
 protected:
 int numVertices;
 float *xCoord, float *yCoord;
 public:
 void set(float *x, float *y, int nV);
 float area();

};

Inheritance Concept

70

Rectangle Triangle

Polygon
class Polygon{

 protected:
 int numVertices;
 float *xCoord, float *yCoord;
 public:
 void set(float *x, float *y, int nV);

};

class Triangle : public Polygon{
 public:
 float area();

};

class Triangle{
 protected:
 int numVertices;
 float *xCoord, float *yCoord;
 public:
 void set(float *x, float *y, int nV);
 float area();

};

Inheritance Concept

71

Inheritance Concept

Point

Circle 3D-Point

class Point{
 protected:
 int x, y;
 public:
 void set (int a, int b);

};

class Circle : public Point{
 private:
 double r;

};

class 3D-Point: public Point{
 private:
 int z;

};

x
y

x
y
r

x
y
z

72

•  Augmenting the original class

•  Specializing the original class

Inheritance Concept

RealNumber

ComplexNumber

ImaginaryNumber

Rectangle Triangle

Polygon Point

Circle

real
imag

real imag

3D-Point

73

Why Inheritance ?

Inheritance is a mechanism for

•  building class types from existing class types

•  defining new class types to be a
– specialization
– augmentation

 of existing types

74

Define a Class Hierarchy

•  Syntax:
 class DerivedClassName : access-level BaseClassName

 where
–  access-level specifies the type of derivation

•  private by default, or
•  public

•  Any class can serve as a base class
–  Thus a derived class can also be a base class

75

Class Derivation
Point

3D-Point

class Point{
 protected:
 int x, y;
 public:
 void set (int a, int b);

};

class 3D-Point : public Point{
 private:

 double z;
 … …

};

class Sphere : public 3D-Point{
 private:

 double r;
 … …

};

Sphere

Point is the base class of 3D-Point, while 3D-Point is the base class of Sphere

76

What to inherit?

•  In principle, every member of a base class is
inherited by a derived class
–  just with different access permission

77

Access Control Over the Members
•  Two levels of access control

over class members
–  class definition
–  inheritance type

base class/ superclass/
parent class

derived class/ subclass/
child class

d
e
ri
v
e
 f

ro
m

m
e
m

b
e
rs

 g
o
e
s
 t
o

class Point{
 protected: int x, y;
 public: void set(int a, int b);

};

class Circle : public Point{
 … …

};

78

•  The type of inheritance defines the access level for the
members of derived class that are inherited from the base
class

Access Rights of Derived Classes

private protected public
private - - -

protected private protected protected
public private protected public

Type of Inheritance

A
ccess C

ontrol
for M

em
bers

79

class daughter : --------- mother{
 private: double dPriv;
 public: void mFoo ();

};

Class Derivation
class mother{

 protected: int mProc;
 public: int mPubl;
 private: int mPriv;

};

class daughter : --------- mother{
 private: double dPriv;
 public: void dFoo ();

};

void daughter :: dFoo (){
 mPriv = 10; //error
 mProc = 20;

};

private/protected/public int main() {
 /*….*/

}

class grandDaughter : public daughter {
 private: double gPriv;
 public: void gFoo ();

};

80

What to inherit?

•  In principle, every member of a base class is
inherited by a derived class
–  just with different access permission

•  However, there are exceptions for
–  constructor and destructor
–  operator=() member
–  friends

 Since all these functions are class-specific

81

Constructor Rules for Derived Classes
 The default constructor and the destructor of the
base class are always called when a new object
of a derived class is created or destroyed.

class A {
 public:

 A ()
 {cout<< “A:default”<<endl;}
 A (int a)
 {cout<<“A:parameter”<<endl;}

};

class B : public A
{
 public:

 B (int a)
 {cout<<“B”<<endl;}

};

B test(1);
A:default
B

output:

82

Constructor Rules for Derived Classes
 You can also specify an constructor of the
base class other than the default constructor

class A {
 public:

 A ()
 {cout<< “A:default”<<endl;}
 A (int a)
 {cout<<“A:parameter”<<endl;}

};

class C : public A {
 public:

 C (int a) : A(a)
 {cout<<“C”<<endl;}

};

C test(1);
A:parameter
C

output:

DerivedClassCon (derivedClass args) : BaseClassCon (baseClass
args)

 { DerivedClass constructor body }

83

Define its Own Members

Point

Circle

class Point{
 protected:
 int x, y;
 public:
 void set(int a, int b);

};

class Circle : public Point{
 private:
 double r;
 public:
 void set_r(double c);

};

x
y

x
y
r

class Circle{
 protected:

 int x, y;
 private:
 double r;
 public:
 void set(int a, int b);
 void set_r(double c);

};

The derived class can also define
its own members, in addition to
the members inherited from the
base class

84

Even more …
•  A derived class can override methods defined in its parent

class. With overriding,
–  the method in the subclass has the identical signature to the method

in the base class.
–  a subclass implements its own version of a base class method.

class A {
 protected:

 int x, y;
 public:

 void print ()
 {cout<<“From A”<<endl;}

};

class B : public A {
 public:

 void print ()
 {cout<<“From B”<<endl;}

};

85

class Point{
 protected:
 int x, y;
 public:
 void set(int a, int b)
 {x=a; y=b;}
 void foo ();
 void print();

};

class Circle : public Point{
 private: double r;
 public:

 void set (int a, int b, double c) {
 Point :: set(a, b); //same name function call

 r = c;
 }
 void print(); };

 Access a Method

 Circle C;
 C.set(10,10,100); // from class Circle
 C.foo (); // from base class Point
 C.print(); // from class Circle

Point A;
A.set(30,50); // from base class Point

A.print(); // from base class Point

86

Putting Them Together
•  Time is the base class
•  ExtTime is the derived class with

public inheritance
•  The derived class can

–  inherit all members from the base
class, except the constructor

–  access all public and protected
members of the base class

–  define its private data member
–  provide its own constructor
–  define its public member functions
–  override functions inherited from

the base class

ExtTime

Time

87

class Time Specification

class Time{

 public :

 void Set (int h, int m, int s) ;
 void Increment () ;

 void Write () const ;

 Time (int initH, int initM, int initS) ; // constructor
 Time () ; // default constructor

 protected :

 int hrs ;
 int mins ;
 int secs ;

} ;

// SPECIFICATION FILE (time.h)

88

 Class Interface Diagram

Protected data:

hrs

mins

secs

Set

Increment

Write

 Time

Time

Time class

89

Derived Class ExtTime
// SPECIFICATION FILE (exttime.h)

#include “time.h”

enum ZoneType {EST, CST, MST, PST, EDT, CDT, MDT, PDT } ;

class ExtTime : public Time

 // Time is the base class and use public inheritance
{
 public :

 void Set (int h, int m, int s, ZoneType timeZone) ;
 void Write () const; //overridden

 ExtTime (int initH, int initM, int initS, ZoneType initZone) ;
 ExtTime (); // default constructor

private :
 ZoneType zone ; // added data member

} ;

90

 Class Interface Diagram

Protected data:

hrs

mins

secs

ExtTime class

Set

Increment

Write

 Time

Time

Set

Increment

Write

 ExtTime

ExtTime

Private data:
zone

91

Implementation of ExtTime

Default Constructor

ExtTime :: ExtTime ()
{

 zone = EST ;
}

The default constructor of
base class, Time(), is
automatically called, when an
ExtTime object is created.

