
Applets

Java
Bytecodes

move locally
or through

network

Java
Source
(.java)

Java
Compiler

Java
Bytecode
(.class)

Java
Interpreter

Just in
Time

Compiler

Runtime System

Class
Loader

Bytecode
Verifier

Java
Class

Libraries

Operating System

Hardware

Java
Virtual
machine

Runtime Environment Compile-time
Environment

Java Environment/ Life Cycle of Java Code

Application Vs Applet

Advantages of Applets
•  Execution of applets is easy in a Web browser and does not

require any installation or deployment procedure in realtime
programming (where as servlets require).

•  Writing and displaying (just opening in a browser) graphics and
animations is easier than applications.

•  In GUI developmenconstructor, size of frame, window closing
code etc. are not required (but are required in applications).

Restrictions of Applets
•  Applets are required separate compilation before opening in a browser.
•  In realtime environment, the bytecode of applet is to be downloaded from the

server to the client machine.
•  Applets are treated as untrusted (as they were developed by unknown people

and placed on unknown servers whose trustworthiness is not guaranteed) and
for this reason they are not allowed, as a security measure, to access any
system resources like file system etc. available on the client system.

•  Extra Code is required to communicate between applets using
AppletContext.

What Applet can't do – Security Limitations
•  Applets are treated as untrusted because they are developed by somebody

and placed on some unknown Web server. When downloaded, they may harm
the system resources or steal passwords and valuable information available on
the system. As applets are untrusted, the browsers come with many security
restrictions. Security policies are browser dependent. Browser does not allow
the applet to access any of the system resources (applet is permitted to use
browser resources, infact, applet execution goes within the browser only).
–  Applets are not permitted to use any system resources like file system as they are

untrusted and can inject virus into the system.
–  Applets cannot read from or write to hard disk files.
–  Applet methods cannot be native.
–  Applets should not attempt to create socket connections
–  Applets cannot read system properties
–  Applets cannot use any software available on the system (except browser

execution area)
–  Cannot create objects of applications available on the system by composition
–  The JRE throws SecurityException if the applet violates the browser restrictions.

Applet Architecture
•  Applets permit GUI and handling events. Infact, an applet will be in waiting

mode forever expecting some event (input) to occur from the user. Applets are
event driven and window-based. The event is forwarded by the AWT GUI
environment (graphics environment) to the applet. The applet takes the event,
do some action and return the control back to AWT. Applet does not keep the
execution control with it for a long time. If the programmer would like to
listen the music continuously or use some banner to display, he must create a
separated thread and assign the job to it.

•  Note: Do not try to take input from keyboard with applets as applets are
window-based and instead you can create some GUI text field and take input.

Applets
•  An applet is a Panel that allows interaction with

a Java program
•  A applet is typically embedded in a Web page

and can be run from a browser
•  You need special HTML in the Web page to tell

the browser about the applet
•  For security reasons, applets run in a sandbox:

they have no access to the client’s file system

Applet Support
•  Most modern browsers support Java 1.4 if they

have the appropriate plugin
•  In the PC labs, Internet Explorer 5.5 has been

updated, but Netscape has not
•  The best support isn't a browser, but the

standalone program appletviewer
•  In general you should try to write applets that

can be run with any browser

What an applet is
•  You write an applet by extending the class

Applet
•  Applet is just a class like any other; you can

even use it in applications if you want
•  When you write an applet, you are only writing

part of a program
•  The browser supplies the main method

The genealogy of Applet

java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----java.awt.Panel
 |
 +----java.applet.Applet

The simplest possible applet

import java.applet.Applet;
public class TrivialApplet extends Applet { }

<applet
 code="TrivialApplet.class”
 width=150 height=100>
</applet>

TrivialApplet.java

TrivialApplet.html

Applet methods
public void init ()
public void start ()
public void stop ()
public void destroy ()
public void paint (Graphics)
Also:
public void repaint()
public void update (Graphics)
public void showStatus(String)
public String getParameter(String)

Abstract Window Toolkit

CS3 - AWT/Swing 14

CS3 - AWT/Swing 15

The Abstract Windowing Toolkit
•  Since Java was first released, its user interface facilities

have been a significant weakness
–  The Abstract Windowing Toolkit (AWT) was part of the JDK

form the beginning, but it really was not sufficient to support
a complex user interface

•  JDK 1.1 fixed a number of problems, and most notably,
it introduced a new event model. It did not make any
major additions to the basic components

CS3 - AWT/Swing 16

Java Foundation Classes

•  In April 1997, JavaSoft announced the Java
Foundation Classes (JFC).
–  a major part of the JFC is a new set of user

interface components called Swing.