 ExtTime et1;

hrs = 0
mins = 0
secs = 0
zone = EST

et1

92

Implementation of ExtTime
Another Constructor

ExtTime :: ExtTime (int initH, int initM, int initS, ZoneType initZone)
 : Time (initH, initM, initS)
 // constructor initializer

{
 zone = initZone ;
}

ExtTime *et2 =
 new ExtTime(8,30,0,EST);

hrs = 8
mins = 30
secs = 0
zone = EST

et2

5000

???
6000

5000

93

Implementation of ExtTime
void ExtTime :: Set (int h, int m, int s, ZoneType timeZone)
{
 Time :: Set (hours, minutes, seconds); // same name function call

 zone = timeZone ;
}

void ExtTime :: Write () const // function overriding
{
 string zoneString[8] =

 {“EST”, “CST”, MST”, “PST”, “EDT”, “CDT”, “MDT”,
“PDT”} ;

 Time :: Write () ;
 cout <<‘ ‘<<zoneString[zone]<<endl;
}

94

Working with ExtTime

 #include “exttime.h”
 … …

 int main()
 {

 ExtTime thisTime (8, 35, 0, PST) ;
 ExtTime thatTime ; // default constructor called

 thatTime.Write() ; // outputs 00:00:00 EST

 thatTime.Set (16, 49, 23, CDT) ;
 thatTime.Write() ; // outputs 16:49:23 CDT

 thisTime.Increment () ;
 thisTime.Increment () ;
 thisTime.Write () ; // outputs 08:35:02 PST
 }

95

Take Home Message

•  Inheritance is a mechanism for defining new
class types to be a specialization or an
augmentation of existing types.

•  In principle, every member of a base class is
inherited by a derived class with different
access permissions, except for the constructors

96

Polymorphism

97

Object-Oriented Concept	

•  Encapsulation
– ADT, Object

•  Inheritance
– Derived object

•  Polymorphism
– Each object knows what it is

98

Polymorphism – An Introduction

•  noun, the quality or state of being able to
assume different forms - Webster

•  An essential feature of an OO Language
•  It builds upon Inheritance

99

Before we proceed….
•  Inheritance – Basic Concepts

– Class Hierarchy
•  Code Reuse, Easy to maintain

– Type of inheritance : public, private
– Function overriding

100

 Class Interface Diagram

Protected data:

hrs

mins

secs

ExtTime class

Set

Increment

Write

 Time

Time

Set

Increment

Write

 ExtTime

ExtTime

Private
data:
zone

Time class

101

Why Polymorphism?--Review:
Time and ExtTime Example by Inheritance

void Print (Time someTime) //pass an object by value
{

 cout << “Time is “ ;
 someTime.Write () ;
 cout << endl ;

}

CLIENT CODE

Time startTime (8, 30, 0) ;
ExtTime endTime (10, 45, 0, CST) ;

Print (startTime) ;
Print (endTime) ;

 OUTPUT

 Time is 08:30:00
 Time is 10:45:00

// Time :: write()

102

Static Binding
•  When the type of a formal parameter is a parent class, the argument

used can be:

 the same type as the formal parameter,
 or,
 any derived class type.

•  Static binding is the compile-time determination of
which function to call for a particular object based on the
type of the formal parameter

•  When pass-by-value is used, static binding occurs

103

Can we do better?
void Print (Time someTime) //pass an object by value
{

 cout << “Time is “ ;
 someTime.Write () ;
 cout << endl ;

}

CLIENT CODE

Time startTime (8, 30, 0) ;
ExtTime endTime (10, 45, 0, CST) ;

Print (startTime) ;
Print (endTime) ;

 OUTPUT

 Time is 08:30:00
 Time is 10:45:00

// Time :: write()

104

Polymorphism – An Introduction
•  noun, the quality or state of being able to

assume different forms - Webster
•  An essential feature of an OO Language
•  It builds upon Inheritance

•  Allows run-time interpretation of object type
for a given class hierarchy
– Also Known as “Late Binding”

•  Implemented in C++ using virtual functions

105

Dynamic Binding

•  Is the run-time determination of which function to call for a
particular object of a derived class based on the type of the
argument

•  Declaring a member function to be virtual instructs the
compiler to generate code that guarantees dynamic binding