AWT Swing Accessibility Java
 2D

Drag
And
Drop

CS3 - AWT/Swing 17

Swing

•  The Swing classes are used to build GUIs
–  Swing does not stand for anything
–  Swing is built on top of the 1.1/1.2 AWT libraries

•  Swing makes 3 major improvements on the AWT
–  does not rely on the platform’s native components
–  it supports “Pluggable Look-and-Feel” or PLAF
–  it is based on the Model-View-Controller (MVC)

AWT

Swing

JFC
JDK 1.2

CS3 - AWT/Swing 18

GUI Packages

•  AWT
–  java.awt
–  java.awt.color
–  java.awt.datatransfer
–  java.awt.event
–  java.awt.font
–  java.awt.geom
–  java.awt.image
–  ...

•  Swing
–  javax.accessibility
–  javax.swing
–  javax.swing.colorchooser
–  javax.swing.event
–  javax.swing.filechooser
–  javax.swing.plaf
–  javax.swing.table
–  javax.swing.text.html
–  javax.swing.tree
–  ...

CS3 - AWT/Swing 19

Components
•  A GUI consists of different graphic Component

objects which are combined into a hierarchy
using Container objects.

•  Component class
–  An abstract class for GUI components such as menus,

buttons, labels, lists, etc.

•  Container
–  An abstract class that extends Component. Containers can

hold multiple components.

CS3 - AWT/Swing 20

Weighing Components
•  Sun makes a distinction between lightweight and

heavyweight components
– Lightweight components are not dependent on native

peers to render themselves. They are coded in Java.
– Heavyweight components are rendered by the host

operating system. They are resources managed by
the underlying window manager.

CS3 - AWT/Swing 21

Heavyweight Components
•  Heavyweight components were unwieldy for two

reasons
–  Equivalent components on different platforms do not

necessarily act alike.
–  The look and feel of each component was tied to the host

operating system
•  Almost all Swing components are lightweight except

–  JApplet, JFrame, JDialog, and JWindow

CS3 - AWT/Swing 22

Additional Swing Features
•  Swing also provides

–  A wide variety of components (tables, trees, sliders, progress
bars, internal frame, …)

–  Swing components can have tooltips placed over them.
–  Arbitrary keyboard events can be bound to components.
–  Additional debugging support.
–  Support for parsing and displaying HTML based information.

CS3 - AWT/Swing 23

Applets versus Applications
•  Using Swing it is possible to create two different types

of GUI programs
–  Standalone applications

•  Programs that are started from the command line
•  Code resides on the machine on which they are run

–  Applets
•  Programs run inside a web browser
•  Code is downloaded from a web server
•  JVM is contained inside the web browser
•  For security purposes Applets are normally prevented from doing

certain things (for example opening files)

•  For now we will write standalone applications

CS3 - AWT/Swing 24

Three Types of GUI Classes
1.  Containers

JFrame, JPanel, JApplet
2.  Components

JButton, JTextField, JComboBox, JList, etc.

3.  Helpers
Graphics, Color, Font, Dimension, etc.

CS3 - AWT/Swing 25

JFrame win = new JFrame(“title”);

JFrames

•  A JFrame is a Window with all of the
adornments added.
– JFrame inherits from Frame, Window,
Container, Component, and Object

•  A JFrame provides the basic building
block for screen-oriented applications.

CS3 - AWT/Swing 26

Creating a JFrame

import javax.swing.*;

public class SwingFrame {
 public static void main(String args[]) {

 JFrame win = new JFrame("My First GUI Program");

 win.setVisible(true);
 }
} // SwingFrame

CS3 - AWT/Swing 27

JFrame

•  Sizing a Frame
–  You can specify the size

•  Height and width given in pixels
•  The size of a pixel will vary based on the resolution of the

device on which the frame is rendered
•  Usually one uses an instance of the Dimension class.

–  The method pack() will set the size of the frame
automatically, based on the size of the components
contained in the content pane

•  Note that pack does not look at the title bar
•  Sometimes pack() does not work as you might expect; try it

and see.

CS3 - AWT/Swing 28

Creating a JFrame
import javax.swing.*;
import java.awt.*;

public class SwingFrame {

 static Dimension windowSize = new Dimension(250, 150);

 public static void main(String args[]) {

 JFrame win = new JFrame("My First GUI Program");
 win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 win.setSize(windowSize);
 win.setVisible(true);

 }
} // SwingFrame

CS3 - AWT/Swing 29

JFrame
•  JFrames have several panes:

•  Components are placed in the Content Pane

Glass pane

Layered pane

Menu bar

Content pane

CS3 - AWT/Swing 30

Swing Components
• JComponent

– JComboBox, JLabel, JList, JMenuBar,
JPanel, JPopupMenu, JScrollBar,
JScrollPane, JTable, JTree,
JInternalFrame, JOptionPane,
JProgressBar, JRootPane,
JSeparator, JSlider, JSplitPane,
JTabbedPane, JToolBar, JToolTip,
Jviewport, JColorChooser,
JTextComponent, …

CS3 - AWT/Swing 31

lbl = new JLabel(”text", JLabel.RIGHT);

JLabels
• JLabels are components that you can fill with

text.
•  When creating a label you can specify the initial

value and the alignment you wish to use within
the label.

•  You can use getText() and setText() to
get and change the value of the label.

CS3 - AWT/Swing 32

Hello World

import javax.swing.*;

public class SwingFrame {
 public static void main(String args[]) {

 JFrame win = new JFrame("My First GUI Program");

 JLabel label = new JLabel("Hello World");

 win.getContentPane().add(label);

 win.setVisible(true);
 }
} // SwingFrame

CS3 - AWT/Swing 33

JButtons
• JButton extends Component , displays a

string, and delivers an ActionEvent for each
mouse click.

•  Normally buttons are displayed with a border
•  In addition to text, JButtons can also display

icons

button = new JButton(”text“);

CS3 - AWT/Swing 34

Buttons

import javax.swing.*;

public class SwingFrame {
 public static void main(String args[]) {

 JFrame win = new JFrame("My First GUI Program");

 JButton button = new JButton("Click Me!!");

 win.getContentPane().add(button);

 win.setVisible(true);
 }
} // SwingFrame

CS3 - AWT/Swing 35

Layout Manager
•  Layout Manager

– An interface that defines methods for positioning
and sizing objects within a container. Java defines
several default implementations of
LayoutManager.

•  Geometrical placement in a Container is
controlled by a LayoutManager object

CS3 - AWT/Swing 36

Components, Containers, and
Layout Managers

•  Containers may contain components (which
means containers can contain containers!!).

•  All containers come equipped with a layout
manager which positions and shapes (lays out)
the container's components.

•  Much of the action in Swing occurs between
components, containers, and their layout
managers.

CS3 - AWT/Swing 37

Layout Managers
•  Layouts allow you to format components on the

screen in a platform-independent way
•  The standard JDK provides many classes that

implement the LayoutManager interface,
including:
–  FlowLayout
–  GridLayout
–  BorderLayout
–  BoxLayout
–  CardLayout
–  OverlayLayout
–  GridBagLayout

CS3 - AWT/Swing 38

1.  To change the layout used in a container you first
need to create the layout.

2.  Then you invoke the setLayout() method on
the container to use the new layout.

•  The layout manager should be established before
any components are added to the container

JPanel p = new JPanel() ;
p.setLayout(new FlowLayout());

Changing the Layout

CS3 - AWT/Swing 39

FlowLayout
•  FlowLayout is the default layout for the JPanel

class.
•  When you add components to the screen, they flow left

to right (centered) based on the order added and the
width of the screen.

•  Very similar to word wrap and full justification on a
word processor.

•  If the screen is resized, the components' flow will
change based on the new width and height

CS3 - AWT/Swing 40

Flow Layout
import javax.swing.*;
import java.awt.*;

public class ShowFlowLayout {
 public static void main(String args[]) {

 JFrame win = new JFrame("My First GUI Program");
 win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 win.getContentPane().setLayout(new FlowLayout());

 for (int i = 0; i < 10; i++) {
 win.getContentPane().add(
 new JButton(String.valueOf(i)));

 }

 win.setVisible(true);

 }
} // ShowFlowLayout

CS3 - AWT/Swing 41

FlowLayout

CS3 - AWT/Swing 42

GridLayout
•  Arranges components in rows and columns

–  If the number of rows is specified
•  columns = number of components / rows

–  If the number of columns is specified
•  Rows = number of components / columns

–  The number of columns is ignored unless the number of rows
is zero.