•  Dynamic binding requires pass-by-reference

106

Virtual Member Function
// SPECIFICATION FILE (time.h)

class Time
{

public :

 . . .

 virtual void Write () ; // for dynamic binding
 virtual ~Time(); // destructor

private :

 int hrs ;
 int mins ;
 int secs ;

} ;

107

This is the way we like to
see…

 void Print (Time * someTime)
 {

 cout << “Time is “ ;
 someTime->Write () ;
 cout << endl ;

 }

CLIENT CODE

Time startTime(8, 30, 0) ;
ExtTime endTime(10, 45, 0, CST) ;

Time *timeptr;
timeptr = &startTime;
Print (timeptr) ;

timeptr = &endTime;
Print (timeptr) ;

 OUTPUT

 Time is 08:30:00
 Time is 10:45:00 CST

Time::write()

ExtTime::write()

108

Virtual Functions
•  Virtual Functions overcome the problem of run time object

determination
•  Keyword virtual instructs the compiler to use late binding and delay

the object interpretation
•  How ?

–  Define a virtual function in the base class. The word virtual appears
only in the base class

–  If a base class declares a virtual function, it must implement that
function, even if the body is empty

–  Virtual function in base class stays virtual in all the derived classes
–  It can be overridden in the derived classes
–  But, a derived class is not required to re-implement a virtual

function. If it does not, the base class version is used

109

Polymorphism Summary:
•  When you use virtual functions, compiler store

additional information about the types of object
available and created

•  Polymorphism is supported at this additional overhead
•  Important :

–  virtual functions work only with pointers/references
–  Not with objects even if the function is virtual
–  If a class declares any virtual methods, the destructor of the

class should be declared as virtual as well.

110

Abstract Classes & Pure Virtual Functions
•  Some classes exist logically but not physically.
•  Example : Shape

–  Shape s; // Legal but silly..!! : “Shapeless shape”

–  Shape makes sense only as a base of some classes derived from it. Serves as
a “category”

–  Hence instantiation of such a class must be prevented

class Shape //Abstract
{
 public :
 //Pure virtual Function
 virtual void draw() = 0;
}

 A class with one or more pure virtual
 functions is an Abstract Class

 Objects of abstract class can’t be
 created

Shape s; // error : variable of an abstract class

111

Example
Shape

 virtual void draw()

Circle

public void draw()

Triangle

public void draw()

112

•  A pure virtual function not defined in the
derived class remains a pure virtual function.

•  Hence derived class also becomes abstract
class Circle : public Shape { //No draw() - Abstract

public :
void print(){
 cout << “I am a circle” << endl;
}}

class Rectangle : public Shape {
public :
void draw(){ // Override Shape::draw()
 cout << “Drawing Rectangle” << endl;
}}

Rectangle r; // Valid
Circle c; // error : variable of an abstract class

113

Pure virtual functions : Summary

•  Pure virtual functions are useful because they
make explicit the abstractness of a class

•  Tell both the user and the compiler how it was
intended to be used

•  Note : It is a good idea to keep the common
code as close as possible to the root of you
hierarchy

114

Summary ..continued
•  It is still possible to provide definition of a pure virtual function in

the base class
•  The class still remains abstract and functions must be redefined in

the derived classes, but a common piece of code can be kept there to
facilitate reuse

•  In this case, they can not be declared inline

class Shape { //
Abstract
public :
 virtual void
draw() = 0;
};

// OK, not defined
inline void
Shape::draw(){
 cout << “Shape" <<
endl;
}

class Rectangle :
public Shape

{
 public :
 void draw(){
 Shape::draw(); //
Reuse
 cout
<<“Rectangle”<< endl;
}

115

Take Home Message
•  Polymorphism is built upon class inheritance

•  It allows different versions of a function to be
called in the same manner, with some
overhead

•  Polymorphism is implemented with virtual
functions, and requires pass-by-reference