•  The order in which you add components matters
–  Component 1 à (0,0), Component 2 à (0,1), …...

•  Components are resized to fit the row-column area

CS3 - AWT/Swing 43

Grid Layout
import javax.swing.*;
import java.awt.*;

public class ShowGridLayout {
 public static void main(String args[]) {

 JFrame win = new JFrame("My First GUI Program");
 win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 win.getContentPane().setLayout(new GridLayout(2, 0));

 for (int i = 0; i < 10; i++){
 win.getContentPane().add(
 new JButton(String.valueOf(i)));

 }

 win.setVisible(true);

 }
} // ShowGridLayout

CS3 - AWT/Swing 44

GridLayout

gridLayout(2, 4)

gridLayout(0, 4) gridLayout(4, 4) gridLayout(10, 10)

CS3 - AWT/Swing 45

BoxLayout

• BoxLayout provides an easy way to lay
out components horizontally or vertically.

•  Components are added in order.
• BoxLayout attempts to arrange

components at their
–  preferred widths (for horizontal layout) or
–  preferred heights (for vertical layout).

•  Static methods in Box class are available
for “glue” and “struts.”

CS3 - AWT/Swing 46

BoxLayout example
import javax.swing.*;
import java.awt.*;

public class ShowBoxLayout {
 public static void main(String args[]) {

 JFrame win = new JFrame("My First GUI Program");
 win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 win.getContentPane().setLayout(
 new BoxLayout(win.getContentPane(), BoxLayout.X_AXIS));

 for (int i = 0; i < 10; i++){
 win.getContentPane().add(new JButton(String.valueOf(i)));
 win.getContentPane().add(Box.createHorizontalGlue());
 }

 win.pack();
 win.setVisible(true);

 }
} // ShowBoxLayout

CS3 - AWT/Swing 47

BoxLayout

Note that components retain their preferred size.

CS3 - AWT/Swing 48

BorderLayout
•  BorderLayout provides 5 areas to hold components.

These are named after the four different borders of the
screen, North, South, East, West, and Center.

•  When a Component is added to the layout, you must
specify which area to place it in. The order in which
components are added is not important.

•  The center area will always be resized to be as large as
possible

CS3 - AWT/Swing 49

BorderLayout
import javax.swing.*;
import java.awt.*;

public class ShowBorderLayout {
 public static void main(String args[]) {

 JFrame win = new JFrame("My First GUI Program");
 win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Container content = win.getContentPane();
 content.setLayout(new BorderLayout());
 content.add(BorderLayout.NORTH, new JButton("North"));
 content.add("South", new JButton("South"));
 content.add("East", new JButton("East"));
 content.add("West", new JButton("West"));
 content.add("Center", new JButton("Center"));

 win.setVisible(true);

 }
} // ShowBorderLayout

CS3 - AWT/Swing 50

BorderLayout

CS3 - AWT/Swing 51

Containers
•  A JFrame is not the only type of container that you

can use in Swing
•  The subclasses of Container are:

–  JPanel
–  JWindow
–  JApplet

•  Window is subclassed as follows:
–  JDialog
–  JFrame

CS3 - AWT/Swing 52

A Simple 4 Function Calculator

CS3 - AWT/Swing 53

Swing Components

JFrame
with BorderLayout

JButton

JLabel

JPanel
with GridLayout

Mul$threading	

Threads	
•  Threads	 are	 lightweight	 processes	 as	 the	
overhead	 of	 switching	 between	 threads	 is	 less	

•  The	 can	 be	 easily	 spawned	
•  The	 Java	 Virtual	 Machine	 spawns	 a	 thread	 when	
your	 program	 is	 run	 called	 the	 Main	 Thread	

Why	 do	 we	 need	 threads?	
•  To	 	 enhance	 parallel	 processing	
•  To	 increase	 response	 to	 the	 user	
•  To	 u$lize	 the	 idle	 $me	 of	 the	 CPU	
•  Priori$ze	 your	 work	 depending	 on	 priority	

Example	
•  Consider a simple web server
•  The web server listens for request and serves it
•  If the web server was not multithreaded, the

requests processing would be in a queue, thus
increasing the response time and also might
hang the server if there was a bad request.

•  By implementing in a multithreaded
environment, the web server can serve multiple
request simultaneously thus improving response
time

Crea$ng	 threads	
•  In	 java	 threads	 can	 be	 created	 by	 extending	 the	
Thread	 class	 or	 implemen$ng	 the	 Runnable	
Interface	

•  It	 is	 more	 preferred	 to	 implement	 the	 Runnable	
Interface	 so	 that	 we	 can	 extend	 proper$es	 from	
other	 classes	

•  Implement	 the	 run()	 method	 which	 is	 the	
star$ng	 point	 for	 thread	 execu$on	

Running	 threads	
•  Example	

	 class	 mythread	 implements	 Runnable{	
	 	 public	 void	 run(){	
	 	 	 System.out.println(“Thread	 Started”);	
	 	 }	
	 }	
	 	
	 class	 mainclass	 {	
	 	 public	 sta$c	 void	 main(String	 args[]){ 	 	
	 	 	 Thread	 	 t	 =	 new	 Thread(new	 mythread());	 //	 This	 is	 the	 way	 to	 instan$ate	 a	

	 	 	 	 	 	 thread	 implemen$ng	 runnable	 interface	
	 	 	 t.start();	 //	 starts	 the	 thread	 by	 running	 the	 run	 method	
	 	 	 }	
	 }	

•  Calling	 t.run()	 does	 not	 start	 a	 thread,	 it	 is	 just	 a	 simple	
method	 call.	

•  Crea$ng	 an	 object	 does	 not	 create	 a	 thread,	 calling	 start()	
method	 creates	 the	 thread.	

Synchroniza$on	
•  Synchroniza$on	 is	 prevent	 data	 corrup$on	
•  Synchroniza$on	 allows	 only	 one	 thread	 to	
perform	 an	 opera$on	 on	 a	 object	 at	 a	 $me.	

•  If	 mul$ple	 threads	 require	 an	 access	 to	 an	
object,	 synchroniza$on	 helps	 in	 maintaining	
consistency.	

Example	 	
public	 class	 Counter{	

	 private	 int	 count	 =	 0;	
	 public	 int	 getCount(){	
	 	 	 	 return	 count;	
	 }	
	
	 public	 setCount(int	 count){	
	 	 	 	 	 this.count	 =	 count;	
	 }	

}	
•  In	 this	 example,	 the	 counter	 tells	 how	 many	 an	 access	 has	 been	 made.	
•  If	 a	 thread	 is	 accessing	 setCount	 and	 upda$ng	 count	 and	 another	 thread	 is	 accessing	 getCount	 at	

the	 same	 $me,	 there	 will	 be	 inconsistency	 in	 the	 value	 of	 count.	

Fixing	 the	 example	
public	 class	 Counter{	

	 private	 sta$c	 int	 count	 =	 0;	
	 public	 synchronized	 int	 getCount(){	
	 	 	 	 return	 count;	
	 }	
	
	 public	 synchoronized	 setCount(int	 count){	
	 	 	 	 	 this.count	 =	 count;	
	 }	

}	
•  By	 adding	 the	 synchronized	 keyword	 we	 make	 sure	 that	 when	 one	 thread	 is	 in	 the	 setCount	

method	 the	 other	 threads	 are	 all	 in	 wai$ng	 state.	 	
•  The	 synchronized	 keyword	 places	 a	 lock	 on	 the	 object,	 and	 hence	 locks	 all	 the	 other	 methods	

which	 have	 the	 keyword	 synchronized.	 The	 lock	 does	 not	 lock	 the	 methods	 without	 the	 keyword	
synchronized	 and	 hence	 they	 are	 open	 to	 access	 by	 other	 threads.	

JDBC

CS3 - AWT/Swing 63

64

What is JDBC?
•  “An API that lets you access virtually any tabular data source

from the Java programming language”
•  JDBC Data Access API – JDBC Technology Homepage

–  What’s an API?
•  See J2SE documentation

–  What’s a tabular data source?
•  “… access virtually any data source, from relational databases to

spreadsheets and flat files.”
–  JDBC Documentation

•  We’ll focus on accessing Oracle databases

65

General Architecture

•  What design pattern is
implied in this architecture?

•  What does it buy for us?
•  Why is this architecture also

multi-tiered?

66

67

Basic steps to use
a database in Java

•  1.Establish a connection
•  2.Create JDBC Statements
•  3.Execute SQL Statements
•  4.GET ResultSet
•  5.Close connections

JAVA Socket Programming

What is a socket?
•  Socket

–  The combination of an IP address and a port number. (RFC 793 ,original
TCP specification)

–  The name of the Berkeley-derived application programming interfaces
(APIs) for applications using TCP/IP protocols.

–  Two types
•  Stream socket : reliable two-way connected communication streams
•  Datagram socket

•  Socket pair
–  Specified the two end points that uniquely identifies each TCP connection

in an internet.
–  4-tuple: (client IP address, client port number, server IP address, server

port number)

Client-server applications
•  Implementation of a protocol standard defined in an RFC. (FTP, HTTP,

SMTP…)
–  Conform to the rules dictated by the RFC.
–  Should use the port number associated with the protocol.

•  Proprietary client-server application.
–  A single developer(or team) creates both client and server program.
–  The developer has complete control.
–  Must be careful not to use one of the well-known port number defined in

the RFCs.

* well-known port number : managed by the Internet Assigned Numbers
Authority(IANA)

Socket Programming with TCP

Figure 2.6-1: Processes communicating through TCP sockets

The application developer has the ability to fix a few TCP
parameters, such as maximum buffer and maximum segment sizes.

Sockets for server and client
•  Server

–  Welcoming socket
•  Welcomes some initial contact from a client.

–  Connection socket
•  Is created at initial contact of client.
•  New socket that is dedicated to the particular client.

•  Client
–  Client socket

•  Initiate a TCP connection to the server by creating a socket object.
(Three-way handshake)

•  Specify the address of the server process, namely, the IP address of
the server and the port number of the process.

Socket functional calls

•  socket (): Create a socket
•  bind(): bind a socket to a local IP address and port #
•  listen(): passively waiting for connections
•  connect(): initiating connection to another socket
•  accept(): accept a new connection
•  Write(): write data to a socket
•  Read(): read data from a socket
•  sendto(): send a datagram to another UDP socket
•  recvfrom(): read a datagram from a UDP socket
•  close(): close a socket (tear down the connection)

Sockets

Figure 2.6-2: Client socket, welcoming socket and connection socket

Socket-programming using TCP
TCP service: reliable byte stream transfer

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

process

TCP with
buffers,
variables

socket
internet

client
server socket()

bind()
connect()

socket()
bind()
listen()

accept()
send()

recv()

close() close()

recv()
send()

TCP conn. request	

TCP ACK	

Socket programming with TCP

Example client-server app:
•  client reads line from standard

input (inFromUser stream) ,
sends to server via socket
(outToServer stream)

•  server reads line from socket
•  server converts line to

uppercase, sends back to client
•  client reads, prints modified

line from socket
(inFromServer stream)

ou
tT

oS
er

ve
r

to network from network

in
F

ro
m

S
er

ve
r

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Input stream:
sequence of bytes
into process output stream:

sequence of bytes
out of process

Client
process

client TCP
socket

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()
create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket
close
clientSocket

Server (running on hostid) Client

send request using
clientSocket read request from

connectionSocket
write reply to
connectionSocket

TCP
connection setup

JAVA TCP Sockets

•  In Package java.net
–  java.net.Socket

•  Implements client sockets (also called just “sockets”).
•  An endpoint for communication between two machines.
•  Constructor and Methods

–  Socket(String host, int port): Creates a stream socket and connects it to the
specified port number on the named host.

–  InputStream getInputStream()
–  OutputStream getOutputStream()
–  close()

–  java.net.ServerSocket

•  Implements server sockets.
•  Waits for requests to come in over the network.
•  Performs some operation based on the request.
•  Constructor and Methods

–  ServerSocket(int port)
–  Socket Accept(): Listens for a connection to be made to this socket and

accepts it. This method blocks until a connection is made.

Socket Programming with UDP
•  UDP

–  Connectionless and unreliable service.
–  There isn’t an initial handshaking phase.
–  Doesn’t have a pipe.
–  transmitted data may be received out of order, or lost

•  Socket Programming with UDP
–  No need for a welcoming socket.
–  No streams are attached to the sockets.
–  the sending hosts creates “packets” by attaching the IP destination

address and port number to each batch of bytes.
–  The receiving process must unravel to received packet to obtain the

packet’s information bytes.

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,

	clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber

