CHAPTER 2

1. Let x_{1} and x_{2} be the output of P and V respectively. The LPP is:
Maximise

$$
Z=40 x_{1}+30 x_{2}
$$

Profit
Subject to

$400 x_{1}+350 x_{2}$	$\leq 250,000$		Steel
$85 x_{1}+50 x_{2}$	$\leq 26,100$		Lathe
$55 x_{1}+30 x_{2}$	$\leq 43,500$		Grinder
$20 x_{2}$	$\leq 17,400$		Polishing
x_{1}	$\leq x_{2}$		Sales
x_{1}, x_{2}	≥ 0		

2. Let the daily output of products A, B and C be x_{1}, x_{2} and x_{3} respectively. We have Maximise $\quad Z=500 x_{1}+600 x_{2}+1200 x_{3} \quad$ Profit Subject to

$$
\begin{aligned}
2 x_{1}+4 x_{2}+6 x_{3} & \leq 160 & & \text { Platinum } \\
3 x_{1}+2 x_{2}+4 x_{3} & \leq 120 & & \text { Gold } \\
x_{1}, x_{2}, x_{3} & \geq 0 & &
\end{aligned}
$$

3. Let x_{1}, x_{2}, x_{3}, and x_{4} represent the number of three-compartment bags, shoulder-strap bags, tote bags, and pocket purses, respectively, to be produced per day. With the given data, the LPP is given below:
Maximise $\quad Z=16 x_{1}+25 x_{2}+12 x_{3}+12 x_{4}$
Subject to

$45 x_{1}+60 x_{2}+45 x_{3}+30 x_{4}$	≤ 1920		Assembly line
x_{4}	≤ 30		Pins 1
$x_{1}+x_{2}+x_{3}$		≤ 70	
		Pins 2	
$x_{3}+x_{4}$	≤ 60		Raw material
x_{2}			x_{4}

4 Profit per unit of $C_{1}=\operatorname{Rs} 30-(5+5)=$ Rs 20, and
Profit per unit of $C_{2}=$ Rs $70-(25+15)=$ Rs 30
Let x_{1} and x_{2} be the number of units of C_{1} and C_{2} respectively, produced and sold. The LPP is:
Maximise

$$
Z=20 x_{1}+30 x_{2}
$$

Profit
Subject to

$$
\begin{aligned}
10 x_{1}+40 x_{2} & \leq 4,000 & & \text { Cash } \\
3 x_{1}+2 x_{2} & \leq 2,000 & & \text { Machine time } \\
2 x_{1}+3 x_{2} & \leq 1,000 & & \text { Assembly time } \\
x_{1}, x_{2} & \geq 0 & &
\end{aligned}
$$

5. Let $x_{i j}$ be the amount of money invested at the beginning of month i for a period of j months. For every month, we have: money invested plus bills paid $=$ money available. Accordingly, the LPP is:
Maximise
Subject to

$$
Z=1.72 x_{14}+1.45 x_{23}+1.02 x_{32}+1.005 x_{41}
$$

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}+x_{14}+36,000=30,000+28,000 \\
& x_{21}+x_{22}+x_{33}+31,000=1.005 x_{11}+52,000 \\
& x_{31}+x_{32}+40,000=1.02 x_{12}+1.005 x_{21}+3,400 \\
& x_{41}+20,000=1.45 x_{13}+1.02 x_{22}+1.005 x_{31}+22,000
\end{aligned}
$$

Month 1
Month 2
Month 3
Month 4
all variables ≥ 0
6. Let x_{1}, x_{2} be the number of issues of Daily Life, Agriculture Today and Surf's Up, respectively, published every week.
Maximise $\quad Z=22.50 x_{1}+40 x_{2}+15 x_{3}$
Subject to

$$
\begin{aligned}
0.01 x_{1}+0.03 x_{2}+0.02 x_{3} & \leq 120 \\
0.20 x_{1}+0.50 x_{2}+0.30 x_{3} & \leq 3,000 \\
x_{1}+x_{2}+x_{3} & \geq 5,000 \\
x_{1} & \leq 3,000 \\
& \leq 2,000 \\
x_{2} & x_{3}
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

7. Let x_{1}, x_{2}, x_{3}, and x_{4} be the amount invested (in lakh) in government bonds, blue chip stocks, speculative stocks, and short-term deposits respectively. We may state the LPP as follows:
$\begin{array}{lll}\text { Maximise } & Z=0.14 x_{1}+0.19 x_{2}+0.23 x_{3}+0.12 x_{4} & \text { Return } \\ \text { Subject to } & x_{1}+x_{2}+x_{3}+x_{4} \leq 20 & \text { Budget }\end{array}$
Subject to

$$
\begin{aligned}
\frac{12 x_{1}+24 x_{2}+48 x_{3}+64 x_{4}}{x_{1}+x_{2}+x_{3}+x_{4}} & \leq 42 \\
x_{4} & \geq 2 \\
x_{3} & \leq 0.20\left(x_{1}+x_{2}+x_{3}+x_{4}\right)
\end{aligned}
$$

Budget
Average risk
Short-term deposits
Speculative stocks
8. Let x_{1}, x_{2}, and x_{3} respectively represent the number of units of the parts A, B, and C produced per hour. With the given information, the hourly profit would be:

$$
\begin{aligned}
\text { Profit }= & (8-5) x_{1}-\left[\frac{20}{25}+\frac{30}{25}+\frac{30}{40}\right] x_{1}+(10-6) x_{2}-\left[\frac{20}{40}+\frac{30}{20}+\frac{30}{30}\right] x_{2} \\
& +(14-10) x_{3}-\left[\frac{20}{25}+\frac{30}{20}+\frac{30}{40}\right] x_{3} \\
= & 0.25 x_{1}+x_{2}+0.95 x_{3}
\end{aligned}
$$

Thus, the LPP is:
Maximise $\quad Z=0.25 x_{1}+x_{2}+0.95 x_{3}$
Subject to

$$
\begin{array}{r}
\frac{x_{1}}{25}+\frac{x_{2}}{40}+\frac{x_{3}}{25} \leq 1 \\
\frac{x_{1}}{25}+\frac{x_{2}}{20}+\frac{x_{3}}{20} \leq 1 \\
\frac{x_{1}}{40}+\frac{x_{2}}{30}+\frac{x_{3}}{40} \leq 1 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

9. Let $x_{1}, x_{2}, \ldots x_{12}$ be the number of nurses joining at 12 midnight, 2 a.m., 4 a.m., and 10 p.m. respectively.
Minimise

$$
Z=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+x_{9}+x_{10}+x_{11}+x_{12}
$$

Subject to

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4} & \geq 50 \\
x_{2}+x_{3}+x_{4}+x_{5} & \geq 60 \\
x_{3}+x_{4}+x_{5}+x_{6} & \geq 80 \\
x_{4}+x_{5}+x_{6}+x_{7} & \geq 80 \\
x_{5}+x_{6}+x_{7}+x_{8} & \geq 70
\end{array}
$$

$$
\begin{array}{ll}
x_{6}+x_{7}+x_{8}+x_{9} & \geq 70 \\
x_{7}+x_{8}+x_{9}+x_{10} & \geq 60 \\
x_{8}+x_{9}+x_{10}+x_{11} & \geq 50 \\
x_{9}+x_{10}+x_{11}+x_{12} & \geq 50 \\
x_{10}+x_{11}+x_{12}+x_{1} & \geq 30 \\
x_{11}+x_{12}+x_{1}+x_{2} & \geq 20 \\
x_{12}+x_{1}+x_{2}+x_{3} & \geq 40
\end{array}
$$

$x_{i} \geq 0, i=1$ to 12
10. Let $x_{1}, x_{2}, \ldots, x_{7}$ be the number of doctors starting on day $1,2, \ldots, 7$, respectively, beginning with Sunday. The LPP may be stated as given below:
Minimise
Subject to
11. Let production lines 1,2 , and 3 are run for $x_{1} x_{2}$ and x_{3} days respectively.

Minimise $\quad Z=600 x_{1}+500 x_{2}+400 x_{3}$
Subject to

$$
\left.\begin{array}{rl}
150 x_{1}+200 x_{2}+160 x_{3} & \geq 2,000 \\
100 x_{1}+100 x_{2}+80 x_{3} & \geq 3,000 \\
500 x_{1}+760 x_{2}+890 x_{3} & \geq 3,000 \\
400 x_{1}+400 x_{2}+600 x_{3} & \geq 6,000 \\
x_{1} & \leq 20 \\
x_{2} & \leq 20 \\
x_{3} & \leq 18
\end{array}\right\}
$$

Output

Capacity

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

12. Let $x_{i j}$ be the number of units produced in plant i and sent to customer $j ; i=1,2$ and $j=1,2,3,4$.

Minimise $\quad Z=25 x_{11}+30 x_{12}+40 x_{13}+45 x_{14}+51 x_{21}+41 x_{22}+36 x_{23}+31 x_{24}$
Subject to
13. Let x_{1}, x_{2} and x_{3}, respectively, be the number of vehicles A, B and C purchased.

Maximise
Subject to

$$
Z=6,300 x_{1}+10,800 x_{2}+11,340 x_{3}
$$

$$
80,000 x_{1}+130,000 x_{2}+150,000 x_{3} \leq 40,00,000
$$

$$
\begin{aligned}
x_{1}+ & x_{2}+ & x_{3} & \leq 30 \\
3 x_{1}+ & 6 x_{2}+ & & 6 x_{3}
\end{aligned} \leq 150
$$

$$
\begin{aligned}
& 0.10 x_{11}+0.10 x_{12}+0.10 x_{13}+0.10 x_{14} \leq 120 \\
& 0.20 x_{11}+0.20 x_{12}+0.20 x_{13}+0.20 x_{14} \leq 260 \\
& 0.11 x_{21}+0.11 x_{22}+0.11 x_{23}+0.11 x_{24} \leq 140 \\
& 0.22 x_{21}+0.22 x_{22}+0.22 x_{23}+0.22 x_{24} \leq 250 \\
& x_{11}+\quad x_{21}=500 \\
& x_{12}+\quad x_{22}=300 \\
& x_{13}+\quad x_{23}=1,000 \\
& x_{14}+\quad x_{24}=200 \\
& x_{i j} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& Z=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \\
& x_{1}+\quad x_{4}+x_{5}+x_{6}+x_{7} \geq 35 \\
& x_{1}+x_{2}+\quad x_{5}+x_{6}+x_{7} \geq 55 \\
& x_{1}+x_{2}+x_{3}+x_{6}+x_{7} \geq 60 \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{7} \geq 50 \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \quad \geq 60 \\
& x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \quad \geq 50 \\
& x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \geq 45 \\
& 0 \leq x_{i} \leq 40, i=1,2, \ldots, 7
\end{aligned}
$$

$x_{1}, x_{2}, x_{3} \leq 0$
14. Let $x_{i j}$ be the quantity of i th crude mixed in j th grade petrol.

Maximise $Z=-1.5 x_{11}+3.5 x_{21}+2.9 x_{31}-3.0 x_{21}+2.0 x_{22}+1.4 x_{32}-4.0 x_{13}+x_{23}+0.4 x_{33}$
Subject to

$$
\begin{aligned}
x_{11}+x_{12}+x_{13} & \leq 500,000 \\
x_{21}+x_{22}+x_{23} & \leq 500,000 \\
x_{31}+x_{32}+x_{33} & \leq 360,000 \\
x_{11} & \geq 0.50\left(x_{11}+x_{21}+x_{31}\right) \\
x_{21} & \leq 0.25\left(x_{11}+x_{21}+x_{31}\right) \\
x_{12} & \geq 0.25\left(x_{12}+x_{22}+x_{32}\right) \\
x_{22} & \leq 0.50\left(x_{12}+x_{22}+x_{32}\right) \\
x_{i j} & \geq 0 i=1,2,3 ; j=1,2,3
\end{aligned}
$$

15. Let $x_{i j k}$ be the quantity produced in quarter $i(i=1,2,3,4)$, in time $j(j=1$ as regular time and $j=2$ as overtime) and supplied in quarter $k(k=1,2,3,4)$. The total cost that is sought to be minimised comprises the production and storage costs. The problem may be stated as follows:
Minimise

$$
\begin{aligned}
& Z=16 x_{111}+20 x_{121}+18 x_{112}+22 x_{122}+20 x_{113}+24 x_{123}+22 x_{114}+26 x_{124} \\
& +16 x_{212}+20 x_{222}+18 x_{213}+22 x_{223}+20 x_{214}+24 x_{224}+16 x_{313}+20 x_{323}+18 x_{314} \\
& +22 x_{324}+16 x_{414}+18 x_{424}
\end{aligned}
$$

Subject to

$$
\begin{aligned}
& x_{111}+x_{112}+x_{113}+x_{114} \\
& x_{212}+x_{213}+x_{214} \\
& x_{414} \leq 70 \\
& x_{121}+x_{122}+x_{123}+x_{124} \\
& x_{222}+x_{223}+x_{224} \\
& x_{424} \\
& x_{111}+x_{121} \\
& x_{112}+x_{122}+x_{212}+x_{222} \\
& x_{113}+x_{123}+x_{213}+x_{223}+x_{313}+x_{323} \\
& x_{114}+x_{124}+x_{214}+x_{224}+x_{314}+x_{324}+x_{414}+x_{424} \\
& x_{i j k} \geq 0 \text {, for } i=1,2,3,4 \\
& j=1,2 \\
& k=1,2,3,4
\end{aligned}
$$

16. The problem here is to maximise total effective exposures. The coefficients of the objective function are obtained by the product of audience size multiplied by the 'effectiveness coefficient' of each magazine which, in turn, is calculated on the basis of audience characteristics, their relative importance, and efficiency indices of the colour, and black and white advertisements. To illustrate, for magazine M_{1}, Effectiveness coefficient $=[0.70(0.3)+0.50(0.5)+0.80(0.2)]\left[0.3 x_{11}+0.2 x_{12}\right]$

$$
=0.186 x_{11}+0.124 x_{12}
$$

where x_{11} : No. of colour advertisements in magazine M_{1}
x_{12} : No. of black and white advertisements in magazine M_{1}
Similarly, for magazine M_{2}, if x_{21}, and x_{22} represent the number of colour, and black and white advertisements in M_{2},
We have
Effectiveness coefficient $=[0.60(0.3)+0.40(0.5)+0.70(0.2)]\left[0.3 x_{21}+0.2 x_{22}\right]$

$$
=0.156 x_{21}+0.104 x_{22}
$$

For magazine M_{3},
Effectiveness coefficient $=[0.90(0.3)+0.75(0.5)+0.80(0.2)]\left[0.3 x_{31}+0.2 x_{32}\right]$

$$
=0.2415 x_{31}+0.161 x_{32}
$$

Now, objective function coefficients are:

For	$M_{1}:\left(0.186 x_{11}+0.124 x_{12}\right)(400,000)=74,400 x_{11}+49,600 x_{12}$
For	$M_{2}:\left(0.156 x_{21}+0.104 x_{22}\right)(300,000)=46,800 x_{21}+31,200 x_{22}$
For	$M_{3}:\left(0.2415 x_{31}+0.161 x_{32}\right)(200,000)=48,300 x_{31}+32,200 x_{32}$
The LPP is:	$Z=74,400 x_{11}+49,600 x_{12}+46,800 x_{21}+31,200 x_{22}+48,300 x_{31}+32,200 x_{32}$
Maximise	Total exposure

Subject to
$18,000 x_{11}+12,000 x_{12}+16,000 x_{21}+10,000 x_{22}+19,000 x_{31}+15,000 x_{32} \leq 500,000$
Budget

$\left.\begin{array}{ll}x_{11}+x_{12} & \leq 12 \\ x_{21}+x_{22} & \leq 24 \\ x_{31}+x_{32} & \leq 12\end{array}\right\}$	Maximum number of $x_{11}+x_{12}$ $x_{21}+x_{22}$
$\left.\begin{array}{ll}x_{31}+x_{32} & \geq 5 \\ x_{i j} \geq 0 ; i=1,2,3 ; j=1,2 & \geq 5\end{array}\right\}$	Minimum number of advertisements

17. Let $x_{\text {pmsd }}$ be the quantity of product p produced in month m, in shift s, and delivered in month d.

Minimise $Z=400 x_{1111}+440 x_{1112}+480 x_{1113}+480 x_{1121}+520 x_{1122}+560 x_{1123}+400 x_{1212}+440 x_{1213}+$ $480 x_{1222}+520 x_{1223}+400 x_{1313}+480 x_{1323}+500 x_{2111}+540 x_{2112}+580 x_{2113}+600 x_{2121}+640 x_{2122}+$ $680 x_{2123}+500 x_{2212}+540 x_{2213}+600 x_{2222}+640 x_{2223}+500 x_{2313}+600 x_{2323}+500 x_{3111}+540 x_{3112}+$ $580 x_{3113}+600 x_{3121}+640 x_{3122}+680 x_{3123}+500 x_{3212}+540 x_{3213}+600 x_{3222}+640 x_{3223}+500 x_{3313}+$ $600 x_{3323}+700 x_{4111}+740 x_{4112}+780 x_{4113}+840 x_{4121}+880 x_{4122}+920 x_{4123}+700 x_{4212}+740 x_{4213}+$ $840 x_{4222}+880 x_{4223}+700 x_{4313}+840 x_{4323}$
Subject to

$$
\begin{aligned}
& 4 x_{1111}+4 x_{1112}+4 x_{1113}+5 x_{2111}+5 x_{2112}+5 x_{2113}+5 x_{3111}+5 x_{3112}+5 x_{3113}+7 x_{4111} \\
& +7 x_{4112}+7 x_{4113} \leq 1,10,000 \\
& 4 x_{1121}+4 x_{1122}+4 x_{1123}+5 x_{2121}+5 x_{2122}+5 x_{2123}+5 x_{3121}+5 x_{3122}+5 x_{3123}+7 x_{4121} \\
& +7 x_{4122}+7 x_{4123} \leq 1,00,000 \\
& 4 x_{1212}+4 x_{1213}+5 x_{2212}+5 x_{2213}+5 x_{3212}+5 x_{3213}+7 x_{4212}+7 x_{4213} \leq 1,30,000 \\
& 4 x_{1222}+4 x_{1223}+5 x_{2222}+5 x_{2223}+5 x_{3222}+5 x_{3223}+7 x_{4222}+7 x_{4223} \leq 1,20,000 \\
& 4 x_{1313}+5 x_{2313}+5 x_{3313}+7 x_{4313} \leq 1,15,000 \\
& 4 x_{1323}+5 x_{2323}+5 x_{3323}+7 x_{4323} \leq 1,16,000 \\
& x_{1111}+x_{1121}=8,000 \\
& x_{2111}+x_{2121}=19,000 \\
& x_{3111}+x_{3121}=4,000 \\
& x_{4111}+x_{4121}=7,000 \\
& x_{1112}+x_{1122}+x_{1212}+x_{1222}=7,000 \\
& x_{2112}+x_{2122}+x_{2212}+x_{2222}=19,000 \\
& x_{3112}+x_{3122}+x_{3212}+x_{3222}=15,000 \\
& x_{4112}+x_{4122}+x_{4212}+x_{4222}=7,000 \\
& x_{1113}+x_{1123}+x_{1213}+x_{1223}+x_{1313}+x_{1323}=6,000 \\
& x_{2113}+x_{2123}+x_{2213}+x_{2223}+x_{2313}+x_{2323}=18,000 \\
& x_{3113}+x_{3123}+x_{3213}+x_{3223}+x_{3313}+x_{3323}=17,000 \\
& x_{4113}+x_{4123}+x_{4213}+x_{4223}+x_{4313}+x_{4323}=7,000
\end{aligned}
$$

all variables ≥ 0
18. Minimise $Z=350,000 x_{111}+353,000 x_{112}+356,000 x_{113}+390,000 x_{121}+393,000 x_{122}+396,000 x_{123}+$
$430,000 x_{212}+433,000 x_{213}+470,000 x_{222}+473,000 x_{223}+400,000 x_{313}+450,000 x_{323}$
Subject to

$$
\begin{aligned}
& x_{111}+x_{121}=2 \\
& x_{112}+x_{122}+x_{212}+x_{222}=2 \\
& x_{113}+x_{123}+x_{213}+x_{223}+x_{313}+x_{323}=2 \\
& x_{111}+x_{112}+x_{113} \leq 1 \\
& x_{121}+x_{122}+x_{123} \leq 2 \\
& x_{212}+x_{213} \leq 2 \\
& x_{222}+x_{223} \leq 2 \\
& x_{313} \leq 3 \\
& x_{323} \leq 2
\end{aligned}
$$

all variables ≥ 0
19. Let x_{1}, x_{2}, and x_{3} be the number of Manual, Electronic and Deluxe electronic typewriters respectively.

With selling prices and variable costs given, the profit contribution per unit for the three typewriters is Rs 1,600 , Rs 3,000 , and Rs 5,600 respectively.
The LPP may be stated as follows:
Maximise $Z=1,600 x_{1}+3,000 x_{2}+5,600 x_{3} \quad$ Profit
Subject to

$$
\begin{aligned}
& 15 x_{1}+12 x_{2}+14 x_{3} \leq 3,000 \quad \text { Machine time } \\
& 4 x_{1}+3 x_{2}+5 x_{3} \leq 1,200 \quad \text { Assembly time } \\
& \left.x_{1} \geq 2\right\} \quad \text { Committed } \\
& \left.x_{3} \geq 8\right\} \\
& 2,500 x_{1}+4,500 x_{2}+9,000 x_{3} \leq 136,800 \\
& \text { supply } \\
& \text { Cash }
\end{aligned}
$$

Note: The cash requirement is $2,500 x_{1}+4,500 x_{2}+9,000 x_{3}$, while the cash availability is Rs 136,800 , worked out as below:
Cash availability $=$ Cash balance + Receivables - Loan to repay to cooperative bank - Interest on loan from TNC bank and cooperative bank - Interest on long-term loans - Top management salary and other fixed overhead
$=$ Rs $140,000+$ Rs $50,000-$ Rs $40,000-$ Rs $1,200-$ Rs $2,000-$ Rs 10,000
$=$ Rs 136,800
20. Here
$A(2,0)=2$
$B(3.8,1.8)=9.2$
$C(7,1)=10$
$D(9,0)=9$
Optimal solution is:

$$
x_{1}=7, x_{2}=1 \text { for } Z=10
$$

21. From the graph,

$$
\begin{aligned}
Z(0: 0,0) & =0, Z(A: 0,7.5)=60, \\
Z(B: 3,9) & =102, Z(C: 6,8)=124 \\
\text { and } \quad Z(D: 10,0) & =100
\end{aligned}
$$

Optimal solution:

$$
x_{1}=6 \text { and } x_{2}=8, \text { for } Z=124
$$

22. Here,

$$
\begin{aligned}
Z(A: 2,3) & =520 \\
Z(B: 2,6.4) & =928 \\
Z(C: 3,6) & =960 \\
Z(D: 6,3) & =840
\end{aligned}
$$

Optimal solution is

$$
x_{1}=3, \text { and } x_{2}=6, \text { for } Z=960
$$

23. Let x_{1} and x_{2} be the number of packages of economy and special type, respectively.

LPP is:
Maximise $\quad Z=5 x_{1}+8 x_{2}$
Subject to

$$
\begin{array}{rlrl}
0.250 x_{1}+0.500 x_{2} & \leq 750 & & \text { Grade I } \\
0.750 x_{1}+0.500 x_{2} & \leq 1,200 & & \text { Grade II } \\
x_{1}, x_{2} & \geq 0 &
\end{array}
$$

From the graph, $Z(0: 0,0)=0, Z(A: 0,1500)=12,000, Z(B: 900,1050)=12,900$ and $Z(C: 1600,0)=$ 8000. Thus, $Z(B)$ gives optimal solution. If the profit margin is Rs 10 on special pack, we have $Z(0)=0$, $Z(A)=15,000, Z(B)=15,000$, and $Z(C)=8,000$. As such, the company can have either $x_{1}=0$ and $x_{2}=$ 1500 , or $x_{1}=900$ and $x_{2}=1050$.

24. Let x_{1} : daily production of pencil A, and x_{2} : daily production of pencil B
The LPP is:
Maximise
$Z=5 x_{1}+3 x_{2} \quad$ Profit
Subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 1000 & & \text { Raw material } \\
x_{1} & \leq 400 & & \text { Clips for } A \\
x_{2} & \leq 700 & & \text { Clips for } B \\
x_{1}, x_{2} & \geq 0 & &
\end{aligned}
$$

The constraints are shown plotted in the figure.

Point	x_{1}	x_{2}	Z	
0	0	0	0	
A	0	700	2100	
B	150	700	$\underline{2850}$	Optimal product
C	400	200	2600	mix
D	400	0	2000	

25. Let x_{1} and x_{2} be the number of inspectors employed daily of grade 1 and grade 2 respectively.

Total cost $=$ Inspection charges + Cost of errors
Inspection charges $=5 \times 8 \times x_{1}+4 \times 8 \times x_{2}=40 x_{1}+32 x_{2}$
Cost of errors $=3 \times 0.03 \times 40 \times 8 \times x_{1}+3 \times 0.05 \times 30 \times 8 \times x_{2}$

$$
=28.80 x_{1}+36 x_{2}
$$

The LPP is:
Minimise $Z=68.80 x_{1}+68.00 x_{2}$
Subject to

$$
\begin{aligned}
320 x_{1}+240 x_{2} & \geq 2000 \\
x_{1} & \leq 9 \\
x_{2} & \leq 11 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The constraints are plotted on the graph and feasible region is marked $A B C D E$. We have

Cost

$$
\begin{aligned}
A\left(0,\left(0,8 \frac{1}{3}\right)\right. & : 566 \frac{2}{3} \\
B(0,11) & : 748 \\
C(9,11) & : 1367 \frac{1}{5} \\
D(9,0) & : 619 \frac{1}{5} \\
E\left(6 \frac{1}{4}, 0\right) & : 430
\end{aligned}
$$

Point E represents optimal solution.
26. Here, $Z(\mathrm{~A}: 0,10)=20, Z(B: 2,8)=22, Z(C: 30 / 7,24 / 7)=138 / 7$ and $Z(D: 0,2)=4$. Accordingly, optimal solution is: $x_{1}=2, x_{2}=8$, and $Z=22$.

27. We have:

$$
\begin{aligned}
& Z(A: 0,15)=150 \\
& Z(B: 40 / 11,15 / 11)=270 / 11 \\
& Z(C: 4,1)=22 \\
& Z(D: 8,0)=24
\end{aligned}
$$

Optimal solution:

$$
x_{1}=4 \text { and } x_{2}=1 ; \text { and } Z=22
$$

28. Here,

$$
\begin{aligned}
& Z(A: 0,5)=15, \\
& Z(B: 3,2)=18, \text { and } \\
& Z(C: 9,0)=36
\end{aligned}
$$

Hence, optimal solution is:

$$
x_{1}=0 \text { and } x_{2}=5 \text {; for } Z=15 .
$$

29. Let x_{1} and x_{2} be the number of units of deluxe and standard machines to be produced. From the given information, the LPP may be stated as follows:

Maximise	$Z=400 x_{1}+200 x_{2}$	Total profit
Subject to		
	$18 x_{1}+3 x_{2} \leq 800$	Labour time
	$9 x_{1}+4 x_{2} \leq 600$	Testing time
	$x_{2} \leq 150$	Demand
	$x_{1}, x_{2} \geq 0$	
	$Z(0: 0,0)=0$	
	$Z(A: 0,150)=30,000$	
	$Z(B: 280 / 9,80)=28444.4$	
	$Z(C: 400 / 9,0)=17777.8$	

Optimal solution:
Produce 150 units of standard machines and none of the deluxe machines.

30. Let x_{1} and x_{2} be the number of units of products A and B, respectively, to be purchased. The LPP may be stated as follows:
Minimise
$Z=20 x_{1}+40 x_{2}$
Subject to

$36 x_{1}+6 x_{2}$	≥ 108	
$3 x_{1}+12 x_{2}$	≥ 36	Nutrient 1
$20 x_{1}+10 x_{2}$	≥ 100	Nutrient 2
x_{1}, x_{2}	Nutrient 3	

The feasible area has extremes $A(0,18), B(2,6), C(4,2)$, and $D(12,0)$. Accordingly, $Z(A)=720, Z(B)=$ 280, $Z(C)=160$, and $Z(D)=240$. Thus, optimal solution is $x_{1}=4$ and $x_{2}=2$.

31. We have:

$$
\begin{aligned}
Z(A: 0,18) & =720 \\
Z(B: 2,6) & =280 \\
Z(C: 4,2) & =160 \\
Z(D: 12,0) & =240
\end{aligned}
$$

Optimal solution is:

$$
x_{1}=4 \text { and } x_{2}=2, \text { for } Z=160
$$

32. (a) It is not necessary that the feasible region for a maximisation problem of linear programming be always a bounded one. When the feasible region is bounded in the direction in which iso-profit lines with higher profit values are obtained, the unboundedness nature of the feasible region (in the other direction) would not hinder the obtaining of the optimal solution.
(b) The constraints are plotted in figure. The feasible region, shown shaded, is evidently unbounded. The iso-profit lines are shown. The maximum profit obtainable is 10 , which corresponds to $x_{1}=3$ and $x_{2}=4$ as shown by point A. This is the optimal solution to the problem.
33. Let x_{1} be the number of bottles of Tonus-2000, and x_{2} be the number of bottles of Health-Wealth produced per week. With profit rates as Rs 2.80 and Rs 2.20 per bottle of Tonus-2000 and Health-Wealth respectively, the total profit would be $2.80 x_{1}+$ $2.20 x_{2}$. The problem, then, is: Maximise $Z=2.80 x_{1}+2.20 x_{2}$

Total profit
 Subject to

$$
\left.\begin{array}{l}
x_{1} \leq 20,000 \\
x_{2} \leq 40,000
\end{array}\right\} \quad \text { Raw material }
$$

$$
\begin{aligned}
0.003 x_{1}+0.001 x_{2} & \leq 66 \\
x_{1}+x_{2} & \leq 45,000 \\
x_{1}, x_{2} & \leq 0
\end{aligned}
$$

We have,
$A: 0,40,000$
$B: 5000,40000$
$C: 10,500,34500$
$D: 20,000,6000$
$E: 20,000,0$

Further,
$Z(A)=88,000$
$Z(B)=102,000$
$Z(C)=105,300$
$Z(D)=69,200$
$Z(E)=56,000$
Optimal solution is given by point C.
34. For this,

$$
\begin{aligned}
& Z(A: 0,24)=96,000 \\
& Z(B: 4,12)=72,000 \\
& Z(C: 12,4)=88,000 \\
& Z(D: 24,0)=144,000
\end{aligned}
$$

Filling time
Bottles availability

Thus, the optimal solution is to run plant I for 4 days and plant II for 12 days. $\mathrm{TC}=$ Rs 72,000

35. (a) Total hours available:

Department $A: 20 \times 40 \times 50=40,000$
Department $B: 15 \times 40 \times 50=30,000$
Department $C: 18 \times 40 \times 50=36,000$
Contribution margin per unit:
$P_{1}: 200-(45+8 \times 2+10 \times 2.25+4 \times 2.50+6.50)=$ Rs 100
$P_{2}: 240-(50+10 \times 2+6 \times 2.25+12 \times 2.50+11.50)=$ Rs 115
Let x_{1} and x_{2} be the number of units of the products P_{1} and P_{2} respectively. The problem is:
Maximise

$$
Z=100 x_{1}+115 x_{2}
$$

Subject to

$$
\begin{aligned}
8 x_{1}+10 x_{2} & \leq 40,000 \\
10 x_{1}+6 x_{2} & \leq 30,000 \\
4 x_{1}+12 x_{2} & \leq 36,000 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The feasible region is given by the polygon $O A B C$. Evaluating the objective function at each of these, we get $Z(0)=0, Z(A)=0 \times 100+3,000 \times 115=345,000, Z(B)=1,500 \times 100+2,500 \times 115=$ 437,500 , and $Z(C)=3,000 \times 100+0 \times 115=300,000$. The optimal solution, therefore, is to produce 1,500 units of P_{1} and 2,500 units of P_{2}. Total Profit $=$ Contribution - Fixed cost $=$ Rs 437,500 Rs $285,000=$ Rs 152,500 p.a.
(b) It may be observed from the graph that the constraint representing labour hours in Department A is redundant because its exclusion does not affect the feasible region of the problem.
36. From the feasible region, it is evident that the problem has unbounded solution.

37. The different points are evaluated below:

Point	x_{1}	x_{2}	$Z=10 x_{1}-4 x_{2}$		$Z=4 x_{1}-10 x_{2}$	
A	2	$2 / 3$	$171 / 3$		$142 / 3$	Min
B	2	6	-4	Min	68	Max
C	6	2	52	Max	44	

Thus, we have:
(a) Minimise $Z=10 x_{1}-4 x_{2}=-4$ when $x_{1}=2, x_{2}=6$
(b) Maximise $Z=10 x_{1}-4 x_{2}=52$ when $x_{1}=6, x_{2}=2$
(c) Maximise $Z=4 x_{1}+10 x_{2}=68$ when $x_{1}=2, x_{2}=6$
(d) Minimise $Z=4 x_{1}+10 x_{2}=142 / 3$ when $x_{1}=2, x_{2}=2 / 3$
38. Z is minimum at either $x_{1}=0$ and $x_{2}=8$, or $x_{1}=1$ and $x_{2}=4$ since $Z(A: 0,8)=24, Z(B: 1,4)=24$, $Z(C: 3,2)=42$ and $Z(D: 6,0)=72$.

39. The constraints are plotted graphically. It is evident from it that there is no common point between the feasible regions of all constraints. Thus, the problem has no feasible solution.

40. Maximise $Z=8 x_{1}+5 x_{2}$: Unbounded solution

Minimise $\quad Z=8 x_{1}+5 x_{2}$
$Z(A: 56 / 17,33 / 17)=361 / 17, Z(B: 63 / 8,13 / 4)=791 / 4$.
Thus Z is minimum at $x_{1}=56 / 17$ and $x_{2}=33 / 17$.

41. Let x_{1} and x_{2} be the number of spots on Radio and TV respectively. From the given information, we have Maximise

$$
Z=x_{1}+6 x_{2}
$$

Total coverage
Subject to

$$
\left.\begin{array}{rlrl}
800 x_{1}+4,000 x_{2} & \leq 16,000 & & \text { Budget } \\
x_{1} & \geq 5 \\
x_{2} & \leq 4
\end{array}\right\} \quad \begin{array}{ll}
\text { Availability } \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

The feasible area has three extreme points: $A(5,0), B(5,3)$ and $C(20,0)$. For these, we have $Z(A)=5$, $Z(B)=23$, and $Z(C)=20$. Thus, the optimal solution is to have 3 spots on TV and 5 spots on radio.

Evidently, if the present restriction on TV spots is not there, it would not affect the optimal solution. It is redundant, in other words.
42. Let x_{1} and x_{2} be the number of units produced of products A and B respectively.

Maximis

$$
Z=500 x_{1}+125 x_{2}
$$

Subject to

$$
\begin{aligned}
3 x_{1}+3 x_{2} & \leq 120 \\
3 x_{1}+9 x_{2} & \leq 270 \\
13 x_{1}+8 x_{2} & \geq 330 \\
4 x_{1}+7 x_{2} & \geq 156 \\
x_{1} & \leq 25 \\
x_{2} & \leq 25 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The problem is shown graphically in the figure. The feasible area is shown marked A, B, C, D, E.

Point	x_{1}	x_{2}	Z
A	15	25	10,625
B	25	15	14,375
C	18	12	10,500
D	10	25	8,125
E	25	8	13,500

Optimal solution is : $x_{1}=25, x_{2}=15$ for $Z=$ Rs 14,375

43. Contribution margin calculation:

Product	Selling Price
	$(R s)$
Pixie	111
Elf	98
Queen	122
King	326

Variable Cost
$(R s)$
$25+17+40=82$
$35+18+30=83$
$22+15+75=112$
$25+16+175=216$

Contribution Margin CM (in Rs)

15
$22+15+75=112$
10
King 326
$25+16+175=216$
110
(a) This problem may be solved in two parts. Since Pixie and Elf need only Type I labour and this resource is nor used by Queen and King, we calculate contribution margin per hour for each of these products to decide which one to produce.
For Pixie: Rs $29 / 8=$ Rs 3.63 and for Elf : Rs $15 / 6=$ Rs 2.50
\therefore Produce only Pixie. Output $=8,000 / 8=1,000$ units.
To determine optimal mix of Queen and King, we have to
Maximise $\quad Z=10 x_{1}+110 x_{2}$
Subject to

$10 x_{1}+10 x_{2}$	$\leq 20,000$		Type 2 labour
$5 x_{1}+25 x_{2}$	$\leq 25,000$		Type 3 labour
x_{1}	$\leq 1,500$		Demand
x_{2}	$\leq 1,000$		Demand
x_{1}, x_{2}	≥ 0		

From the graph, the extreme points of feasible region are evaluated now: $Z(0: 0,0)=0, Z(A: 0$, $1,000)=110,000, Z(B: 1,250,750)=95,000, Z(C)=(1,500,500)=26,000$ and $Z(D: 1,500,0)=$ 15,000 . Optimal solution: 1,000 units of King. The overall solution is:
Pixie: 1,000 units, King: 1,000 units, Contribution $=$ Rs 139,000
(b) If labour Type 1 is paid 1.5 times,

Contribution margin for Pixie $=111-(25+17+60)=$ Rs 9, and
Contribution margin for Elf $=98-(35+18+45)=$ Rs 0
\therefore It is worthwhile to pay labour Type 1 time-and-a-half for overtime working to make Pixie, provided fixed costs do not increase.
Extra profit for every 1,000 hours overtime $=1,000 \times 9 / 8=$ Rs 1,125
(c) The basic principles used for the solution are:

- The objective is to maximise contribution, no matter only if two of the four products are produced.
- There is no substitution of labour between the two types.
- The objective functions and constraints are both linear in nature.
- The demand limits are fixed and known and there is no probability distribution of demand. It may be difficult to find all the conditions satisfied in a real life situation, yet they represent satisfactory set to investigate solutions to the problem.
(d) A computer can be used for solving linear programming problems using simplex algorithm (discussed in the next chapter). "Canned" programmes are available for handling such problems where a host of information, in addition to the optimal solution, is provided.

44. Let x_{1} : The output of product A
x_{2} : The output of product B
Since the profit rate is the same for both the products, the LPP may be stated as:
Maximise

$$
Z=x_{1}+x_{2}
$$

Subject to

$$
\begin{aligned}
& 5 x_{1}+8 x_{2} \leq 400 \\
& 55 x_{1}+50 x_{2} \leq 2,750 \\
& x_{1} \quad \geq 40 \\
& \begin{aligned}
x_{2} & \geq 20 \\
& \geq x_{2}
\end{aligned}
\end{aligned}
$$

The constraints are plotted on graph. It may be observed that no feasible solution to the problem exists because there is no common point between the feasible regions relating to all constraints.

CHAPTER 3

1. Maximise Subject to

$$
\begin{array}{r}
Z=8 x_{1}-6 x_{2}+7 x_{3}+2 x_{4}+0 S_{1}+0 S_{2}+0 S_{3}-M A_{1}-M A_{2} \\
4 x_{1}-3 x_{2}+6 x_{3}+x_{4}+S_{1}+0 S_{2}+0 S_{3}-0 A_{1}+0 A_{2}=40 \\
-x_{1}+2 x_{2}+3 x_{3}+x_{4}+0 S_{1}+S_{2}+0 S_{3}+0 A_{1}+0 A_{2}=5 \\
9 x_{1}-5 x_{2}+7 x_{3}-x_{4}+0 S_{1}+0 S_{2}-S_{3}-A_{1}+0 A_{2}=60 \\
0 x_{1}+6 x_{2}+2 x_{3}+4 x_{4}+0 S_{1}+0 S_{2}+0 S_{3}+0 A_{1}+A_{2}=47 \\
x_{1}, x_{2}, x_{3}, x_{4}, S_{1}, S_{2}, S_{3}, A_{1}, A_{2} \geq 0
\end{array}
$$

2.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	3	2	1	0	36	18
$S_{2} 0$	1	4^{*}	0	1	10	$5 / 2 \leftarrow$
C_{j}	7	14	0	0		
Solution	0	0	36	10	$Z=0$	
Δ_{j}	7	14	0	0		
		\uparrow				

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	$5 / 2$	0	1	$-1 / 2$	31	$62 / 5$
$x_{2} 14$	$1 / 4^{*}$	1	0	$1 / 4$	$5 / 2$	$10 \leftarrow$
C_{j}	7	14	0	0		
Solution	0	$5 / 2$	31	0	$Z=35$	
Δ_{j}	$7 / 2$	0	0	$-7 / 2$		
	\uparrow					

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}
$S_{1} 0$	0	-10	1	-3	6
$x_{1} 7$	1	4	0	1	10
C_{j}	7	14	0	0	
Solution	10	0	6	0	$Z=70$
Δ_{j}	0	-14	0	-7	

3. For solving the problem, we need to multiply the first constraint by -1 to have a non-negative b_{i} value. With slack variables S_{1} and S_{2}, the solution follows.

Simplex Tableau 1: Non-optimal Solution

x_{1}		x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	1	2	1	0	6	6
S_{2}	0	4^{*}	3	0	1	12
C_{j}	21	15	0	0		$3 \leftarrow$
Solution	0	0	6	12	$Z=0$	
Δ_{j}	21	15	0	0		
	\uparrow					

Simplex Tableau 2: Optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}
S_{1}	0	0	$5 / 4$	1	$-1 / 4$
x_{1}	21	1	$3 / 4$	0	$1 / 4$
C_{j}	21	15	0	0	3
Solution	3	0	3	0	$Z=63$
Δ_{j}	0	$-3 / 4$	0	$-21 / 4$	

4.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	4	3	1	1	0	0	40
S_{2}	0	2	5^{*}	0	0	1	0	28
S_{3}	0	8	2	0	0	0	1	16
C_{j}	20	30	5	0	0	0	8	
Solution	0	0	0	40	28	16	$Z=0$	
Δ_{j}	20	30	5	0	0	0		

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	$14 / 5$	0	1	1	$-3 / 5$	0	$116 / 5$
S_{2}	30	$2 / 5$	1	0	0	$1 / 5$	0	$28 / 7$
S_{3}	0	$36 / 5^{*}$	0	0	0	$-2 / 5$	1	$24 / 5$
C_{j}	20	30	5	0	0	0		$2 / 3 \leftarrow$
Solution	0	$28 / 5$	0	$116 / 5$	0	$24 / 5$	$Z=168$	
Δ_{j}	8	0	5	0	-6	0		
	\uparrow							

Simplex Tableau 3: Non-optimal Solution

Basis		x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
S_{1}	0	0	0	1^{*}	1	$-4 / 9$	$-7 / 18$	$64 / 3$
x_{2}	30	0	1	0	0	$2 / 9$	$-1 / 18$	$16 / 3$
x_{1}	20	1	0	0	0	$-1 / 18$	$5 / 36$	$2 / 3$
C_{j}	20	30	5	0	0	0	-	
Solution	$2 / 3$	$16 / 3$	0	$64 / 3$	0	0	$Z=520 / 3$	
Δ_{j}	0	0	5	0	$-50 / 9$	$-10 / 9$		
	\uparrow							

Simplex Tableau 4: Non-optimal Solution

Basis		x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{3} 5$	0	0	1	1	$-4 / 9$	$-7 / 18$	$64 / 3$	$b_{i} / a_{i j}$
x_{2}	30	0	1	0	0	$2 / 9$	$-1 / 18$	$16 / 3$
x_{3}	20	1	0	0	0	$-1 / 18$	$5 / 36^{*}$	$2 / 3$
C_{j}	20	30	5	0	0	0		-
Solution	$2 / 3$	$16 / 3$	$64 / 3$	0	0	0	$Z=280$	
Δ_{j}	0	0	0	-5	$-10 / 3$	$5 / 6$		
					\uparrow			

Simplex Tableau 5: Optional Solution

| Basis | | x_{1} | x_{2} | x_{3} | S_{1} | S_{2} | S_{3} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |b_{i}

5. Setting $x_{2}=x_{3}-x_{4}$, and multiplying constraint involving negative b_{i}, by -1 the LPP is:

Maximise

$$
\begin{aligned}
& Z=8 x_{1}-4 x_{3}+4 x_{4} \\
& 4 x_{1}+5 x_{3}-5 x_{4} \leq 20 \\
& x_{1}-3 x_{3}+3 x_{4} \leq 23 \\
& x_{1}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{3}	x_{4}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	4^{*}	5	-5	1	0	20	$5 \leftarrow$
$S_{2} 0$	1	-3	3	0	1	23	23
C_{j}	8	-4	4	0	0		
Solution	0	0	0	20	23	$Z=0$	
Δ_{j}	8	-4	4	0	0		
	\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{3}	x_{4}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
x_{1}	8	1	$5 / 4$	$-5 / 4$	$1 / 4$	0	5
S_{2}	0	0	$-17 / 4$	$17 / 4^{*}$	$-1 / 4$	1	18
C_{j}	8	-4	4	0	0		
C_{j}	427						
Solution	5	0	0	0	18	$Z=40$	
Δ_{j}	0	-14	14	-2	0		
			\uparrow				

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{3}	x_{4}	S_{1}	S_{2}	b_{i}
$x_{1} 8$	1	0	0	$3 / 17$	$5 / 17$	$175 / 17$
$x_{2} 4$	0	-1	1	$-1 / 17$	$4 / 17$	$72 / 17$
C_{j}	8	-4	4	0	0	
Solution	$175 / 17$	0	$72 / 17$	0	0	$Z=\frac{1688}{17}$
Δ_{j}	0	0	0	$-20 / 17$	$-56 / 17$	

From Table 3, the optimal solution is:

$$
x_{1}=175 / 17, x_{2}=0, \text { and } x_{3}=72 / 17
$$

Accordingly, the solution to the original problem is:

$$
\begin{aligned}
x_{1} & =175 / 17 \text { and } x_{2}=x_{3}-x_{4}=0-72 / 17=-72 / 17 \text { and } \\
Z & =8 \times 175 / 17-4(-72 / 17)=1688 / 17
\end{aligned}
$$

6. From the given information

Profit per unit of $A=$ Rs $9.60-(0.5 \times 8+0.3 \times 6+0.2 \times 4)=$ Rs 3
Profit per unit of $B=$ Rs $7.80-(0.3 \times 8+0.3 \times 6+0.4 \times 4)=$ Rs 2
Now, if x_{1} and x_{2} be the output and sales of drugs A and B respectively, the LPP may be stated as follows:

$$
\begin{array}{ll}
\text { Maximise } & Z=3 x_{1}+2 x_{2} \\
\text { Subject to } & 0.5 x_{1}+0.3 x_{2} \leq 1,600 \\
& 0.3 x_{1}+0.3 x_{2} \leq 1,400 \\
& 0.2 x_{1}+0.4 x_{2} \leq 1,200 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	0.5^{*}	0.3	1	0	0	1,600	3,200
$S_{2} 0$	0.3	0.3	0	1	0	1,400	4,667
$S_{3} 0$	0.2	0.4	0	0	1	1,200	6,000
C_{j}	3	2	0	0	0		
Solution	0	0	1,600	1,400	1,200	$Z=0$	
Δ_{j}	3	2	0	0	0		
	\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{1}	3	1	0.60	2	0	0	3,200
5,333							
S_{2}	0	0	0.12	-0.6	1	0	440
S_{3}	0	0	0.28^{*}	-0.4	0	1	560
C_{j}	3	2	0	0	0	000	
C_{j}	0	0	440	560	$Z=9,600$		
Solution	3,200	0	0	0			
Δ_{j}	0	0.2	-6	0			
		\uparrow					

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{1} 3$	1	0	2.86	0	-2.14	2,000
S_{2}	0	0	0	-0.43	1	-0.43
x_{2}	2	0	1	-1.43	0	3.57
C_{j}	3	2	0	0	0	2,000
Solution	2,000	2,000	0	0	0	$Z=10,000$
Δ_{j}	0	0	-5.72	0	-0.72	

From Table 3 it is evident that the optimal product is: drug $A, 2,000$ units; drug $B, 2,000$ units for a total profit of Rs 10,000 .
7. Let the output of belts type A and type B be x_{1} and x_{2} respectively. The LPP is:

Maximise Subject to	$Z=20 x_{1}+15 x_{2}$	Total profit
	$2 x_{1}+x_{2} \leq 1,000$	Time availability
	$x_{1}+x_{2} \leq 800$	Leather availability
	$\left.\begin{array}{ll}x_{1} & \begin{array}{r}\leq 400 \\ x_{2} \leq 700\end{array}\end{array}\right\}$	Buckle availability
	$x_{1}, x_{2} \geq 0$	

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	1	1	0	0	0	1,000
S_{2}	0	1	1	0	1	0	0	800
S_{3}	0	1^{*}	0	0	0	1	0	400
S_{4}	0	0	1	0	0	0	1	700
C_{j}	20	15	0	0	0	0		
Solution	0	0	1,000	800	400	700	$Z=0$	
Δ_{j}	20	15	0	0	0	0		
	\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}
S_{1}	0	0	1^{*}	1	0	-2	0	200
S_{2}	0	0	1	0	1	-1	0	400
x_{1}	20	1	0	0	0	1	0	400
S_{4}	0	0	1	0	0	0	1	700
C_{j}	20	15	0	0	0	0	700	
Solution	400	0	200	400	0	700	$Z=8,000$	
Δ_{j}	0	15	0	0	-20	0		
		\uparrow						

Simplex Tableau 3: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
x_{2}	15	0	1	1	0	-2	0	200
S_{2}	0	0	0	-1	1	1^{*}	0	200
x_{1}	20	1	0	0	0	1	0	400
S_{4}	0	0	0	-0	0	-2	1	500
C_{j}	20	15	0	0	0	0		
Solution	400	200	0	200	0	500	$Z=11,000$	
Δ_{j}	0	0	-15	0	10	0		
				\uparrow				

Simplex Tableau 4: Optional Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}
x_{2}	15	0	1	-1	2	0	0	600
S_{3}	0	0	0	-1	1	1	0	200
x_{1}	20	1	0	1	-1	0	0	200
S_{4}	0	0	0	1	-2	0	1	100
C_{j}	20	15	0	0	0	0		
Solution	200	600	0	0	200	100	$Z=13,000$	
Δ_{j}	0	0	-5	-10	0	0		

8.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	4	3	1	0	0	12
S_{2}	0	4^{*}	1	0	1	0	8
S_{3}	0	4	-9	0	0	1	8
C_{j}	3	2	0	0	0		
Solution	0	0	12	8	8		
Δ_{j}	3	2	0	0	0		
	\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	0	2^{*}	1	-1	0	4	$2 \leftarrow$
$x_{1} 3$	1	$1 / 4$	0	$1 / 4$	0	2	8
$S_{3} 0$	0	-10	0	-1	1	0	-
C_{j}	3	2	0	0	0		
Solution	2	0	4	0	0	$Z=6$	
Δ_{j}	0	$5 / 4$	0	$-3 / 4$	0		
		\uparrow					

Simplex Tableau 3: Optional Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{2} 2$	0	1	$1 / 2$	$-1 / 2$	0	2
x_{1}	3	1	0	$-1 / 8$	$3 / 8$	0
$S_{3} 0$	0	0	5	-6	1	$3 / 2$
C_{j}	3	2	0	0	0	20
Solution	$3 / 2$	2	0	0	20	$Z=8.5$
Δ_{j}	0	0	$-5 / 8$	$-1 / 8$	0	

It is evident that the optimal solution contained in Tableau 3 is not degenerate (as none of the basic variables assumes a solution value equal to zero). However, the solution given in Tableau 2 is a degenerate one. The improvement of this solution does not lead to another degenerate solution since the outgoing variable $\left(S_{1}\right)$ is not a degenerate variable. The solution is temporarily degenerate, therefore.
9. After introducing necessary variables, the problem is:

$$
\text { Maximise } \quad Z=3 x_{1}+2 x_{2}+3 x_{3}+0 S_{1}+0 S_{2}-M A_{1}
$$

Subject to

$$
\begin{array}{r}
2 x_{1}+x_{2}+x_{3}+S_{1}=2 \\
3 x_{1}+4 x_{2}+2 x_{3}-S_{2}+A_{1}=8 \\
x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, A_{1} \geq 0
\end{array}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	A_{1}	b_{i}	$b_{i} / a_{i j}$
$S_{1} \quad 0$	2	1	1	1	0	0	2	2
$A_{1}-M$	3	4	2	0	-1	1	8	$2 \leftarrow$
C_{j}	3	2	3	0	0	$-M$		
Solution	0	0	0	2	0	8		
Δ_{j}	$3+3 M$	$2+4 M$	$3+2 M$	0	$-M$	0		

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	A_{1}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	$5 / 4$	0	$1 / 2^{*}$	1	$1 / 4$	$-1 / 4$	0
x_{2}	2	$3 / 4$	1	$1 / 2$	0	$-1 / 4$	$1 / 4$	2
C_{j}	3	2	3	0	0	$-M$		
Solution	0	2	0	0	0	0	$Z=4$	
Δ_{j}	$3 / 2$	0	2	0	$1 / 2$	$-M-1 / 2$		

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	A_{1}	b_{i}
$x_{3} 3$	$5 / 2$	0	1	2	$1 / 2$	$-1 / 2$	0
$x_{2} 2$	$-1 / 2$	1	0	-1	$-1 / 2$	$1 / 2$	2
C_{j}	3	2	3	0	0	$-M$	
Solution	0	2	0	0	0	0	$Z=4$
Δ_{j}	$-7 / 2$	0	0	-4	$-1 / 2$	$-M-1 / 2$	

The solution in Simplex Tableau 3 is optimal. It is unique. The solution is degenerate, however.
10. From the given information,

No. of working hours available per machine per month
$=$ No. of hours per day \times No. of days \times Percentage of effective working. Accordingly, the monthly capacity for the three operations is as follows:

$$
\begin{aligned}
& X: 3 \times 320=960 \text { hours } \\
& Y: 2 \times 320=640 \text { hours } \\
& Z: 1 \times 320=320 \text { hours }
\end{aligned}
$$

The LPP with x_{1}, x_{2}, and x_{3} representing the output of products A, B, and C respectively, may be stated as under:
Maximise $P=3 x_{1}+4 x_{2}+6 x_{3}$
Subject to

$$
\begin{aligned}
4 x_{1}+x_{2}+6 x_{3} & \leq 960 \\
5 x_{1}+3 x_{2}+x_{3} & \leq 640 \\
x_{1}+2 x_{2}+3 x_{3} & \leq 320 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	4	1	6	1	0	0	960
S_{2}	0	5	3	1	0	160		
S_{3}	0	1	2	$3 *$	0	0	0	640
C_{j}	3	4	6	0	0	0	320	$320 / 3 \leftarrow$
Solution	0	0	0	960	640	320	$Z=0$	
Δ_{j}	3	4	6	0	0	0		

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	-3	0	1	0	-2	320
S_{2}	0	$14 / 3^{*}$	$7 / 3$	0	0	1	$-1 / 3$	$1,600 / 3$
x_{3}	6	$1 / 3$	$2 / 3$	1	0	0	$1 / 3$	$3200 / 7$
C_{j}	3	4	6	0	0	320		
Solution	0	0	$320 / 3$	320	$1,600 / 3$	0		
Δ_{j}	1	0	0	0	0	-2	$Z=640$	
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
S_{1}	0	0	-4	0	1	$-3 / 7$	$-13 / 7$
x_{1}	3	1	$1 / 2$	0	0	$3 / 14$	$-1 / 14$
x_{3}	6	0	$1 / 2$	1	0	$-1 / 14$	$5 / 14$
C_{j}	3	4	6	0	$00 / 7$		
Solution	$800 / 7$	0	$480 / 7$	$640 / 7$	0	0	
Δ_{j}	0	$-1 / 2$	0	0	$-3 / 14$	$-27 / 14$	$Z=5,280 / 7$

Thus, optimal solution is: product A : 800/7 units, product B : nil, product $C=480 / 7$ units. Total profit $=$ Rs $5,280 / 7$ or Rs 754.29 .
11. Let x_{1}, x_{2}, and x_{3} represent the daily production of dolls A, B, and C respectively. Using the given information, we may state the LPP as follows:

Maximise Subject to	$Z=3 x_{1}+5 x_{2}+4 x_{3}$	Total Profit
	$2 x_{1}+3 x_{2} \leq 8$	
$2 x_{2}+5 x_{3} \leq 10$	Machine M_{1} time	
$3 x_{1}+2 x_{2}+4 x_{3} \leq 15$	Machine M_{2} time	
$x_{1}, x_{2}, x_{3} \geq 0$		

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	3^{*}	0	1	0	0	8
S_{2}	0	0	2	5	0	1	0	10
S_{3}	0	3	2	4	0	0	1	15
C_{j}	3	5	4	0	0	0	$15 / 2$	
Solution	0	0	0	8	10	15		
Δ_{j}	3	5	4	0	0	0		

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{2}	5	$2 / 3$	1	0	$1 / 3$	0	0	$8 / 3$
S_{2}	0	$-4 / 3$	0	5^{*}	$-2 / 3$	1	0	$14 / 3$
S_{3}	0	$5 / 3$	0	4	$-2 / 3$	0	1	$14 / 15 \leftarrow$
C_{j}	3	5	4	0	0	0	$29 / 3$	$29 / 12$
Solution	0	$8 / 3$	0	0	$14 / 3$	$29 / 3$		
Δ_{j}	$-1 / 3$	0	4	$-5 / 3$	0	0		
			\uparrow					

Simplex Tableau 3: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{2}	5	$2 / 3$	1	0	$1 / 3$	0	0	$8 / 3$
x_{3}	4	$-4 / 15$	0	1	$-2 / 15$	$1 / 5$	0	$14 / 15$
S_{3}	0	$41 / 15^{*}$	0	0	$-2 / 15$	$-4 / 5$	1	$89 / 15$
C_{j}	3	5	4	0	0	$89 / 41 \leftarrow$		
Solution	0	$8 / 3$	$14 / 5$	0	0	$89 / 15$		
Δ_{j}	$11 / 15$	0	0	$-17 / 15$	$-4 / 5$	0		
	\uparrow							

Simplex Tableau 4: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
x_{2}	5	0	1	0	$15 / 41$	$8 / 41$	$-10 / 41$
x_{3}	4	0	0	1	$-6 / 41$	$5 / 41$	$4 / 41$
x_{1}	3	1	0	0	$-2 / 41$	$-12 / 41$	$15 / 41$
C_{j}	3	5	4	0	0	$69 / 41$	
Solution	$89 / 41$	$50 / 41$	$62 / 41$	0	0	0	
Δ_{j}	0	0	0	$-45 / 41$	$-24 / 41$	$-11 / 41$	

From Tableau 4, it is evident that optimal daily output of the three type of dolls is:
Doll A: 89/41, Doll B: 50/41, Doll C: 62/41
The total profit works out to be Rs $765 / 41$ or Rs 18.66. Also, none of the machines would remain idle.
12. Let x_{1}, x_{2}, and x_{3} be the output of pistons, rings, and valves respectively. Using the given information, we may state the LPP as follows:
Maximise

$$
Z=10 x_{1}+6 x_{2}+4 x_{3}
$$

Profit
Subject to

$$
\begin{array}{rlrl}
x_{1}+x_{2}+x_{3} & \leq 100 & & \text { Preparatory work } \\
10 x_{1}+4 x_{2}+5 x_{3} & \leq 600 & & \text { Machinng } \\
2 x_{1}+2 x_{2}+6 x_{3} & \leq 300 & & \text { Allied } \\
x_{1}, x_{2}, x_{3} & \geq 0 &
\end{array}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	1	1	1	1	0	0	100
S_{2}	0	10^{*}	4	5	0	1	0	600
S_{3}	0	2	2	6	0	0	1	300
C_{j}	10	6	4	0	0	0	150	
Solution	0	0	0	100	600	300		
Δ_{j}	10	6	4	0	0	0		
	\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	0	$3 / 5^{*}$	$1 / 2$	1	$-1 / 10$	0	40	$200 / 3 \leftarrow$
x_{1}	10	1	$2 / 5$	$1 / 2$	0	$1 / 10$	0	60	150
S_{3}	0	0	$6 / 5$	5	0	$-1 / 5$	1	180	150
C_{j}	10	6	4	0	0	0			
Solution	60	0	0	40	0	180			
Δ_{j}	0	2	-1	0	-1	0			
		\uparrow							

Simplex Tableau 3: Optimal Solution

Basis		x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}
x_{2}	6	0	1	$5 / 6$	$5 / 3$	$-1 / 6$	0
x_{1}	10	1	0	$1 / 6$	$-2 / 3$	$1 / 6$	0
S_{3}	0	0	0	4	-2	0	1
C_{j}	10	6	4	0	0	$00 / 3$	
Solution	$100 / 3$	$200 / 3$	0	0	0	100	
Δ_{j}	0	0	$-8 / 3$	$-10 / 3$	$-2 / 3$	0	

The most profitable mix, therefore, is: Pistons $=100 / 3$, Rings $=200 / 3$ and Valves $=0$. The corresponding profit $=10 \times 100 / 3+6 \times 200 / 3=$ Rs 733.33 .
13. (a) Let x_{1}, x_{2}, and x_{3} represent, respectively, the number of units of A, B and C. The linear programming formulation is given here:
Maximise

$$
\begin{aligned}
Z=12 x_{1}+3 x_{2} & +x_{3} \\
10 x_{1}+2 x_{2}+x_{3} & \leq 100 \\
7 x_{1}+3 x_{2}+2 x_{3} & \leq 77 \\
2 x_{1}+4 x_{2}+x_{3} & \leq 80 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Subject to
(b)

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	10*	2	1	1	0	0	100	$10 \leftarrow$
$S_{2} 0$	7	3	2	0	1	0	77	11
$S_{3} 0$	2	4	1	0	0	1	80	40
C_{j}	12	3	1	0	0	0		
Solution	0	0	0	100	77	80		
Δ_{j}	$\begin{gathered} 12 \\ \uparrow \end{gathered}$	3	1	0	0	0		

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{1}	12	1	$1 / 5$	$1 / 10$	$1 / 10$	0	0	10
S_{2}	0	0	$8 / 5^{*}$	$13 / 10$	$-7 / 10$	1	0	7
S_{3}	0	0	$18 / 5$	$4 / 5$	$-1 / 5$	0	1	60
C_{j}	12	3	1	0	0	0	$50 / 3$	
Solution	0	0	0	0	7	60		
Δ_{j}	0	$3 / 5$	$-1 / 5$	$-6 / 5$	0	0		
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{1} 12$	1	0	$-1 / 16$	$3 / 16$	$-1 / 8$	0	$73 / 8$
x_{2}	3	0	1	$13 / 16$	$-7 / 16$	$5 / 8$	0
S_{3}	0	0	0	$-17 / 16$	$11 / 8$	$-9 / 4$	1
C_{j}	12	3	1	0	0	0	$177 / 4$
Solution	$73 / 8$	$35 / 8$	0	0	0	$177 / 4$	
Δ_{j}	0	0	$-11 / 16$	$-15 / 16$	$-3 / 8$	0	

The product mix so as to maximise profit is: product $A: 73 / 8$ units, product $B: 35 / 8$ units and product $C:$ nil. Total profit $=$ Rs $12 \times 73 / 8+3 \times 35 / 8=$ Rs $981 / 8$.
(c) From Tableau 3 it is clear that $S_{1}=S_{2}=0$, while $S_{3}=177 / 4$. Thus, there is no unused capacity in machine centres X and Y, while in machine centre Z a total of $177 / 4$ hours would be unused.
14. Let the monthly production of the products 5-10-5, 5-5-10, and 20-5-10 be x_{1}, x_{2} and x_{3} kg respectively.

The LPP is:
Maximise

$$
Z=16 x_{1}+17 x_{2}+10 x_{3} \text { Total profit }
$$

Subject to

$$
\begin{aligned}
\frac{1}{20} x_{1}+\frac{1}{20} x_{2}+\frac{1}{5} x_{3} \leq 100 & \text { Material } A \\
\frac{1}{10} x_{1}+\frac{1}{20} x_{2}+\frac{1}{20} x_{3} \leq 180 & \text { Material } B \\
\frac{1}{20} x_{1}+\frac{1}{10} x_{2}+\frac{1}{10} x_{3} \leq 120 & \text { Material } C \\
x_{1} \leq 30 & \text { Capacity }
\end{aligned}
$$

Working notes:
Profit per unit is worked out as follows:
5-10-5: $40.50-(0.05 \times 80+0.10 \times 20+0.05 \times 50+0.80 \times 20)=16$
$5-5-10: 43-(0.05 \times 80+0.05 \times 20+0.10 \times 50+0.80 \times 20)=17$
20-5-10: $45-(0.20 \times 80+0.05 \times 20+0.10 \times 50+0.65 \times 20)=10$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	$1 / 20$	$1 / 20$	$1 / 5$	1	0	0	0	100
S_{2}	0	$1 / 10$	$1 / 20$	$1 / 20$	0	1	0	0	180
$S_{3} 0$	$1 / 20$	$1 / 10^{*}$	$1 / 10$	0	0	1	0	120	12000
S_{4}	0	1	0	0	0	0	0	1	30
C_{j}	16	17	10	0	0	0	0		-
Solution	0	0	0	100	180	120	30	$Z=0$	
Δ_{j}	16	17	10	0	0	0	0		
		\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	$1 / 40$	0	$3 / 20$	1	0	$-1 / 2$	0	40
S_{2}	0	$3 / 40$	0	0	0	1	$-1 / 2$	0	1,600
x_{2}	17	$1 / 2$	1	1	0	0	10	0	1,200
S_{4}	0	$1 *$	0	0	0	0	0	1	2,400
C_{j}	16	17	10	0	0	0	0		30
Solution	0	1,200	0	40	120	0	30	$Z=20,400$	
Δ_{j}	$15 / 2$	0	-7	0	0	-170	0		
	\uparrow								

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	
S_{1}	0	0	0	$3 / 20$	1	0	$-1 / 2$	$-1 / 40$	$157 / 4$
S_{2}	0	0	0	0	0	1	$-1 / 2$	$-3 / 40$	$471 / 4$
x_{2}	17	0	1	1	0	0	10	$-1 / 2$	1,185
x_{1}	16	1	0	0	0	0	0	1	30
C_{j}	16	17	10	0	0	0	0		
Solution	30	1185	0	$157 / 4$	$471 / 4$	0	0	$Z=20,625$	
Δ_{j}	0	0	-7	0	0	-170	$-15 / 2$		

15. Using the given information about profitability and resources, the LPP may be stated as follows:

Maximise
Subject to

$$
Z=4,000 x_{1}+2,000 x_{2}+5,000 x_{3} \quad \text { Revenue }
$$

$$
\begin{array}{rlr}
12 x_{1}+7 x_{2}+9 x_{3} \leq 1,260 & & \text { Labour hours } \\
22 x_{1}+18 x_{2}+16 x_{3} \leq 1,9008 & & \text { Wood } \\
2 x_{1}+4 x_{2}+3 x_{3} \leq 396 & & \text { Screws } \\
x_{1}, x_{2}, x_{3} & \geq 0 &
\end{array}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	12	7	9	1	0	0	1,260	140
S_{2}	0	22	18	16	0	1	0	19,008
$S_{3} 0$	2	4	3^{*}	0	0	1	396	$132 \leftarrow$
C_{j}	4,000	2,000	5,000	0	0	0		
Solution	0	0	0	1,260	19,008	396		
Δ_{j}	4,000	2,000	5,000	0	0	0		
			\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	6^{*}	-5	0	1	0	-3	72	12
$S_{2} 0$	$34 / 3$	$-10 / 3$	0	0	1	$-16 / 3$	16,896	1,491
x_{3}	5,000	$2 / 3$	$4 / 3$	1	0	0	$1 / 3$	132
C_{j}	4,000	2,000	5,000	0	0	0		
Solution	0	0	132	72	16,896	0		
Δ_{j}	$2,000 / 3$	$-14,000 / 3$	0	0	0	$-5,000 / 3$		
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{1} 4,000$	1	$-5 / 6$	0	$1 / 6$	0	$-1 / 2$	12
S_{2}	0	0	$55 / 9$	0	$-17 / 9$	1	$1 / 3$
x_{3}	5,000	0	$17 / 9$	1	$-1 / 9$	0	$2 / 3$
C_{j}	4,000	2,000	5,000	0	0	0	124
Solution	12	0	124	0	16,760	0	
Δ_{j}	0	$-37,000 / 9$	0	$-1,000 / 9$	0	$4,000 / 3$	

(c) From Tableau 3, it is evident that for maximum profit, the company should produce 12 Row boats and 124 Kayaks and no Canoes. The maximum revenue is $4,000 \times 12+5,000 \times 124=668,000$.
(d) While labour-hours and screws available are fully used, the wood is not used fully. Its spare capacity is 16,760 board feet.
(e) The total wood used to make all of the boats in the optimal solution is $22 \times 12+16 \times 124=2,248$ board feet.
16. The information given in the problem is tabulated below:

	Vehicle Type		
	A	B	C
Tonnage	10	20	18
Average speed (kmph)	35	30	30
Working hours/day	18	18	21
Cost ('000 Rs)	80	130	150
Crew	3	6	6

The capacity of a vehicle in tonne-kms per day may be obtained by the product of tonnage, average speed, and working hours per day. This works out to be $10 \times 35 \times 18=6,300$ for $A 20 \times 30 \times 18=10,800$ for B and $18 \times 30 \times 21=11,340$ for C. Now x_{1}, x_{2}, and x_{3} be the number of vehicles purchased of types A, B, and C respectively, the LPP may be expressed as:

Maximise	$Z=6,300 x_{1}+10,800 x_{2}+11,340 x_{3}$	Capacity
Subject to	$80 x_{1}+130 x_{2}+150 x_{3} \leq 4,000$	Budget
$x_{1}+x_{2}+x_{3} \leq 30$	Maintenance	
	$3 x_{1}+6 x_{2}+6 x_{3} \leq 150$	Crew
	$x_{1}, x_{2}, x_{3} \geq 0$	

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	80	130	150	1	0	0	4,000	$400 / 15$
$S_{2} 0$	1	1	1	0	1	0	30	30
$S_{3} 0$	3	6	6^{*}	0	0	1	150	$25 \leftarrow$
C_{j}	6,300	10,800	11,340	0	0	0		
Solution	0	0	0	4,000	30	150	$Z=0$	
Δ_{j}	6,300	10,800	11,340	0	0	0		
			\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	15	-20	0	1	0	-25	250	50
S_{2}	0	$1 / 2^{*}$	0	0	0	1	$-1 / 6$	5	$10 \leftarrow$
x_{3}	11,340	$1 / 2$	1	1	0	0	$1 / 6$	25	$50 \leftarrow$
C_{j}	6,300	10,800	11,340	0	0	0			
Solution	0	0	25	250	5	0	$Z=283,500$		
Δ_{j}	630	-540	0	0	0	-189			

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	
S_{1}	0	0	-20	0	1	-10	$-70 / 3$	200
x_{1}	6,300	1	0	0	0	2	$-1 / 3$	10
x_{3}	11,340	0	1	1	0	-1	$1 / 3$	20
C_{j}	6,300	10,800	11,340	0	0	0		
Solution	10	0	20	200	0	0	$Z=289,800$	
Δ_{j}	0	-54	0	0	$-1,260$	$-1,680$		

From Simplex Tableau 3, it may be observed that the company should buy 10 vehicles of type A and 20 vehicles of type C in order to maximise the capacity. The capacity is 289,800 tonne- km per day.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	-4	7	6	-4	1	0	0	20
S_{2}	0	3	-3	4	1	0	1	0	10
S_{3}	0	8^{*}	-3	4	2	0	0	1	25
C_{j}	7	2	3	4	0	0	0		$25 / 8 \leftarrow$
Solution	0	0	0	0	20	10	25	$Z=0$	
Δ_{j}	7	2	3	4	0	0	0		
	\uparrow								

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0	$11 / 2^{*}$	8	-3	1	0	$1 / 2$	$65 / 2$
S_{2}	0	0	$-15 / 8$	$5 / 2$	$1 / 4$	0	1	$-3 / 8$	$5 / 8$
x_{1}	7	1	$-3 / 8$	$1 / 2$	$1 / 4$	0	0	$1 / 8$	$25 / 8$
C_{j}	7	2	3	4	0	0	0		-
Solution	$25 / 8$	0	0	0	$65 / 2$	$5 / 8$	0	$Z=175 / 8$	
Δ_{j}	0	$37 / 8$	$-1 / 2$	$9 / 4$	0	0	$-7 / 8$		
		\uparrow							

Simplex Tableau 3: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{2}	2	0	1	$16 / 11$	$-6 / 11$	$2 / 11$	0	$1 / 11$	$65 / 11$
S_{2}	0	0	0	$115 / 22$	$-17 / 22$	$15 / 44$	1	$-9 / 44$	$515 / 44$
x_{1}	7	1	0	$23 / 22$	$1 / 22^{*}$	$3 / 44$	0	$7 / 44$	$235 / 44$
C_{j}	7	2	3	4	0	0	0		
Solution	$235 / 44$	$65 / 11$	0	0	0	$515 / 44$	0	$Z=2,165 / 44$	
Δ_{j}	0	0	$-159 / 22$	$105 / 22$	$-37 / 44$	0	$-57 / 44$		
			\uparrow						

Simplex Tableau 4: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{2} 2$	12	1	14	0	1	0	2	70
S_{2}	0	17	0	23	0	$3 / 2$	1	$5 / 2$
$x_{4} 4$	22	0	23	1	$3 / 2$	0	$7 / 2$	$235 / 2$
C_{j}	7	2	3	4	0	0	0	
Solution	0	70	0	$235 / 2$	0	$205 / 2$	0	$Z=610$
Δ_{j}	-105	0	-117	0	-8	0	-18	

18. Let the output of desks I, II, III and IV be x_{1}, x_{2}, x_{3} and x_{4} respectively. The LPP is:

Maximise $\quad Z=9 x_{1}+20 x_{2}+15 x_{3}+40 x_{4}$
Subject to

$$
\begin{aligned}
4 x_{1}+9 x_{2}+7 x_{3}+10 x_{4} & \leq 6,000 \\
x_{1}+x_{2}+3 x_{3}+40 x_{4} & \leq 4,000 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	4	9	7	10	1	0	6,000	600
$S_{2} 0$	1	1	3	40^{*}	0	1	4,000	100
C_{j}	9	20	15	40	0	0		
Solution	0	0	0	0	6,000	4,000	$Z=0$	
Δ_{j}	9	20	15	40	0	0		
			\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	$15 / 4$	$35 / 4^{*}$	$25 / 4$	0	1	$-1 / 4$	5,000	$4,000 / 7$
$x_{4} \quad 40$	$1 / 40$	$1 / 40$	$3 / 40$	1	0	$1 / 40$	100	4,000
C_{j}	9	20	15	40	0	0		
Solution	0	0	0	100	5,000	0	$Z=4,000$	
Δ_{j}	8	19	12	0	0	-1		
		\uparrow						

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	b_{i}
x_{2}	20	$3 / 7$	1	$5 / 7$	0	$4 / 35$	$-1 / 35$
x_{4}	40	$1 / 70$	0	$2 / 35$	1	$-1 / 350$	$9 / 350$
C_{j}	9	20	15	40	0	0	$600 / 7$
Solution	0	$4,000 / 7$	0	$600 / 7$	0	0	$Z=104,000 / 7$
Δ_{j}	$-1 / 7$	0	$-11 / 7$	0	$-76 / 35$	$-16 / 35$	

19. Introducing necessary surplus and artificial variables, the problem is:

Minimise $\quad Z=6 x_{1}+4 x_{2}+0 S_{1}+0 S_{2}+M A_{1}+M A_{2}$
Subject to

$$
\begin{aligned}
3 x_{1}+1 / 2 x_{2}-S_{1}+A_{1} & =12 \\
2 x_{1}+x_{2}-S_{2}+A_{2} & =16 \\
x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$A_{1} M$	3	$1 / 2$	-1	0	1	0	12	4
$A_{2} M$	2	1	0	-1	0	1	16	8
C_{j}	6	4	0	0	M	M		
Solution	0	0	0	0	12	16		
Δ_{j}	$6-5 M$	$4-3 / 2 M$	M	M	0	0		
	\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$x_{1} \quad 6$	1	$1 / 6$	$-1 / 3$	0	$1 / 3$	0	4	-
$A_{2} M$	0	$2 / 3^{*}$	$2 / 3$	-1	$-2 / 3$	1	8	12
C_{j}	6	4	0	0	M	M		
Solution	4	0	0	0	0	8		
Δ_{j}	0	$3-2 / 3 M$	$2-2 / 3 M$	M	$-2+2 / 3 M$	0		
		\uparrow						

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}
$x_{1} 6$	1	$1 / 2$	0	$-1 / 2$	0	$1 / 2$	8
$S_{2} 0$	0	1	1	$-3 / 2$	-1	$3 / 2$	12
C_{j}	6	4	0	0	M	M	
Solution	8	0	12	0	0	0	$Z=48$
Δ_{j}	0	1	0	3	M	$M-3$	

20. Phase I: Introduce surplus and artificial variables to the given problem, assign unit coefficient to the artificial and zero coefficient to the remaining variables to rewrite the problem as under:
Minimise

$$
\begin{aligned}
& Z=0 x_{1}+0 x_{2}+0 S_{1}+0 S_{2}+A_{1}+A_{2} \\
& 2 x_{1}+x_{2}-S_{1}+A_{1}=4 \\
& x_{1}+7 x_{2}-S_{2}+A_{2}=7 \\
& x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
A_{1}	1	2	1	-1	0	1	0	4
A_{2}	1	1	7^{*}	0	-1	0	1	7
C_{j}	0	0	0	0	1	1		
Solution	0	0	0	0	4	7		
Δ_{j}	-3	-8	1	1	0	0		
		\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$A_{1} 1$	$13 / 7 *$	0	-1	$1 / 7$	1	$-1 / 7$	3	$21 / 13 \leftarrow$
x_{2}	0	$1 / 7$	1	0	$-1 / 7$	0	$1 / 7$	1
C_{j}	0	0	0	0	1	1		
Solution	0	1	0	0	0	3		
Δ_{j}	$-13 / 7$	0	1	$-1 / 7$	0	$8 / 7$		
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}
x_{1}	0	1	0	$-7 / 13$	$1 / 13$	$7 / 13$	$-1 / 13$
x_{2}	0	0	1	$1 / 13$	$-14 / 91$	$-1 / 13$	$14 / 91$
C_{j}	0	0	0	0	1	1	$10 / 13$
Solution	$21 / 13$	$10 / 13$	0	0	0	0	
Δ_{j}	0	0	0	0	1	1	

Phase II: Reconsider Simplex Tableau 3, delete columns headed A_{1} and A_{2}, and replace the C_{j} row by the coefficients of the original problem. Apply simplex method. This is shown in Table 4, wherein the solution given is found to be optimal and calls for no revision. Thus, optimal solution is: $x_{1}=21 / 13, x_{2}=10 / 13$, and $Z=31 / 13$.

Simplex Tableau 4: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}
x_{1}	1	1	0	$-7 / 13$	$1 / 13$
x_{2}	1	0	1	$1 / 13$	$-14 / 91$
C_{j}	1	1	0	0	$10 / 13$
Solution	$21 / 13$	$10 / 13$	0	0	
Δ_{j}	0	0	$6 / 13$	$1 / 13$	

21. Phase I: Introduce necessary variables. Assign a coefficient of 0 to each of the decision and surplus variable and 1 to each artificial variable.

Minimise	$Z=0 x_{1}+0 x_{2}+0 x_{3}+0 S_{1}+0 S_{2}+A_{1}+A_{2}$
Subject to	$2 x_{1}+3 x_{2}+x_{3}-S_{1}+A_{1}=4$
	$3 x_{1}+2 x_{2}+x_{3}-S_{2}+A_{2}=3$
	$x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, A_{1}, A_{2} \geq 0$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$A_{1} 1$	2	3	1	-1	0	1	0	4	2
$A_{2} 1$	3^{*}	2	1	0	-1	0	1	3	$1 \leftarrow$
C_{j}	0	0	0	0	0	1	1		
Solution	0	0	0	0	0	4	3		
Δ_{j}	-5	-5	-2	1	1	0	0		
	\uparrow								

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$	
A_{1}	1	0	$5 / 3^{*}$	$1 / 3$	-1	$2 / 3$	1	$-2 / 3$	2	$6 / 5 \leftarrow$
x_{1}	0	1	$2 / 3$	$1 / 3$	0	$-1 / 3$	0	$1 / 3$	1	$3 / 2$
C_{j}	0	0	0	0	0	1	1			
Solution	1	0	0	0	0	2	0			
Δ_{j}	0	$-5 / 3$	$-1 / 3$	1	$-2 / 3$	0	$1 / 3$			
		\uparrow								

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}
$x_{2} 0$	0	1	$1 / 5$	$-3 / 5$	$2 / 5$	$3 / 5$	$-2 / 5$	$6 / 5$
$x_{1} 0$	1	0	$1 / 5$	$2 / 5$	$-3 / 5$	$-2 / 5$	$3 / 5$	$1 / 5$
C_{j}	0	0	0	0	0	1	1	
Solution	$1 / 5$	$6 / 5$	0	0	0	0	0	
Δ_{j}	0	0	0	0	0	1	1	

Phase II: Reconsider Simplex Tableau 3. Delete columns headed A_{1} and A_{2}. Also replace the C_{j} row by co-efficients of the original problem. Solve by simplex.

Simplex Tableau 4: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	b_{i}
x_{2}	150	0	1	$1 / 5$	$-3 / 5$	$2 / 5$
x_{1}	150	1	0	$1 / 5$	$2 / 5$	$-3 / 5$
C_{j}	150	150	100	0	0	$1 / 5$
Solution	$1 / 5$	$6 / 5$	0	0	0	$Z=210$
Δ_{j}	0	0	40	30	30	

Optimal solution: $x_{1}=1 / 5, x_{2}=6 / 5, Z=210$
22. Phase I: Introducing surplus and artificial variables in the given problem, and assigning zero coefficient to each of the decision and surplus variables, and a coefficient of unity to the artificial variables, we get Minimise

$$
\begin{aligned}
& Z=0 x_{1}+0 x_{2}+0 S_{1}+0 S_{2}+A_{1}+A_{2} \\
& 20 x_{1}+30 x_{2}-S_{1}+A_{1}=900 \\
& 40 x_{1}+30 x_{2}-S_{2}+A_{2}=1,200 \\
& \quad x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} \geq 0
\end{aligned}
$$

Subject to

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$A_{1} 1$	20	30^{*}	-1	0	1	0	900	30
$A_{2} 1$	40	30	0	-1	0	1	1,200	40
C_{j}	0	0	0	0	1	1		
Solution	0	0	0	0	900	1,200		
Δ_{j}	-60	-60	1	1	0	0		
		\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$x_{2} 0$	$2 / 3$	1	$-1 / 30$	0	$1 / 30$	0	30	45
$A_{2} 1$	20^{*}	0	1	-1	-1	1	300	$15 \leftarrow$
C_{j}	0	0	0	0	1	1		
Solution	0	30	0	0	0	300		
Δ_{j}	-20	0	-1	1	1	0		
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}
x_{2}	0	0	1	$-1 / 15$	$1 / 30$	$-1 / 15$	$-1 / 30$
x_{1}	0	1	0	$1 / 20$	$-1 / 20$	$-1 / 20$	$1 / 20$
C_{j}	0	0	0	0	1	15	
Solution	15	20	0	0	0	0	
Δ_{j}	0	0	0	0	1	1	

Phase II: The Simplex Tableau 3 is reproduced below after replacing the C_{j} row by the coefficients from the objective function of the original problem and deleting the columns headed by A_{1} and A_{2}. Then the problem is solved using the simplex method. It may be observed from the table that the solution is an optimal one and no further iterations are called for.

Simplex Tableau: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}
$x_{2} 80$	0	1	$-1 / 15$	$1 / 30$	20
$x_{1} 60$	$1^{\prime \prime}$	0	$1 / 20$	$-1 / 20$	15
C_{j}	60	80	0	0	
Solution	15	20	0	0	
Δ_{j}	0	0	$7 / 3$	$1 / 3$	

23. (a) Let x_{1} and x_{2} be the quantity of Ash Trays and Tea Trays, respectively, produced. The problem is: Maximise $\quad Z=20 x_{1}+30 x_{2} \quad$ Profit (in paise) Subject to

$$
\begin{aligned}
10 x_{1}+20 x_{2} & \leq 30,000 \\
15 x_{1}+5 x_{2} \leq 30,000 & \text { Stamping } \\
10 x_{1}+8 x_{2} \leq 40,000 & \text { Painting } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b)

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	10	$20 *$	1	0	0	30,000
S_{2}	0	15	5	0	1	0	30,000
S_{3}	0	10	8	0	0	1	40,000
C_{j}	20	30	0	0	0		5,000
Solution	0	0	30,000	30,000	40,000	$Z=0$	
Δ_{j}	20	30	0	0	0		
		\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{2}	30	$1 / 2$	1	$1 / 20$	0	0	1,500
S_{2}	0	$25 / 2^{*}$	0	$-1 / 4$	1	0	22,500
S_{3}	0	6	0	$-2 / 5$	0	1	28,000
C_{j}	20	30	0	0	0	$14,000 / 3$	
Solution	0	1,500	0	22,500	28,000	$Z=45,000$	
Δ_{j}	5	0	$-3 / 2$	0	0		
	\uparrow						

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}
x_{2}	30	0	1	$3 / 50$	$-1 / 25$	0
x_{1}	20	1	0	$-1 / 50$	$2 / 25$	0
S_{3}	0	0	0	$-7 / 25$	$-12 / 25$	1
C_{j}	20	30	0	0	0	17,200
Solution	1,800	600	0	0	17,200	$Z=54,000$
Δ_{j}	0	0	$-7 / 5$	$-2 / 5$	0	

Thus, optimal daily output $=$ Ash Trays: 1,800, Tea Trays: 600 . Daily profit $=$ Rs $540-$ Rs 350 (fixed expenses) = Rs 190.
(c) The revised LPP is:

$$
\begin{aligned}
& \text { Maximise } \\
& \text { Subject to } \\
& \\
& \\
& 10 x_{1}+20 x_{2} \leq 30,000 \\
& 15 x_{1}+5 x_{2} \leq 30,000 \\
& 10 x_{1}+8 x_{2} \leq 40,000 \\
& 16 x_{1}+20 x_{2} \leq 36,000 \\
& x_{1}, x_{2}
\end{aligned} \geq 0.9 .
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	10	$20 *$	1	0	0	0	30,000	1,500
S_{2}	0	15	5	0	1	0	0	30,000
S_{3}	0	10	8	0	0	1	0	40,000
$S_{4} 0$	16	20	0	0	0	1	36,000	1,800
C_{j}	20	30	0	0	0	0		
Solution	0	0	30,000	30,000	40,000	36,000	$Z=0$	
Δ_{j}	20	30	0	0	0	0		
		\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}
x_{2}	30	$1 / 2$	1	$1 / 20$	0	0	0	1,500
S_{2}	0	$25 / 2$	0	$-1 / 4$	1	0	0	22,500
S_{3}	0	6	0	$-2 / 5$	0	1	0	28,000
S_{4}	0	6^{*}	0	-1	0	0	$14,000 / 3$	
C_{j}	20	30	0	0	0	0	6,000	1,000
Solution	0	1,500	0	22,500	28,000	6,000	$Z=45,000$	
Δ_{j}	5	0	$-3 / 2$	0	0	0		
	\uparrow							

Simplex Tableau 3: Optimal Solution

| Basis | | x_{1} | x_{2} | S_{1} | S_{2} | S_{3} | S_{4} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |b_{i}

Optimal product mix: Ash Trays $=1,000$, Tea Trays $=1,000$.
Total Profit $=$ Rs $=500-$ Rs $350=$ Rs 150 per day.
24. If x_{1} and x_{2} be the respective output of products A and B, the LPP is:

Maximise

$$
Z=30 x_{1}+40 x_{2}
$$

Subject to

$$
\begin{aligned}
4 x_{1}+2 x_{2} & \leq 100 \\
4 x_{1}+6 x_{2} & \leq 180 \\
x_{1}+x_{2} & \leq 40 \\
x_{1} & \leq 20 \\
x_{2} & \geq 10
\end{aligned}
$$

If we let $x_{2}=10+x_{3}$, we have the revised problem as:
Maximise $\quad Z=30 x_{1}+40 x_{3}+400$
Subject to

$$
4 x_{1}+2 x_{3} \leq 80 ; 4 x_{1}+6 x_{3} \leq 120 ; x_{1}+x_{2} \leq 30 ; x_{1} \leq 20 \text { and } x_{1}, x_{3} \geq 0
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	4	2	1	0	0	0	80	40
$S_{2} 0$	4	6^{*}	0	1	0	0	120	20
$S_{3} 0$	1	1	0	0	1	0	30	20
$S_{4} 0$	1	0	0	0	0	1	20	-
C_{j}	30	40	0	0	0	0		
Solution	0	0	80	120	30	20	$Z=0$	
Δ_{j}	30	40	0	0	0	0		
		\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	$8 / 3^{*}$	0	1	$-1 / 3$	0	0	40	15
$x_{3} 40$	$2 / 3$	1	0	$1 / 6$	0	0	20	30
$S_{3} 0$	$1 / 3$	0	0	$-1 / 6$	1	0	10	30
$S_{4} 0$	1	0	0	0	0	1	20	20
C_{j}	30	40	0	0	0	0		
Solution	0	20	40	0	10	20	$Z=800$	
Δ_{j}	$10 / 3$	0	0	$-20 / 3$	0	0		
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}
$x_{1} 30$	1	0	$3 / 8$	$-1 / 8$	0	0	15
$x_{3} 40$	0	1	$-1 / 4$	$1 / 4$	0	0	10
$S_{3} 0$	0	0	$-1 / 8$	$-1 / 8$	1	0	5
$S_{4} 0$	0	0	$-3 / 8$	$1 / 8$	0	1	5
C_{j}	30	40	0	0	0	0	
Solution	15	10	0	0	5	5	$Z=850$
Δ_{j}	0	0	$-5 / 4$	$-25 / 4$	0	0	

The optimal solution is: $x_{1}=15, x_{2}=10+10=20$ and $Z=850+400=1250$.
25. Maximise

$Z=20 x_{1}+40 x_{2}$	Total sales
$2 x_{1}+4 x_{2} \leq 100$	Raw material
$-8 x_{1}+24 x_{2} \leq 0$	Sales requirement
$x_{1}, x_{2} \geq 0$	

Note: Since the sales volume of product A is required to be at least 60 per cent of the total sales, the constraint may be stated as: $20 x_{1} \geq 0.6\left(20 x_{1}+40 x_{2}\right)$, which simplifies to be $-8 x_{1}+24 x_{2} \leq 0$.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	4	1	0	100
S_{2}	0	-8	24^{*}	0	1	0
C_{j}	20	40	0	0		0
Solution	0	0	100	0		
Δ_{j}	20	40	0	0		
		\uparrow				

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	10/3*	0	1	-1/6	100	$30 \leftarrow$
$x_{2} 40$	$-1 / 3$	1	0	1/24	0	-
C_{j}	20	40	0	0		
Solution	0	0	100	0		
Δ_{j}	100/3	0	0	-5/3		
	\uparrow					

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$x_{1} 20$	1	0	$3 / 10$	$-1 / 20$	30	-
$x_{2} 40$	0	1	$1 / 10$	$1 / 40^{*}$	10	400
C_{j}	20	40	0	0		
Solution	30	10	0	0		
Δ_{j}	0	0	-10	0		

Simplex Tableau 4: Optimal (alternate) Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	b_{i}
x_{1}	20	1	2	$7 / 20$	0	50
S_{2}	0	0	40	4	1	400
C_{j}	20	40	0	0		
Solution	50	0	0	400		
Δ_{j}	0	0	-7	0		

The following points may be noted:
(i) The solutions given in the first two tables are both degenerate. However, degeneracy here is tempo rary.
(ii) In each of tables second and third, only one replacement ratio is considered. The other one involves negative denominator and hence, ignored.
(iii) The problem has multiple optimal solutions as shown in tableau 3 and 4 .
26. Let x_{1} and x_{2} be the output (in tonnes) of the products X and Y respectively. The LPP may be stated as follows:
Maximise

$$
\begin{aligned}
& Z=80 x_{1}+120 x_{2} \\
& 20 x_{1}+50 x_{2} \leq 360 \\
& x_{1}+\quad x_{2} \leq 9 \\
& x_{1} \geq 2 \\
& x_{2} \geq 3
\end{aligned}
$$

Subject to

As this problem involves lower bounds on the values of x_{1} and x_{2}, it can be simplified as follows:
Let

$$
x_{1}=2+x_{3} \text { and } x_{2}=3+x_{4}
$$

Substituting these relationships, the given problem may be restated as follows:
Maximise $\quad Z=80 x_{3}+120 x_{4}+520$
Subject to

$$
\begin{aligned}
20 x_{3}+50 x_{4} & \leq 170 \\
x_{3}+x_{4} & \leq 4 \\
x_{3}, x_{4} & \geq 0
\end{aligned}
$$

Now, we can solve this problem. The variables S_{1} and S_{2} are the slack variables used to convert the inequalities into equations.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{3}	x_{4}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	20	50^{*}	1	0	170	$17 / 5 \leftarrow$
$S_{2} 0$	1	1	0	1	4	4
C_{j}	80	120	0	0		
Solution	0	0	170	4	$Z=0+520=520$	
Δ_{j}	80	120	0	0		
		\uparrow				

Simplex Tableau 2: Non-optimal Solution

Basis	x_{3}	x_{4}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$	
x_{4}	120	$2 / 5$	1	$1 / 50$	0	$17 / 5$	$17 / 2$
S_{2}	0	$3 / 5^{*}$	0	$-1 / 50$	1	$3 / 5$	$1 \leftarrow$
C_{j}	80	120	0	0			
Solution	0	$17 / 5$	0	$3 / 5$	$Z=408+520=928$		
Δ_{j}	32	0	$-12 / 5$	0			
	\uparrow						

Simplex Tableau 3: Optimal Solution

Basis		x_{3}	x_{4}	S_{1}	S_{2}
x_{4}	120	0	1	$1 / 30$	$-2 / 3$
x_{3}	80	1	0	$-1 / 30$	$5 / 3$
C_{j}	80	120	0	0	1
Solution	1	3	0	0	$Z=440+520=960$
Δ_{j}	0	0	$-4 / 3$	$-160 / 3$	

Thus, optimal solution to the revised problem is:
$x_{3}=1$ and $x_{4}=3$. Accordingly, the solution to the original problem may be obtained as follows:
Output of $X, x_{1}=2+x_{3}$ or $2+1=3$ tonnes,
Output of $Y, x_{2}=3+x_{4}$ or $3+3=6$ tonnes, and
Total profit $\quad=80 \times 3+120 \times 6=$ Rs 960 .
27. Let the production of I_{1} and I_{2} be x_{1} and x_{2} units respectively. The LPP is:

Maximise
Subject to

$$
Z=40 x_{1}+60 x_{2}
$$

$$
\begin{aligned}
x_{1}+x_{2} & \leq 40 \\
2 x_{1}+x_{2} & \leq 70 \\
x_{1}+3 x_{2} & \leq 90 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	1	1	1	0	0	40
S_{2}	0	2	1	0	1	0	70
$S_{3} 0$	1	$3 *$	0	0	1	90	30
C_{j}	40	60	0	0	0		
Solution	0	0	40	70	90		
Δ_{j}	40	60	0	0	0		
		\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	$2 / 3^{*}$	0	1	0	$-1 / 3$	10	$15 \leftarrow$
$S_{2} 0$	$5 / 3$	0	0	1	$-1 / 3$	40	24
$x_{2} \quad 60$	$1 / 3$	1	0	0	$1 / 3$	30	90
C_{j}	40	60	0	0	0		
Solution	0	30	10	40	0	$Z=1,800$	
Δ_{j}	20	0	0	0	-20		
	\uparrow						

Simplex Tableau 3: Optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}
x_{1}	40	1	0	$3 / 2$	0	$-1 / 2$
S_{2}	0	0	0	$-5 / 2$	1	$1 / 2$
$x_{2} 60$	0	1	$-1 / 2$	0	$1 / 2$	15
C_{j}	40	60	0	0	0	
Solution	15	25	0	15	0	$Z=2,100$
Δ_{j}	0	0	-30	0	-10	

\therefore Optimal mix: $I_{1}=15$ and $I_{2}=25$ units. Increase in profit $=$ Rs $2,100-$ Rs $1,800=$ Rs 300 . Idle time on machine $M_{2}=15$ hours.
28. Let x_{1} and x_{2} be the number of programmes on TV and radio respectively. The problem is: Maximise $\quad Z=5,00,000 x_{1}+3,00,000 x_{2}$
Subject to

$$
\begin{aligned}
50,000 x_{1}+20,000 x_{2} & \leq 2,10,000 \\
x_{1} & \geq 3 \\
x_{2} & \leq 5 \\
& x_{1}, x_{2}
\end{aligned}
$$

Let $x_{1}=x_{1}^{*}+3$. The revised problem is:
Maximise $Z=5,00,000 x_{1}^{*}+3,00,000 x_{2}+15,00,000$
Subject to

$$
\begin{aligned}
50,000 x_{1}^{*}+20,000 x_{2} & \leq 60,000 \\
x_{2} & \leq 5 \\
x_{1}^{*}, x_{2} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}^{*}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	50,000	20,000	1	0	60,000
$S_{2} 0$	0	1	0	1	5	-
C_{j}	$5,00,000$	$3,00,000$	0	0	0	
Solution	0	$3,00,000$	0	5	$Z=15,00,000$	
Δ_{j}	$5,00,000$	0	0			

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}^{*}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$\mathrm{x}_{I}^{*} 5,00,000$	1	$2 / 5$	$1 / 50,000$	0	$6 / 5$	$3 \leftarrow$
$S_{2} 0$	0	1	0	1	5	5
C_{j}	$5,00,000$	$3,00,000$	0	0		
Solution	$6 / 5$	0	0	5	$Z=21,00,000$	
Δ_{j}	0	$1,00,000$	-10	0		

Simplex Tableau 4: Optimal Solution

Basis	x_{1}^{*}	x_{2}	S_{1}	S_{2}	b_{i}
$x_{2} 3,00,000$	$5 / 2$	1	$1 / 10,000$	0	3
$S_{2} 0$	$-5 / 2$	0	$-1 / 10,000$	1	2
C_{j}	$5,00,000$	$3,00,000$	0	0	
Solution	0	3	0	2	$Z=24,00,000$
Δ_{j}	$-2,50,000$	0	-30	0	

Thus, optimal solution calls for 3 programmes in TV and 3 programmes in Radio. Notice that $x_{1}=x_{1}^{*}+3$ or $0+3=3$ and $x_{2}=3$. This would imply a total reach of $24,00,000$, out of which Type A are $15,90,000$ while Type B are 8,10,000.
29. Let x_{1}, x_{2} and x_{3} be the number of advertisements in magazines A, B and C respectively. The problem is: Maximise $\quad Z=1,000 x_{1}+900 x_{2}+280 x_{3} \quad$ Exposure in '000
Subject to

$$
\left.\begin{array}{rlrl}
10,000 x_{1}+5,000 x_{2}+6,000 x_{3} & \leq 100,000 & & \text { Budget } \\
x_{1} & & \geq 2 \\
x_{2} & & 5 \\
x_{3} & \geq 2
\end{array}\right\} \quad \text { Insertion requirement }
$$

To simplify the problem, we set $x_{1}=2+x_{4}$ and $x_{3}+2+x_{5}$. The revised problem is:
Maximise

$$
Z=1,000 x_{4}+900 x_{2}+280 x_{5}+2,560
$$

Subject to

$$
\begin{array}{rl}
10,000 x_{4}+5,000 x_{2}+6,000 x_{5} & \leq 68,000 \\
& \leq 5 \\
x_{2} & 5 \\
x_{4}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{4}	x_{2}	x_{5}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	$10,000^{*}$	5,000	6,000	1	0	68,000	$6.8 \leftarrow$
$S_{2} 0$	0	1	0	0	1	5	-
C_{j}	1,000	900	280	0	0		
Solution	0	0	0	68,000	5	$Z=0+2,560=2,560$	
Δ_{j}	1,000	900	280	0	0		
	\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{4}	x_{2}	x_{5}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
x_{4}	1,000	1	$1 / 2$	$6 / 10$	$1 / 10,000$	0	6.8
S_{2}	0	0	1^{*}	0	0	1	5
C_{j}	1,000	900	280	0	0		$5 \leftarrow$
Solution	6.8	0	0	0	5	$Z=6,800+2,560=9,360$	
Δ_{j}	0	400	-320	$-1 / 10$	0		

Simplex Tableau 3: Optimal Solution

Basis	x_{4}	x_{2}	x_{5}	S_{1}	S_{2}	b_{i}
$x_{4} 1,000$	1	0	$6 / 10$	$1 / 10,000$	$-1 / 2$	4.30
$x_{2} 900$	0	1	0	0	1	5
C_{j}	1,000	900	280	0	0	
Solution	4.30	5	0	0	0	$Z=8,800+2,560=11,360$
Δ_{j}	0	0	-320	$-1 / 10$	-400	

Thus, optimal ad-mix is:
Magazine $A: 2+4.30=6.30$, Magazine $B=5$, Magazine $C=2+0=0$.
Expected exposure $=11,360$ (thousand).
Note: A non-integer solution is acceptable in LP.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
A_{1}	M	20	30	-1	0	1	0	900
A_{2}	M	40^{*}	30	0	-1	0	1	1,200
C_{j}	120	160	0	0	M	M		
Solution	0	0	0	0	900	1,200		
Δ_{j}	$120-60 M$	$160-6 M$	M	M	0	0		
	\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$A_{1} \quad M$	0	15^{*}	-1	$1 / 2$	1	$-1 / 2$	300	20
$x_{1} 120$	1	$3 / 4$	0	$-1 / 40$	0	$1 / 40$	30	40
C_{j}	120	160	0	0	M	M		
Solution	30	0	0	0	300	0		
Δ_{j}	0	$70-15 M$	M	$3-M / 2$	0	$-3+M / 2$		
		\uparrow						

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}
x_{2}	160	0	1	$-1 / 15$	$1 / 30$	$1 / 15$	$-1 / 30$
x_{1}	120	1	0	$1 / 20$	$-1 / 20$	$-1 / 20$	$1 / 20$
C_{j}	120	160	0	0	M	M	15
Solution	15	20	0	0	0	0	$Z=5,000$
Δ_{j}	0	0	$14 / 3$	$2 / 3$	$M-14 / 3$	$M-2 / 3$	

The solution will be unbounded in case the objective function is of maximisation type.
31. Let x_{1} and x_{2} respectively be the output of the products A and B. The LPP is:

Maximise	$Z=10 x_{1}+12 x_{2}$	Total Profit
Subject to	$2 x_{1}+3 x_{2} \leq 1,500$	Machine M_{1}
$3 x_{1}+2 x_{2} \leq 1,500$	Machine M_{2}	
$x_{1}+x_{2} \leq 1,000$	Machine M_{3}	
$x_{1}, x_{2} \geq 0$		

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	2	$3 *$	1	0	0	1,500	$500 \leftarrow$
$S_{2} 0$	3	2	0	1	0	1,500	750
$S_{3} 0$	1	1	0	0	1	1,000	1,000
C_{j}	10	12	0	0	0		
Solution	0	0	1,500	1,500	1,000	$Z=0$	
Δ_{j}	10	12	0	0	0		
		\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{2}	12	$2 / 3$	1	$1 / 3$	0	0	500
750							
S_{2}	0	53^{*}	0	$-2 / 3$	1	0	500
S_{3}	0	$1 / 3$	0	$-1 / 3$	0	1	500
C_{j}	10	12	0	0	0		1,500
Solution	0	500	0	500	$500 Z=6,000$		
Δ_{j}	2	0	-4	0	0		
	\uparrow						

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	
x_{2}	12	0	1	$3 / 5$	$-2 / 5$	0	300
x_{1}	10	1	0	$-2 / 5$	$3 / 5$	0	300
S_{3}	0	0	0	$-1 / 5$	$-1 / 5$	1	400
C_{j}	10	12	0	0	0		
Solution	300	300	0	0	400	$Z=6,600$	
Δ_{j}	0	0	$-16 / 5$	$-6 / 5$	0		

Optimal product mix: $x_{1}=300, x_{2}=300$. Hours unused on machine $M_{3}=400$. Total Profit $=6,600+600$ $=$ Rs 7,200.
32. If the output of C_{1}, C_{2} and C_{3} be x_{1}, x_{2} and x_{3} respectively, the problem is:

Maximise
Subject to

$$
\begin{aligned}
& Z=6 x_{1}+3 x_{2}+2 x_{3} \\
& 2 x_{1}+2 x_{2}+3 x_{3} \leq 300 \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 120 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	2	2	3	1	0	300	150
S_{2}	0	2^{*}	2	1	0	1	120
C_{j}	6	3	2	0	0		$60 \leftarrow$
Solution	0	0	0	300	120	$Z=0$	
Δ_{j}	6	3	2	0	0		
	\uparrow						

Simplex Tableau 2: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	b_{i}
$S_{1} 0$	0	0	2	1	-1	180
x_{1}	6	1	1	$1 / 2$	0	$1 / 2$
C_{j}	6	3	2	0	0	
Solution	60	0	0	180	0	$Z=360$
Δ_{j}	0	-3	-1	0	-3	

The optimal solution is to produce only 60 units of C_{1}. The answer would not change by given statement.
33. (a) Since there is no artificial variable in the basis, and all the $C_{j}-z_{j}$ values are ≤ 0, the given solution is optimal. The optimal product mix is: $x_{1}=0, x_{2}=8 / 3$ units, and $x_{3}=56 / 3$ units.
(b) The given solution is feasible since it involves no artificial variable in the basis.
(c) The problem does not have any alternate optimal solution since none of the non-basic variables, x_{1}, S_{1}, and S_{2} has $\Delta_{j}=0$.
(d) The solution given in the table is not degenerate since none of the basic variables has solution value equal to zero.
(e) The values in the given table under column headed x_{1} are $1 / 3$ and $5 / 6$ corresponding to the variables x_{2} and x_{3} respectively. Thus, $1 / 3$ unit of x_{2} and $5 / 6$ unit of x_{3} have to be foregone to get one unit of x_{1}. Now, to obtain six units of x_{1}, we have to reduce $6 \times 1 / 3=2$ units of x_{2} and $6 \times 5 / 6=5$ units of x_{3}.
34. Let S_{1}, S_{2} and A_{1} be the necessary surplus, slack and artificial variables.

Simplex Tableau 1

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	b_{i}	$b_{i} / a_{i j}$
A_{1}	$-M$	2	5^{*}	-1	0	1	50
S_{2}	0	4	1	0	1	0	28
C_{j}	10	20	0	0	$-M$		28
Solution	0	0	0	28	50		
Δ_{j}	$10+2 M$	$20+5 M$	$-M$	0	0		

Simplex Tableau 2

Basis		x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	b_{i}
x_{2}	20	$2 / 5$	1	$-1 / 5$	0	$1 / 5$	10
S_{2}	0	$18 / 5$	0	$1 / 5^{*}$	1	$-1 / 5$	18
C_{j}	10	20	0	0	$-M$		90
Solution	0	10	0	18	0	$Z=200$	
Δ_{j}	2	0	4	0	$-M-4$		

Simplex Tableau 3

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	b_{i}
$x_{2} 20$	4	1	0	1	0	28
$S_{1} 0$	18	0	1	5	-1	90
C_{j}	10	20	0	0	$-M$	
Solution	0	28	90	0	0	$Z=560$
Δ_{j}	-70	0	0	-20	$-M$	

\therefore Optimal solution is: $x_{1}=0, x_{2}=28$ for $Z=560$.
35. With slack, surplus and artificial variables, the problem is:

Maximise $\pi=22 x+30 y+25 z+0 S_{1}+0 S_{2}+0 S_{3}-M A_{1}$
Subject to

$$
\begin{gathered}
2 x+2 y+S_{1}=100 \\
2 x+y+z+S_{2}=100 \\
x+2 y+2 z-S_{3}+A_{1}=100 \\
x, y, z, S_{1}, S_{2}, S_{3}, A_{1} \geq 0
\end{gathered}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x	y	z	S_{1}	S_{2}	S_{3}	A_{1}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	2	2	0	1	0	0	0	100	50
S_{2}	0	2	1	1	0	1	0	0	100	$100 \leftarrow$
$A_{i}-M$	1	2^{*}	2	0	0	-1	1	100	50	
C_{j}	22	30	25	0	0	0	$-M$			
Solution	0	0	0	100	100	0	100			
Δ_{j}	$22+M$	$30+2 M$	$25+2 M$	0	0	$-M$	0			

Simplex Tableau 2: Non-optimal Solution

Basis	x	y	z	S_{1}	S_{2}	S_{3}	A_{1}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	1	0	-2	1	0	1^{*}	-1	0
S_{2}	0	$3 / 2$	0	0	0	1	$1 / 2$	$-1 / 2$	50
y	30	$1 / 2$	1	1	0	0	$-1 / 2$	$1 / 2$	50
C_{j}	22	30	25	0	0	0	$-M$	-	
Solution	0	50	0	0	50	0	0		
Δ_{j}	7	0	-5	0	0	15	$-M-15$		$\pi=1500$
						\uparrow			

Simplex Tableau 3: Non-optimal Solution

Basis	x	y	z	S_{1}	S_{2}	S_{3}	A_{1}	b_{i}	$b_{i} / a_{i j}$
S_{3}	0	1	0	-2	1	0	1	-1	0
S_{2}	0	1	0	1^{*}	$-1 / 2$	1	0	0	50
y	30	1	1	0	$1 / 2$	0	0	0	50
C_{j}	22	30	25	0	0	0	$-M$	-	
Solution	0	50	0	0	50	0	0		$\pi=1500$
Δ_{j}	-8	0	25	-15	0	0	$-M$		

Simplex Tableau 4: Optimal Solution

Basis	x	y	z	S_{1}	S_{2}	S_{3}	A_{1}	b_{i}
$S_{3} 0$	3	0	0	0	2	1	-1	100
z	25	1	0	1	$-1 / 2$	1	0	0
y	30	1	1	0	$1 / 2$	0	0	0
C_{j}	22	30	25	0	0	0	$-M$	50
Solution	0	50	50	0	0	100	0	$\pi=2,750$
Δ_{j}	-33	0	0	$-5 / 2$	-25	0	$-M$	

Optimal Solution: $x=0, y=50, z=50, \pi=2,750$
36.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$A_{1}-M$	2	3	-1	0	1	0	60	30
$A_{2}-M$	4^{*}	3	0	-1	0	1	96	24
C_{j}	40	35	0	0	$-M$	$-M$		
Solution	0	0	0	0	60	96		
Δ_{j}	$40+6 M$	$35+6 M$	$-M$	$-M$	0	0		
		\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$A_{1}-M$	0	$3 / 2^{*}$	0	$1 / 2$	1	$-1 / 2$	12	8
x_{1}	40	1	$3 / 4$	0	$-1 / 4$	0	$1 / 4$	24
C_{j}	40	35	0	0	$-M$	$-M$		
Solution	24	0	0	0	12	0		
Δ_{j}	0	$5+\frac{3}{2} M$	$-M$	$10+\frac{M}{2}$	0	$-10-\frac{M}{2}$		
		\uparrow						

Simplex Tableau 3: Non-optimal Solution

| Basis | x_{1} | x_{2} | S_{1} | S_{2} | A_{1} | A_{2} | b_{i} | $b_{i} / a_{i j}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2} 35$ | 0 | 1 | $-2 / 3$ | $1 / 3^{*}$ | $2 / 3$ | $-1 / 3$ | 8 | 24 |
| $x_{1} 0$ | 1 | 0 | $1 / 2$ | $-1 / 2$ | $-1 / 2$ | $1 / 2$ | 18 | -36 |
| C_{j} | 40 | 35 | 0 | 0 | $-M$ | $-M$ | | |
| Solution | 18 | 8 | 0 | 0 | 0 | | | |
| Δ_{j} | 0 | 0 | $10 / 3$ | $25 / 3$ | $-M-10 / 3$ | $-M-25 / 3$ | | |
| | | | \uparrow | | | | | |

Simplex Tableau 4: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{2} 0$	0	3	-2	1	2	-1	24	-12
$x_{1} 40$	1	$3 / 2$	$-1 / 2$	0	$1 / 2$	0	30	-60
C_{j}	40	35	0	0	$-M$	$-M$		
Solution	30	0	0	24	0	0		
Δ_{j}	0	-25	20	0	$-M-20$	$-M$		
		\uparrow						

It may be observed from Simplex Tableau 4 that the solution is not optimal as all Δ_{j} values are not less than or equal to zero. However, considering the $a_{i j}$ values of the incoming variable S_{1}, the replacement ratios are both found to be negative. Accordingly, the procedure terminates. This indicates the problem has unbounded solution.
37. Let $x_{1} \mathrm{~kg}$ of factor A and $x_{2} \mathrm{~kg}$ of factor B are used. The LPP is:

Maximise $\quad Z=5 x_{1}+6 x_{2}$
Subject to $x_{1}+x_{2}=5, x_{1} \geq 2, x_{2} \leq 4$, and $x_{2} \geq 0$.
Simplex Tableau 1: Non-optimal Solution

| Basis | x_{1} | x_{2} | S_{1} | A_{1} | A_{2} | S_{2} | b_{i} | $b_{i} / a_{i j}$ |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| $A_{1}-M$ | 1 | 1 | 0 | 1 | 0 | 0 | 5 | 5 |
| $A_{2}-M$ | 1^{*} | 0 | -1 | 0 | 1 | 0 | 2 | 2 |
| $S_{2} 0$ | 0 | 1 | 0 | 0 | 0 | 1 | 4 | - |
| C_{j} | 5 | 6 | 0 | $-M$ | $-M$ | 0 | | |
| Solution | 0 | 0 | 0 | 5 | 2 | 4 | | |
| Δ_{j} | $5+2 M$ | $6+M$ | 0 | $-M$ | $-M$ | 0 | | |
| | \uparrow | | | | | | | |

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	A_{1}	A_{2}	S_{2}	b_{i}	$b_{i} / a_{i j}$
A_{1}	$-M$	0	1^{*}	1	1	-1	0	3
x_{1}	5	1	0	-1	0	1	0	2
S_{2}	0	0	1	0	0	0	1	4
C_{j}	5	6	0	$-M$	$-M$	0	4	
Solution	2	0	0	3	0	4		
Δ_{j}	0	$6+M$	$5+M$	0	$-5-2 M$	0		
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	A_{1}	A_{2}	S_{2}	b_{i}
$x_{2} 6$	0	1	1	1	-1	0	3
x_{1}	5	1	0	-1	0	1	0
S_{2}	0	0	0	-1	-1	1	1
C_{j}	5	6	0	$-M$	$-M$	0	1
Solution	2	3	0	0	0	1	$Z=28$
Δ_{j}	0	0	-1	$-M-6$	$-M+6$	0	

Optimal solution: Factor $A=2 \mathrm{~kg}$, Factor $B=3 \mathrm{~kg}$, Profit $=$ Rs 28.
38. To solve the problem using simplex algorithm, we first introduce the necessary slack, surplus, and artificial variables. The augmented LPP is stated below:
Maximise $\quad Z=2 x_{1}+4 x_{2}+0 S_{1}+0 S_{2}-M A_{1}-M A_{2}$
Subject to

$$
\begin{aligned}
2 x_{1}+x_{2}+S_{1} & =18 \\
3 x_{1}+2 x_{2}-S_{2}+A_{1} & =30 \\
x_{1}+2 x_{2}+A_{2} & =25 \\
x_{1}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} & \geq 0
\end{aligned}
$$

Solution to the problem is contained in tables.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	2	1	1	0	0	0	18	18
$A_{1}-M$	3	2	0	-1	1	0	30	15
$A_{2}-M$	1	$2 *$	0	0	0	1	25	$25 / 2 \leftarrow$
C_{j}	2	4	0	0	$-M$	$-M$		
Solution	0	0	18	0	30	25		
Δ_{j}	$2+4 M$	$4+4 M$	0	$-M$	0	0		
		\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	$3 / 2$	0	1	0	0	$-1 / 2$	$11 / 2$
A_{1}	$-M$	2^{*}	0	0	-1	1	-1	5
x_{2}	4	$1 / 2$	1	0	0	0	$1 / 2$	$25 / 2$
C_{j}	2	4	0	0	$-M$	$-M$		
Solution	0	$25 / 2$	$11 / 2$	0	5	0		
Δ_{j}	$2 M$	0	0	$-M$	0	$-2 M-2$		
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}
$S_{1} 0$	0	0	1	$3 / 4^{*}$	$-3 / 4$	$1 / 4$	$7 / 4$
$x_{1} 2$	1	0	0	$-1 / 2$	$1 / 2$	$-1 / 2$	$5 / 2$
$x_{2} 4$	0	1	0	$1 / 4$	$-1 / 4$	$3 / 4$	$45 / 4$
C_{j}	2	4	0	0	$-M$	$-M$	
Solution	$5 / 2$	$45 / 4$	0	0	0	0	$Z=185$
Δ_{j}	0	0	0	0	$-M$	$-M-2$	

The Simplex Tableau 3 gives optimal solution as $x_{1}=5 / 2$ and $x_{2}=45 / 4$, with $Z=185$. However, this solution is not unique as a non-basic variable, S_{2}, has $\Delta_{j}=0$. An alternate optimal solution is given here.

Simplex Tableau 4: Optimal Solution (Alternate)

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}
S_{2}	0	0	0	$4 / 3$	1	-1	$1 / 3$
x_{1}	2	1	0	$2 / 3$	0	0	$-1 / 3$
x_{2}	4	0	1	$-1 / 3$	0	0	$2 / 3$
C_{j}	2	4	0	0	$-M$	$-M$	
Solution	$11 / 3$	$533 / 12$	0	$7 / 3$	0		$Z=11 / 3$
Δ_{j}	0	0	0	0	$-M$	-2	

39.

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	4	2	1	0	0	0	0	0	1,600	400
S_{2}	0	6	5	0	1	0	0	0	0	3,000	500
A_{1}	$-M$	1	0	0	0	-1	0	1	0	300	300
A_{2}	$-M$	0	1	0	0	0	-1	0	1	300	-
C_{j}	10	8	0	0	0	0	$-M$	$-M$			
Solution	0	0	1,600	3,000	0	0	300	300			
Δ_{j}	$10+M$	$8+M$	0	0	$-M$	$-M$	0	0			
	\uparrow										

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0	2^{*}	1	0	4	0	-4	0	400
S_{2}	0	0	5	0	1	6	0	-6	0	1,200
x_{1}	10	1	0	0	0	-1	0	1	0	300
A_{2}	$-M$	0	1	0	0	0	-1	0	1	300
C_{j}	10	8	0	0	0	0	$-M$	$-M$		
Solution	300	0	400	1,200	0	0	0	300		
Δ_{j}	0	$8+M$	0	0	10	$-M$	$-M-10$	0		
		\uparrow								

Simplex Tableau 3: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
x_{2}	8	0	1	$1 / 2$	0	2	0	-2	0	200
S_{2}	0	0	0	$-5 / 2$	1	-4	0	4	0	200
x_{1}	10	1	0	0	0	-1	0	1	0	300
A_{2}	$-M$	0	0	$-1 / 2$	0	-2	-1	2^{*}	1	100
C_{j}	10	8	0	0	0	0	$-M$	$-M$		$50 \leftarrow$
Solution	300	200	0	200	0	0	0	100		
Δ_{j}	0	0	$-4-\frac{M}{2}$	0	$-2 M-6$	$-M$	$M+6$	0		
							\uparrow			

Simplex Tableau 4: Non-optimal Solution (Final)

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	A_{1}	A_{2}	b_{i}
x_{2}	8	0	1	0	0	0	-1	0	1
S_{2}	0	0	0	$-3 / 2$	1	0	2	0	-2
x_{1}	10	1	0	$1 / 4$	0	0	$-1 / 2$	0	$-1 / 2$
A_{1}	$-M$	0	01	$-1 / 4$	0	-1	$-1 / 2$	1	$1 / 2$
C_{j}	10	8	0	0	0	0	$-M$	$-M$	50
Solution	250	300	0	0	0	0	50	0	
Δ_{j}	0	0	$\frac{-M-10}{4}$	0	$-M-\frac{M}{2}+3$	0	$-\frac{M}{2}-3$		

In Simplex tableau 4, all Δ_{j} values are less than, or equal to zero. Hence, the solution is final. However, since an artificial variable is a basic variable, it is not feasible. Thus, the given problem has no feasible solution.
40. With slack variables S_{1}, S_{2} and S_{3}, the problem may be written as:

Maximise $\quad Z=50 x_{1}+110 x_{2}+120 x_{3}+0 S_{1}+0 S_{2}+0 S_{3}$
Subject to

$$
\begin{aligned}
3 x_{1}+3 x_{2}+5 x_{3}+S_{1} & =100 \\
x_{1}+3 x_{2}+4 x_{3}+S_{2} & =80 \\
2 x_{1}+4 x_{2}+3 x_{3}+S_{3} & =60 \\
x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	3	3	5^{*}	1	0	0	100	$20 \leftarrow$
$S_{2} 0$	1	3	4	0	0	0	80	20
$S_{3} 0$	2	4	3	0	1	1	60	20
C_{j}	50	110	120	0	0	0		
Solution	0	0	0	100	80	60		
Δ_{j}	50	110	120	0	0	0		
			\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$x_{3} 120$	$3 / 5$	$3 / 5$	1	$1 / 5$	0	0	20	$100 / 3$
$S_{2} 0$	$-7 / 5$	$3 / 5^{*}$	0	$-4 / 5$	1	0	0	0
$S_{3} 0$	$1 / 5$	$11 / 5$	0	$-3 / 5$	0	1	0	0
C_{j}	50	110	120	0	0	0		
Solution	0	0	20	0	0	0	$Z=2,400$	
Δ_{j}	-22	38	0	-24	0	0		
		\uparrow						

Simplex Tableau 3: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$x_{3} 120$	2	0	1	1	-1	0	20	10
$x_{2} 110$	$-7 / 3$	1	0	$-4 / 3$	$5 / 3$	0	0	-
$S_{3} 0$	$16 / 3^{*}$	0	0	$7 / 3$	$-11 / 3$	1	0	0
C_{j}	50	110	120	0	0	0		
Solution	0	0	20	0	0	0	$Z=2,400$	
Δ_{j}	$200 / 3$	0	0	$80 / 3$	$-190 / 3$	0		
	\uparrow							

Simplex Tableau 4: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{3} 120$	0	0	1	$1 / 8$	$3 / 8$	$-3 / 8$	20
$x_{2} 110$	0	1	0	$-5 / 16$	$1 / 16$	$7 / 16$	0
x_{1}	50	1	0	0	$7 / 16$	$-11 / 16$	$1 / 16$
C_{j}	50	110	120	0	0	0	$Z=2,400$
Solution	0	0	20	0	0	0	
Δ_{j}	0	0	0	$-5 / 2$	$-35 / 2$	$-25 / 2$	

CHAPTER 4

1. Minimise

$$
\begin{aligned}
G=10 y_{1}+2 y_{2} & +6 y_{3} \\
y_{1}+2 y_{2}+2 y_{3} & \geq 1 \\
y_{1} & -2 y_{3} \geq-1 \\
y_{1}-y_{2}+3 y_{3} & \geq 3 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

y_{1}, y_{2}, and y_{3} are the dual variables.
2. (a) Minimise

$$
G=10 x_{1}-12 x_{2}
$$

Subject to
(b) Maximise

Subject to

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \geq 10 \\
& x_{1}-3 x_{2} \geq 8 \\
& 2 x_{1}-x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0 \\
& G=-4 y_{1}+13 y_{2}+4 y_{3}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}+2 y_{2}+y_{3} \geq-4 \\
&-2 y_{1}+3 y_{2}-y_{3} \geq 3 \\
& y_{1}, y_{2}, y_{3} \geq 0 \\
& G=4 a+26 b+35 c \\
& a+3 b+10 c \geq 5 \\
& a+8 b+7 c \geq 7 \\
& a, b, c \geq 0
\end{aligned}
$$

3. Minimise

Subject to
where, a, b, c are dual variables.
4. Minimise

Subject to
5. Maximise Subject to
6. Minimise Subject to
7. Maximise Subject to
$G=4 y_{1}+6 y_{2}+5 y_{3}-y_{4}$
$y_{1} \quad+y_{3} \geq 3$
$y_{2}+y_{3}-y_{4} \geq-2$

$$
y_{1}, y_{2}, y_{3}, y_{4} \geq 0
$$

$$
G=5 y_{1}+4 y_{2}
$$

$$
\begin{gathered}
y_{1}+3 y_{2} \leq 2 \\
4 y_{1}+y_{2} \leq 9 \\
2 y_{1}+2 y_{2}=3 \\
y_{1}, y_{2} \geq 0 \\
G=10 y_{1}-15 y_{2}+7 y_{3}
\end{gathered}
$$

$$
y_{1}-4 y_{2}-y_{3} \geq 3
$$

$$
y_{1}+y_{2}+y_{3} \geq 4
$$

$$
y_{1}+y_{2}+y_{3}=7
$$

$$
y_{1}, y_{2} \geq 0 y_{3}: \text { unrestricted in sign }
$$

$G=2 y_{1}^{*}+6 y_{2}-3 y_{3}$

$$
\begin{aligned}
3 y_{1}^{*}+4 y_{2}-4 y_{3} & \leq 4 \\
y_{1}^{*}+3 y_{2}-2 y_{3} & \leq 1 \\
y_{2}, y_{3} & \geq 0 ; \quad y_{1}^{*}: \text { unrestricted in sign }
\end{aligned}
$$

8. (a) The dual is:

Minimise $\quad G=30 y_{1}+10 y_{2}+0 y_{3}$
Subject to

$$
\begin{aligned}
2 y_{1}+y_{2}+y_{3} & \geq 2 \\
3 y_{1}+2 y_{2}-y_{3} & \geq 3 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

(b) From the given information,

Solution	Primal: Z-value	Dual: G-value
1	$2 \times 10+3 \times 10 / 3=30$	$30 \times 0+10 \times 1+0 \times 1=10$
2	$2 \times 20+3 \times 10=70$	$30 \times 1+10 \times 4+0 \times 1=70$
3	$2 \times 10 / 3+3 \times 10 / 3=50 / 3$	$30 \times 1+10 \times 5 / 3+0 \times 1 / 3=200 / 3$

Solution 2 is optimal, therefore, since the values of Z and G are equal for this.
(c) The given problem is restated here with the following adjustments:
(i) Let $x_{3}=x_{4}-x_{5}$, where $x_{4} \geq 0, x_{5} \geq 0$.
(ii) The third constraint is multiplied by -1 to convert into \leq type.
(iii) The first constraint is replaced by a pair of constraints as $x_{1}+x_{2}+3 x_{3} \leq 10$ and $x_{1}+x_{2}+3 x_{3} \geq 10$.

The second of these is then multiplied by -1 . The multiplication converts the constraint into \leq type.
The primal and dual are stated here:
Primal:
Maximise
Subject to

$$
\begin{gathered}
Z=7 x_{1}+5 x_{2}-2 x_{4}+2 x_{5} \\
x_{1}+x_{2}+3 x_{4}-3 x_{5} \leq 10 \\
-x_{1}-x_{2}-3 x_{4}+3 x_{5} \leq-10 \\
2 x_{1}-x_{2}+3 x_{4}-3 x_{5} \leq 16 \\
-3 x_{1}-x_{2}+2 x_{4}-2 x_{5} \leq 0 \\
x_{1}, x_{2}, x_{4}, x_{5} \geq 0
\end{gathered}
$$

Dual:
Minimise

$$
G=10 y_{1}+10 y_{2}+16 y_{3}+0 y_{4}
$$

Subject to

$$
\begin{aligned}
y_{1}-y_{2}+2 y_{3}-3 y_{4} & \geq 7 \\
y_{1}-y_{2}-y_{3}-y_{4} & \geq 5 \\
3 y_{1}-3 y_{2}+3 y_{3}+2 y_{4} & \geq-2 \\
-3 y_{1}+3 y_{2}-3 y_{3}-2 y_{4} & \geq 2 \\
y_{1}, y_{2}, y_{3}, y_{4} & \geq 0
\end{aligned}
$$

Now, putting $y_{1}-y_{2}=y$ and combining the last two constraints to replace by one involving ' $=$ ' sign, we can rewrite the dual as:

Minimise

$$
G=10 y+16 y_{3}+0 y_{4}
$$

Subject to

$$
\begin{aligned}
y+2 y_{3}-3 y_{4} & \geq 7 \\
y-y_{3}-y_{4} & \geq 5 \\
3 y+3 y_{3}+2 y_{4} & =2 \\
y_{3}, y_{4} & \geq 0, y \text { unrestricted in sign }
\end{aligned}
$$

9. (i) The resource availability in the three production processes I, II and III is $15 \times 200=3,000 ; 30 \times 200=$ 6,000 ; and $15 \times 200=3,000$ hours respectively. If x_{1}, x_{2} and x_{3} be the output of the models A, B and C respectively, the problem is:
Maximise $\quad Z=7,500 x_{1}+15,000 x_{2}+30,000 x_{3}$
Subject to

$$
60 x_{1}+100 x_{2}+200 x_{3} \leq 3,000
$$

$$
\begin{aligned}
100 x_{1}+240 x_{2}+360 x_{3} & \leq 6,000 \\
80 x_{1}+100 x_{2}+160 x_{3} & \leq 3,000 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	60	100	200	1	0	0	3,000
S_{2}	0	100	240	360	0	1	0	6,000
S_{3}	0	80	100	160	0	0	1	$30 / 3$
C_{j}	7,500	15,000	30,000	0	0	0	$75 / 4$	
Solution $\quad 0$	0	0	0	3,000	6,000	3,000	$Z=0$	
Δ_{j}	7,500	15,000	30,000	0	0	0		
			\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis		x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$x_{3} 30,000$	$3 / 10$	$1 / 2$	1	$1 / 200$	0	0	15	30	
S_{2}	0	-8	60	0	$-9 / 5$	1	0	600	10
S_{3}	0	32	20	0	$-4 / 5$	0	1	600	30
C_{j}	7,500	15,000	30,000	0	0	0			
Solution	0	0	15	0	600	600	$Z=450,000$		
Δ_{j}	$-1,500$	0	0	-150	0	0			

From Tableau 2, the optimal product mix is: Models A and B : none, and Model C : 15 cars. Maximum profit obtainable is Rs 450,000 .
(ii) The shadow prices of the resources are:

Process I: Rs 150/worker-day
Process II and III: nil
Range of validity:
Process I : $0-10,000 / 3[3,000-3,000,3,000-(-100 / 3)]$
Process II : 5,400- $\quad[6,000-600]$
Process III : $2,400-\infty \quad[3,000-600]$
(iii) Let y_{1}, y_{2} and y_{3} be the dual variables. The dual is:

Minimise $\quad G=3,000 y_{1}+6,000 y_{2}+3,000 y_{3}$
Subject to

$$
\begin{aligned}
60 y_{1}+100 y_{2}+80 y_{3} & \geq 7,500 \\
100 y_{1}+240 y_{2}+100 y_{3} & \geq 15,000 \\
200 y_{1}+360 y_{2}+160 y_{3} & \geq 30,000 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

Optimal solution to the dual is: $y_{1}=150, y_{2}=y_{3}=0$.
(iv) The optimal solution in Simplex Tableau 2 is not unique. An alternate optimal is given in Simplex Tableau 3.

Simplex Tableau 3: Alternate Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{3} 30,000$	$11 / 30$	0	1	$1 / 50$	$-1 / 120$	0	10
$x_{2} 15,000$	$-2 / 15$	1	0	$-3 / 100$	$1 / 60$	0	10
S_{3}	0	$104 / 3$	0	0	$-1 / 5$	$-1 / 3$	1
C_{j}	7,500	15,000	30,000	0	0	0	400
Solution	0	10	10	0	0	400	$Z=450,000$
Δ_{j}	$-1,500$	0	0	-150	0	0	

10. (a) Let x_{1}, x_{2} and x_{3} be the number of Tables, Chairs and Book cases to be produced. The LPP is:

Maximise $Z=30 x_{1}+20 x_{2}+12 x_{3}$
Subject to

$$
\begin{aligned}
8 x_{1}+4 x_{2}+3 x_{3} & \leq 640 \\
4 x_{1}+6 x_{2}+2 x_{3} & \leq 540 \\
x_{1}+x_{2}+x_{3} & \leq 100 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

(b) Let S_{1}, S_{2} and S_{3} be the slack variables.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	8	4	3	1	0	0	640
S_{2}	0	4	6	2	0	1	0	540
S_{3}	0	1	1	1	0	0	135	
C_{j}	30	20	12	0	0	0	100	100
Solution	0	0	0	640	540	100	$Z=0$	
Δ_{j}	30	20	12	0	0	0		
	\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{1}	30	1	$1 / 2$	$3 / 8$	$1 / 8$	0	0	80
S_{2}	0	0	4	$1 / 2$	$-1 / 2$	1	0	220
S_{3}	0	0	$1 / 2$	$5 / 8$	$-1 / 8$	0	1	50
C_{j}	30	20	12	0	0	0	40	
Solution	80	0	0	0	220	20	$Z=2,400$	
Δ_{j}	0	5	$3 / 4$	$-15 / 4$	0	0		
		\uparrow						

Simplex Tableau 3: Optimal Solution

Basis		x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}
x_{1}	30	1	0	$-1 / 4$	$1 / 4$	0	-1
S_{2}	0	0	0	$-9 / 2$	$1 / 2$	1	-8
x_{2}	20	0	1	$5 / 4$	$-1 / 4$	0	2
C_{j}	30	20	12	0	0	0	40
Solution	60	40	0	0	60	0	$Z=2,600$
Δ_{j}	0	0	$-11 / 2$	$-5 / 2$	0	-10	

Optimal product mix is: Tables $=60$, Chairs $=40$, Book Cases $=0$.
Maximum profit contribution $=$ Rs 2,600 .
(c) Shadow prices of resources:

Timber: Rs 2.50 per cubic foot
Assembly Department man-hours: Nil
Finishing Department $=$ Rs 10 per man-hour
(d) Sensitivity of the optimal solution:

For Tables $\left(x_{1}\right)$: Rs $20-40$ [$\left.30-10,30+10\right]$
For Chairs $\left(x_{2}\right)$: Rs 15.60-30 [20 - 4.5, $20+10$]
For Resources:
Timber: [640-120, $640-(-160)]$ i.e. $520-800$
Assembly: [540-60, ∞]
i.e. $480-\infty$

Finishing: $[100-20,100-(-7.5)$ i.e. $80-107.50$
(e) Other information:

1. The optimal product-mix does not include book cases. Its production will result in a net loss of Rs $11 / 2$ per unit.
2. The optimal solution is unique.
3. (a) Let x_{1} and x_{2} be the output of products A and B respectively.

Maximise $\quad Z=800 x_{1}+500 x_{2}$
Subject to $\quad 2 x_{1}+3 x_{2} \leq 42$ $7 x_{1}+7 x_{2} \leq 70$ $7 x_{1}+5 x_{2} \leq 70$
$x_{1}, x_{2} \geq 0$
With slack variables S_{1}, S_{2} and S_{3}, the solution follows:
Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	3	1	0	0	42
S_{2}	0	7	7	0	1	0	70
S_{3}	0	7	5	0	0	1	10
C_{j}	800	500	0	0	0		10
Solution	0	0	42	70	70		
Δ_{j}	800	500	0	0	0		
	\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}
S_{1}	0	0	1	1	$-2 / 7$	0
x_{1}	800	1	1	0	$1 / 7$	0
S_{3}	0	0	-2	0	-1	1
C_{j}	800	500	0	0	0	0
Solution	10	0	22	0	0	$Z=8,000$
Δ_{j}	0	-300	0	$-800 / 7$	0	

Optimum output : Product A-10 units
Product B - Nil
with y_{1}, y_{2} and y_{3} as the dual variables, the dual is:

Minimise $G=42 y_{1}+70 y_{2}+70 y_{3}$
Subject to

$$
\begin{aligned}
& 2 y_{1}+7 y_{2}+7 y_{3} \geq 800 \\
& 3 y_{1}+7 y_{2}+5 y_{3} \geq 500 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

The optimal solution is degenerate. The third of the constraints here is redundant in terms of the solution obtained. Accordingly, the shadow price of zero for department III capacity is valid from 70 to infinity, while for department II capacity, the shadow price of Rs 114.29 is valid from 0 to 70 . Any reduction in capacity of department upto 22 hours and any increase in it would not cause a change in profit.
12. (a) From the given information, the LPP may be stated as:
Maximise
Subject to

$$
\begin{aligned}
Z=124 x+80 y & \\
150 x+90 y & \leq 13,500 \\
100 x+120 y & \leq 12,000 \\
y & \leq 75 \\
x, y & \geq 0
\end{aligned}
$$

The constraints are plotted graphically in adjacent figure. The feasible region is bounded by the points $O A B C D$. An evaluation of these points yields optimal solution at C where $x=60$ and $y=50$. Thus, we have

Revised contribution

$$
=60 \times 124+50 \times 80=\text { Rs } 11,440
$$

Current contribution

$$
\begin{aligned}
=30 \times 124+75 \times 80 & =\text { Rs } 9,720 \\
& =\overline{\text { Rs } \quad 1,720}
\end{aligned}
$$

\therefore Increase

(b) Since the sale of y is restricted to 75 , increased capacity may be used to maximise production of product X. From figure above, the maximum output of $X=120$ units.

Hours required
Deptt. 1: $\frac{120 \times 150}{60}$
300

200
Hours available
225

200
Deptt. 2: $\frac{120 \times 100}{60}$
Contribution $=120 \times 124=$
Rs 14,880.0
less Additional cost $=75 \times 0.5=$

$$
\begin{array}{r}
37.5 \\
\hline 14,842.5 \\
11,440.0 \\
\hline 3,402.5
\end{array}
$$

less	Contribution per (a) above	$\overline{14,842.5}$
	Increased contribution	$\underline{11,440.0}$
		$3,402.5$

Additional hours

Suggestion: Increase deptt. 1 hour by 75 .
(c)

Total hours
Hours needed for 30 units of Y
Hours available for X
Hours per unit of X
Output of X

Department 1

225
45
180
2.5

72 units

Department 2
\qquad
5/3
84 units

$$
\begin{aligned}
& \text { Thus, maximum output of } X=72 \text { units } \\
& \text { Revised contribution }=124 \times 72+80 \times 30 \\
& =\text { Rs } 11,328 \\
& \text { Contribution as per }(a)=\text { Rs } 11,440 \\
& \therefore \quad \text { Decrease in contribution }=\text { Rs 11,440-11,328 } \\
& \text { = Rs } 112
\end{aligned}
$$

Now,

$$
\text { Sales quota for } Y=75
$$

$$
\text { Production as per }(\mathrm{a})=50
$$

$$
\text { Unsold quota }=25
$$

Thus, under the product plan determined in (a), 25 units of the quota remain unsold. Since the company derives no benefit from this element of the quota at present, it could be sold for a minimum price of zero. The remaining 20 units of quota ($50-30$) should be sold to negate the decrease in contribution of Rs 112.

Thus, minimum price $=\frac{\text { Rs } 112}{20}=$ Rs 5.60 per unit.
13. Let x_{1}, x_{2} and x_{3} be the number of units of lamps A, B and C produced. Using the given information, we may state the LPP as follows:
Maximise

$$
\begin{gathered}
Z=120 x_{1}+190 x_{2}+210 x_{3} \\
0.1 x_{1}+0.2 x_{2}+0.3 x_{3} \leq 80 \\
0.2 x_{1}+0.3 x_{2}+0.4 x_{3} \leq 120 \\
0.1 x_{1}+0.1 x_{2}+0.1 x_{3} \leq 100 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Subject

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0.1	0.2	0.3^{*}	1	0	0	80
S_{2}	0	0.2	0.3	0.4	0	1	0	120
S_{3}	0	0.1	0.1	0.1	0	0	1	100
C_{j}	120	190	210	0	0	0	1,000	
Solution	0	0	0	80	120	100	$Z=0$	
Δ_{j}	120	190	210	0	0	0		
			\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis		x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$b_{i} / a_{i j}$								
x_{3}	210	0.33	0.67	1.00	3.33	0.00	0.00	266.67
S_{2}	0	0.07	0.03^{*}	0.00	-1.33	1.00	0.00	13.33
S_{3}	0	0.07	0.03	0.00	-0.33	0.00	1.00	73.33
C_{j}	120	190	210	0	0	0		
Solution	0	0	266.67	0	13.33	73.33	$Z=56,000$	
Δ_{j}	50	50	0	700	0	0		
		\uparrow						

Simplex Tableau 3: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{3}	210	-1.00	0.00	1.00	30.00^{*}	-20.00	0.00	0.00
x_{2}	190	2.00	1.00	0.00	-40.00	30.00	0.00	400.00
S_{3}	0	0.00	0.00	0.00	1.00	-1.00	1.00	60.00
C_{j}	120	190	210	0	0	0		
Solution	0	400	0	0	0	60	$Z=76,000$	
Δ_{j}	-50	0	0	1,300	$-1,500$	0		
				\uparrow				

Simplex Tableau 4: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	
S_{1}	0	-0.03	0.00	0.03	1.00	-0.67	0.00	0.00
x_{2}	190	0.67	1.00	1.33	0.00	3.33	0.00	400.00
S_{3}	0	0.03	0.00	-0.03	-0.00	-0.33	1.00	60.00
C_{j}	120	190	210	0	0	0		
Solution	0	400	0	0	0	60	$Z=76,000$	
Δ_{j}	-6.67	0.00	-43.33	0.00	-633.33	0.00		

Thus, optimal product mix is: Model $A-$ nil, Model $B — 400$ and Model $C-n i l$.
The shadow prices of the resources are given by Δ_{j} values for the slack variables in Simplex Tableau 4.
These are: Assembly: nil; Wiring: Rs 633.33 per hour, and Packaging: nil.
Dual: Let y_{1}, y_{2} and y_{3} be the dual variables. The dual is:
Minimise $\quad G=80 y_{1}+120 y_{2}+100 y_{3}$
Subject to $\quad 0.1 y_{1}+0.2 y_{2}+0.1 y_{3} \geq 120$

$$
\begin{aligned}
0.2 y_{1}+0.3 y_{2}+0.1 y_{3} & \geq 190 \\
0.3 y_{1}+0.4 y_{2}+0.1 y_{3} & \geq 210 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

For the optimal solution to the primal, we can obtain optimal values of the dual variables as:

$$
y_{1}=0, y_{2}=633.33 \text { and } y_{3}=0
$$

With these, the objective function value of the dual problem is:

$$
G=80 \times 0+120 \times 633.33+100 \times 0=76,000
$$

which is identical to the objective function value of the dual.
14. Let the output of waste cans, filing cabinets, correspondence boxes, and lunch boxes be x_{1}, x_{2}, x_{3} and x_{4} respectively. From the given information, we may state the LPP as follows:
Maximise $\quad Z=20 x_{1}+400 x_{2}+90 x_{3}+20 x_{4} \quad$ Revenue
Subject to $\quad 6 x_{1}+2 x_{3}+3 x_{4} \leq 225$

$$
10 x_{2} \leq 300
$$

Sheet metal A
Sheet metal B
Labour
Dual: The dual, with variables y_{1}, y_{2} and y_{3} is:
Minimise

$$
\begin{aligned}
G=225 y_{1}+300 y_{2}+190 y_{3} & \\
6 y_{1}+4 y_{3} & \geq 20 \\
10 y_{2}+8 y_{3} & \geq 400 \\
2 y_{1}+2 y_{3} & \geq 90 \\
3 y_{1}+\quad 3 y_{3} & \geq 20 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	6	0	2	3	1	0	0	225	-
$S_{2} 0$	0	10	0	0	0	1	0	300	30
$S_{3} 0$	4	8^{*}	2	3	0	0	1	190	$95 / 4 \leftarrow$
C_{j}	20	400	90	20	0	0	0		
Solution	0	0	0	0	225	300	190	$Z=0$	
Δ_{j}	20	400	90	20	0	0	0		
		\uparrow							

Simplex Tableau 2: Optimal Solution

| Basis | | x_{1} | x_{2} | x_{3} | x_{4} | S_{1} | S_{2} | S_{3} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |b_{i}

Thus, the optimal solution is: $x_{1}=0, x_{2}=95 / 4, x_{3}=x_{4}=0$, for $Z=9,500$. From the Δ_{j} row of the tableau, the optimal values of the dual variables may be obtained from the columns of slack variables. Thus, $y_{1}=0$, $y_{2}=0$, and $y_{3}=50$, and $G=9,500$, the same as that of the primal problem.
15. (a) To obtain the objective function (to maximise total contribution), we first need to calculate contribution margin for each tonne of the different products. This, in turn, requires the calculation of cost of materials. The material cost per tonne is shown calculated below:

$$
\begin{aligned}
& X_{1}: 0.1 \times 150+0.1 \times 60+0.2 \times 120+0.6 \times 10=\text { Rs } 51 \\
& X_{2}: 0.1 \times 150+0.2 \times 60+0.1 \times 120+0.6 \times 10=\text { Rs } 45 \\
& X_{3}: 0.1 \times 150+0.1 \times 60+0.1 \times 120+0.6 \times 10=\text { Rs } 54
\end{aligned}
$$

Now, since Contribution $=$ Selling price $-($ Material cost + Manufacturing cost $)$, we have

Product

X_{1}
X_{2}
X_{3}

Contribution per tonne
$83-(51+11)=$ Rs 21
$81-(45+11)=$ Rs 25
$81-(54+11)=$ Rs 16

The LPP may be stated as follows:

$$
\begin{array}{ll}
\text { Maximise } & Z=21 X_{1}+25 X_{2}+16 X_{3} \\
\text { Subject to } & 0.1 X_{1}+0.1 X_{2}+0.2 X_{3} \leq 1,200 \\
& 0.1 X_{1}+0.2 X_{2}+0.1 X_{3} \leq 2,000 \\
& 0.2 X_{1}+0.1 X_{2}+0.1 X_{3} \leq 2,200 \\
& X_{1}, X_{2}, X_{3} \geq 0
\end{array}
$$

(b) The slack variables X_{4}, X_{5} and X_{6} represent the amount of scarce resources, namely, nitrate, phosphate, and potash respectively, remaining unutilised. They convert inequalities into equations. Thus,

$$
\begin{aligned}
& 0.1 X_{1}+0.1 X_{2}+0.2 X_{3}+X_{4}=1,200 \\
& 0.1 X_{1}+0.2 X_{2}+0.1 X_{3}+X_{5}=2,000 \\
& 0.2 X_{1}+0.1 X_{2}+0.1 X_{3}+X_{6}=2,200 \\
& X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6} \geq 0
\end{aligned}
$$

Simplex Tableau

Basis	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	b_{i}
X_{4}	0	0.1	0.1	0.2	1	0	0
X_{5}	0	0.1	0.2	0.1	0	1	0
X_{6}	0	0.2	0.1	0.1	0	0	1

(c) The entering variable is the one with largest Δ_{j} value. In this case, it is X_{2}, with $\Delta_{j}=25$. To determine the leaving variable, we first calculate replacement ratios $b_{i} / a_{i j}$ (using the $a_{i j}$ values of the entering variable). This gives the values as $1,200 / 0.1=12,000 ; 2,000 / 0.2=10,000$; and $2,200 / 0.1=22,000$. The smallest non-negative ratio being 10,000 , the leaving variable is X_{5}.
(d) It is evident from the given table that
(i) Optimal product-mix is: $\quad 4,000$ tonnes of X_{1}

$$
8,000 \text { tonnes of } X_{2}
$$ nil of X_{3}

(ii) Total contribution $=21 \times 4,000+25 \times 8,000+16 \times 0=$ Rs 284,000 per month
(iii) The optimal mix uses all the nitrate and phosphate but leaves 600 tonnes of potash unused.
(iv) The shadow prices of the resources are:

Nitrate	: Rs 170 per tonne
Phosphate	: Rs 40 per tonne
Potash	: Nil

(v) Each tonne of X_{3} produced would reduce the contribution by Rs 22.
(e) (i) Since nitrate availability is constraining the solution, any increase in its availability will change the optimal solution. The elements in the column headed X_{4} in the final tableau show the changes which will result from each extra tonne of nitrate per month. With 100 extra tonnes per month, the new values will be

$$
\begin{array}{lrr}
X_{1}: & 4,000+(20 \times 100)= & 6,000 \\
X_{2}: & 8,000+(-10 \times 100)= & 7,000 \\
X_{6}: & 600+(-3 \times 100)= & 300 \\
Z: & 284,000+(170 \times 100)= & 301,000
\end{array}
$$

Thus, the new optimal solution is to make 6,000 tonnes of X_{1} and 7,000 tonnes of X_{2} per month for a contribution of Rs 301,000 .
(ii) Under the current optimal policy, X_{3} is not produced, as its production would reduce the total contribution at the rate of Rs 22 per tonne. The changes in the solution for each tonne of X_{3} produced and sold every month are given by elements in the column headed X_{3}, of the optimal solution tableau. The changes resulting from 200 tonnes would be:

$$
\begin{array}{lrr}
X_{1}: & 4,000-(3 \times 200)= & 3,400 \\
X_{2}: & 8,000-(-1 \times 200)= & 8,200 \\
X_{6}: & 600-(-0.4 \times 200)= & 680 \\
Z: & 284,000-(22 \times 200)= & 279,600
\end{array}
$$

Thus, production of 200 tonnes of X_{3} would mean production of 3,400 tonnes of $X_{1}, 8,200$ tonnes of X_{2} (besides, of course, 200 tonnes of X_{3}) for a contribution of Rs 279,600.
16. Variable

Solution
Δ_{j}

y_{1}	y_{2}	y_{3}
0	$4 / 15$	$1 / 15$
$-80 / 3$	0	0

y_{4}	y_{5}	y_{6}
0	0	0
$-160 / 3$	$-8 / 3$	$-20 / 3$

Objective function value $=76 / 3$.
17. (a) Let the quantity of scrap metal purchased from suppliers X and Y be x_{1} and x_{2} quintals, respectively. With the given information, the LPP may be stated as:
Minimise $\quad C=2 x_{1}+4 x_{2}$
Subject to

$$
\begin{aligned}
x_{1}+x_{2} & \geq 200 \\
\frac{1}{4} x_{1}+\frac{3}{4} x_{2} & \geq 100 \\
\frac{1}{10} x_{1}+\frac{1}{5} x_{2} & \leq 35
\end{aligned}
$$

$$
x_{1}, x_{2} \geq 0
$$

(b) The dual of the problem is given below:

Maximise

$$
Z=200 y_{1}+100 y_{2}-35 y_{3}
$$

Subject to

$$
\begin{aligned}
y_{1}+\frac{1}{4} y_{2}+\frac{1}{10} y_{3} & \leq 2 \\
y_{1}+\frac{3}{4} y_{2}+\frac{1}{5} y_{3} & \leq 4 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	y_{1}	y_{2}	y_{3}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	1^{*}	$1 / 4$	$-1 / 10$	1	0	2
S_{2}	0	1	$3 / 4$	$-1 / 5$	0	1	2
C_{j}	200	100	-35	0	0	4	
Solution	0	0	0	2	4		
Δ_{j}	200	100	-35	0	0		
	\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis		y_{1}	y_{2}	y_{3}	S_{1}	S_{2}	b_{i}
$y_{1} 200$	1	$1 / 4$	$-1 / 10$	1	0	2	$b_{i} / a_{i j}$
S_{2}	0	0	$1 / 2 *$	$-1 / 10$	-1	1	2
C_{j}	200	100	-35	0	0		4
Solution	2	0	0	0	2	$Z=400$	
Δ_{j}	0	50	-15	-200	0		
	\uparrow						

Simplex Tableau 3: Optimal Solution

Basis	y_{1}	y_{2}	y_{3}	S_{1}	S_{2}	b_{i}
$y_{1} 200$	1	0	$-1 / 10$	$3 / 2$	$-1 / 2$	1
$y_{2} 100$	0	1	$-1 / 5$	-2	2	4
C_{j}	200	100	-35	0	0	
Solution	1	4	0	0	0	$Z=600$
Δ_{j}	0	0	-15	-100	-100	

In Simplex Tableau 3, the Δ_{j} values of the slack variables are equal to -100 and -100 . Thus, the solution to the primal problem as would minimise the total cost is:

$$
x_{1}=100 \text { and } x_{2}=100
$$

which gives total cost as $2 \times 100+4 \times 100=$ Rs 600
18. (a) The linear programming model, using the given notation, is stated below:

Maximise $\quad Z=400 x_{1}+200 x_{2}+100 x_{3} \quad$ Contribution
Subject to

$$
\begin{aligned}
2 x_{1}+3 x_{2}+2.5 x_{3} & \leq 1,920 & & \text { Process } 1 \\
3 x_{1}+2 x_{2}+2 x_{3} & \leq 2,200 & & \text { Process } 2 \\
x_{1} & \leq 200 & & \text { Alpha sales } \\
x_{1}, x_{2}, x_{3} & \geq 0 & &
\end{aligned}
$$

(b) Initial simplex tableau is given here:

Initial Simplex Tableau

Basis		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}

The slack variable x_{4} represents unused hours of process $1 ; x_{5}$ represents unused hours of process 2 ; and x_{6} indicates the unused sales potential.
(c) The b_{i} column gives the optimum production plan:

Alpha $\left(x_{1}\right)$: 200 units; Beta $\left(x_{2}\right): 506.7$ units and Gamma $\left(x_{3}\right)$: nil. The total contribution margin, $Z=$ Rs $181,333.3$
Resource utilisation is:
Process 1: all hours used.
Process 2: 586.7 hours unused.
The shadow prices in the last row indicate the following:
(i) $x_{3}: 66.7$ implies that any Gamma produced would lead to a fall of Rs 66.67 per unit.
(ii) x_{4} : 66.7 means that extra hours in process 1 would increase contribution by Rs 66.67 per hour.
(iii) x_{6} : 266.7 signifies that every Alpha sale above 200 would increase contribution by Rs 266.7.
(d) (i) For an increase of 20 hours in process 1, we may use values under column x_{4} as multipliers to get the revised values. This is shown below:

Variable	Original value	Multiplier	Revised value	
x_{2}	506.7	0.33	$506.7+0.33 \times 20=$	513.3
x_{5}	586.7	-0.67	$586.7+(-0.67 \times 20)=$	573.3
x_{1}	200.0	0.00	$200.0+(0 \times 20)=$	200.0
Z	$181,333.3$	66.70	$181,333.3+(66.7 \times 20)=$	$182,666.7$

Thus, an increase of 20 hours in process 1 leads to an increase in contribution by Rs 1,333.4. Output of Beta (x_{2}) increases by 6.6 units and 13.4 more hours of process 2 will be used.
(ii) For an increase of 10 units Alpha $\left(x_{1}\right)$ production, we used values given in column headed x_{6}.

Variable	Original value	Multiplier	Revised value	
x_{2}	506.7	-0.67	$506.7+(-0.67 \times 10)=$	500.3
x_{5}	586.7	-0.67	$586.7+(-0.67 \times 10)=$	570.3
x_{1}	200.0	1.00	$200.0+(1 \times 10)=$	210.0
Z	$181,333.3$	266.70	$181,333.3+266.7 \times 10=184,000.3$	

Accordingly, contribution increases by Rs 2,667 to Rs 184,000 .3. Production of Beta (x_{2}) increases by 6.7 units, production of alpha by 10 units, and 16.7 more process 2 hours will be used.
(iii) For introducing 10 units of Gamma, the contribution reduces by Rs 666.7 to Rs $180,666.7$, output of Beta $\left(x_{2}\right)$ falls by 8.3 units, and 3.3 more process 2 hours will be used. The calculations, using $a_{i j}$ values of column x_{3}, are given below:

Variable	Original value	Multiplier	Revised value	
x_{2}	506.7	0.83	$506.7-(0.83 \times 10)=$	498.4
x_{5}	586.7	0.33	$586.7-(0.33 \times 10)=$	583.4
x_{1}	200.0	0.00	$200.0-(0 \times 10)=$	200.0
Z	$181,333.3$	66.67	$181,333.3-66.67 \times 10=180,666.6$	

19. (a) Let x_{1} and x_{2} be the number of units of foods F_{1} and F_{2} respectively, purchased by the housewife. The LPP is:
Minimise
Subject to

$$
\begin{aligned}
& Z=3 x_{1}+2 x_{2} \\
& \text { Total cost } \\
& 14 x_{1}+4 x_{2} \geq 60 \\
& 10 x_{1}+8 x_{2} \geq 40 \\
& 4 x_{1}+16 x_{2} \geq 32 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Vitamin A
Vitamin B
Vitamin C
(b) Let y_{1}, y_{2} and y_{3} be the dual variables. The dual is:

Maximise $\quad G=60 y_{1}+40 y_{2}+32 y_{3}$
Subject to

$$
\begin{array}{r}
14 y_{1}+10 y_{2}+4 y_{3} \leq 3 \\
4 y_{1}+8 y_{2}+16 y_{3} \leq 2 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

The optimal values of the dual variables y_{1}, y_{2} and y_{3} would indicate the imputed values of one unit of each of vitamins A, B and C respectively. Obviously, the total value imputed to 14 units of $A, 10$ units of B, and 4 units of C should not exceed Rs 3 because each unit of food F_{1} contains as much quantity of the three vitamins and costs Rs 3. Similarly, a unit of food F_{2} contains, respectively, 4, 8 and 16 units of vitamins A, B and C, and costs Rs 2 . Thus, the combined imputed value of these quantities of vitamins should not exceed Rs 2 . The total value would equal $60 y_{1}+40 y_{2}+32 y_{3}$, the maximum.
(c) The solution to the dual is given here.

Simplex Tableau 1: Non-optimal Solution

Basis	y_{1}	y_{2}	y_{3}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	14^{*}	10	4	1	0	3
S_{2}	0	4	8	16	0	1	$3 / 14$
C_{j}	60	40	32	0	0	$1 / 2$	
Solution	0	0	0	3	2		
Δ_{j}	60	40	32	0	0		
	\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis		y_{1}	y_{2}	y_{3}	S_{1}	S_{2}	b_{i}
y_{1}	60	1	$5 / 7$	$2 / 7$	$1 / 14$	0	$3 / 14$
S_{2}	0	0	$36 / 7$	$104 / 7^{*}$	$-2 / 7$	1	$3 / 4$
C_{j}	60	40	32	0	0		$1 / 13$
Solution	$3 / 14$	0	0	0	$8 / 7$	$G=90 / 7$	
Δ_{j}	0	$-20 / 7$	$104 / 7$	$-30 / 7$	0		
			\uparrow				

Simplex Tableau 3: Optimal Solution

Basis	y_{1}	y_{2}	y_{3}	S_{1}	S_{2}	b_{i}
y_{1}	60	1	$8 / 13$	0	$1 / 13$	$-1 / 52$
y_{3}	32	0	$9 / 26$	1	$-1 / 52$	$7 / 104$
C_{j}	60	40	32	0	0	$1 / 13$
Solution	$5 / 26$	0	$1 / 13$	0	0	$G=14$
Δ_{j}	0	-8	0	-4	-1	

Thus, optimal solution to this problem is:

$$
y_{1}=5 / 26, y_{2}=0, \text { and } y_{3}=1 / 13
$$

The optimal values of the variables of the primal problem are obtained from the Δ_{j} row as follows:

$$
x_{1}=4 \quad \text { and } \quad x_{2}=1, \quad \text { and } \quad Z=3 \times 4+2 \times 1=14
$$

The objective function values for the primal and the dual are both seen to be equal, at 14 .
20. Let the output be: x_{1} cases of 60 -watt soft-light bulbs, x_{2} cases if 60 -watt regular bulbs and x_{3} cases of 100 -watt bulbs. The LPP is:
Maximise $\quad Z=70 x_{1}+50 x_{2}+50 x_{3}$
Subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \leq 25 \\
2 x_{1}+x_{2}+x_{3} & \leq 40 \\
x_{1}+x_{2} & \leq 25 \\
x_{3} & \leq 60 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Let S_{1}, S_{2}, S_{3} and S_{4} be the slack variables.
Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	1	1	1	1	0	0	0	25	25
S_{2}	0	2^{*}	1	1	0	1	0	0	40	20
S_{3}	0	1	1	0	0	0	1	0	25	25
S_{4}	0	0	0	1	0	0	0	1	60	-
C_{j}	70	50	50	0	0	0	0			
Solution	0	0	0	25	40	25	60	$Z=0$		
Δ_{j}	70	50	50	0	0	0	0			
	\uparrow									

Simplex Tableau 2: Non-optimal Solution

| Basis | x_{1} | x_{2} | x_{3} | S_{1} | S_{2} | S_{3} | S_{4} | b_{i} | $b_{i} / a_{i j}$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| S_{1} | 0 | 0 | $1 / 2^{*}$ | $1 / 2$ | 1 | $-1 / 2$ | 0 | 0 | 5 | $10 \leftarrow$ |
| x_{1} | 70 | 1 | $1 / 2$ | $1 / 2$ | 0 | $1 / 2$ | 0 | 0 | 20 | 40 |
| S_{3} | 0 | 0 | $1 / 2$ | $-1 / 2$ | 0 | $-1 / 2$ | 1 | 0 | 5 | 10 |
| S_{4} | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 60 | - |
| C_{j} | 70 | 50 | 50 | 0 | 0 | 0 | 0 | | | |
| Solution | 20 | 0 | 0 | 5 | 0 | 5 | 60 | $Z=1,400$ | | |
| Δ_{j} | 0 | 15 | 15 | 0 | -35 | 0 | 0 | | | |
| | | | | | | | | | | |

Simplex Tableau 3: Optimal Solution

Basis		x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}
x_{2}	50	0	1	1	2	-1	0	0	10
x_{1}	70	1	0	0	-1	1	0	0	15
S_{3}	0	0	0	-1	-1	0	1	0	0
S_{4}	0	0	0	1	0	0	0	1	60
C_{j}	70	50	50	0	0	0	0		
Solution	15	10	0	0	0	0	60	$Z=1,550$	
Δ_{j}	0	0	0	-30	-20	0	0		

The solution in Simplex Tableau 3 is optimal. This is:
$x_{1}=15, x_{2}=10$ and $x_{3}=0$. The solution is degenerated.
The dual is:
Minimise

$$
\begin{aligned}
& G=25 y_{1}+40 y_{2}+25 y_{3}+60 y_{4} \\
& y_{1}+2 y_{2}+y_{3} \geq 70 \\
& y_{1}+y_{2}+y_{3} \geq 50 \\
& y_{1}+y_{2}+y_{4} \geq 50 \\
& y_{1}, y_{2}, y_{3}, y_{4} \geq 0
\end{aligned}
$$

Subject to

Here the dual variables y_{1}, y_{2}, y_{3} and y_{4} indicate the following:
y_{1} : Imputed value of line 1 per hour
y_{2} : Imputed value of line 2 per hour
y_{3} : Imputed value of the combined demand for 60 -watt soft lite and 60 -watt regular bulbs
y_{4} : Imputed value of the demand for 100 -watt bulbs
From the optimal solution tableau, the optimal values of the dual variables are:
$y_{1}=$ Rs $30 /$ hour, $y_{2}=$ Rs 20/hour, $y_{3}=$ nil and $y_{4}=$ nil.
21. Let x_{1}, x_{2} and x_{3} be the number of shipments (per 100 units) of transistors, resistors, and electron tubes respectively. According to the given data, the problem is:
Maximise

$$
Z=100 x_{1}+60 x_{2}+40 x_{3} \quad \text { Total profit }
$$

Subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \leq 100 & & \text { Engineering time } \\
10 x_{1}+4 x_{2}+5 x_{3} & \leq 600 & & \text { Labour time } \\
2 x_{1}+2 x_{2}+6 x_{3} & \leq 300 & & \text { Administration time }
\end{aligned}
$$

To determine the optimal mix, we solve this problem by simplex method. The variables S_{1}, S_{2} and S_{3} are the slack variables used to convert the constraints into ' $=$ ' type.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	1	1	1	1	0	0	100
S_{2}	0	10^{*}	4	5	0	1	0	600
S_{3}	0	2	2	6	0	0	1	60
C_{j}	100	60	40	0	0	0	150	
Solution	0	0	0	100	600	300		
Δ_{j}	100	60	40	0	0	0		
	\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	0	$3 / 5^{*}$	$1 / 2$	1	$-1 / 10$	0	40	$200 / 3 \leftarrow$
x_{1}	100	1	$2 / 5$	$1 / 2$	0	$1 / 10$	0	60	150
S_{3}	0	0	$6 / 5$	5	0	$-1 / 5$	1	180	150
C_{j}	100	60	40	0	0	0			
Solution	60	0	0	40	0	180	$Z=6,000$		
Δ_{j}	0	20	-10	0	-10	0			
		\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
x_{2}	60	0	1	$5 / 6$	$5 / 3$	$-1 / 6$	0
x_{1}	100	1	0	$1 / 6$	$-2 / 3$	$1 / 6$	0
S_{3}	0	0	0	4	-2	0	1

Thus, optimal mix is: $x_{1}=100 / 3, x_{2}=200 / 3$, and $x_{3}=0$.
The maximum profit $=100 \times 100 / 3+60 \times 200 / 3+40 \times 0=$ Rs $22,000 / 3$ or Rs $7,333.33$.
Dual: The dual to the given LPP is given below.
Minimise $\quad G=100 y_{1}+600 y_{2}+300 y_{3}$
Subject to

$$
\begin{aligned}
y_{1}+10 y_{2}+2 y_{3} & \geq 100 \\
y_{1}+4 y_{2}+2 y_{3} & \geq 60 \\
y_{1}+5 y_{2}+6 y_{3} & \geq 40 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

From the information given in Simplex Tableau 3, it may be observed that the marginal profitability of the three rersources is: Engineering time: Rs 100/3 per hour; Labour time: Rs 20/3 per hour and Administrative time: nil. These are the minimum rentals that this firm would seek if the capacity were to be rented out. The minimum total rental would be: $100 \times 100 / 3+600 \times 20 / 3+300 \times 0=\operatorname{Rs} 22,000 / 3$, the same as the maximum profit.
22. (a) Profit per unit:

Product A; Rs $15-11=$ Rs 4
Product B; Rs $20-12=$ Rs 8
Product C; Rs $16-10=$ Rs 6
If x_{1} units of product A, x_{2} units of product B, and x_{3} units of product C are produced, the LPP may be stated as follows:
Maximise

$$
\begin{array}{lr}
\text { Maximise } & Z=4 x_{1}+8 x_{2}+6 x_{3} \\
\text { Subject to } & x_{1}+3 x_{2}+2 x_{3} \leq 160 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 120 \\
2 x_{1}+x_{2}+2 x_{3} \leq 80 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	0	3	2	1	0	0	160	$160 / 3$
S_{2}	0	3	4^{*}	2	0	1	0	120	30
S_{3}	0	2	1	2	0	0	1	80	80
C_{j}	4	8	6	0	0	0			
Solution	0	0	0	160	120	80			
Δ_{j}	4	8	6	0	0	0			
		\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	$-5 / 4$	0	$1 / 2$	1	$-3 / 4$	0	70
x_{2}	8	$3 / 4$	1	$1 / 2$	0	$1 / 4$	0	30
S_{3}	0	$5 / 4$	0	$3 / 2^{*}$	0	$-1 / 4$	0	60
C_{j}	4	8	6	0	0	0		$100 / 3 \leftarrow$
Solution	0	30	0	70	0	50	$Z=240$	
Δ_{j}	-2	0	2	0	-2	0		
			\uparrow					

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
S_{1}	0	$-5 / 3$	0	0	1	$-2 / 3$	$-1 / 3$
x_{2}	8	$1 / 3$	1	0	0	$1 / 3$	$-1 / 3$
x_{3}	6	$5 / 6$	0	1	0	$-1 / 6$	$2 / 3$

Thus, optimal solution to the problem is:
Product A: nil,
Product B : 40/3 units, and

Product $C: 100 / 3$ units.
Total profit $=8 \times 40 / 3+6 \times 100 / 3=$ Rs $920 / 3$.
(b) Shadow prices are:

Centre 1 : nil
Centre 2 : Rs $5 / 3$ per hour
Centre 3 : Rs $4 / 3$ per hour
(c) RHS Ranging :

b_{i}	$a_{i j}$ for S_{1}	Ratio	$a_{i j}$ for S_{2}	Ratio	$a_{i j}$ for S_{3}	Ratio
$160 / 3$	1	$160 / 3$	$-2 / 3$	-80	$-1 / 3$	-160
$40 / 3$	0	∞	$1 / 3$	40	$-1 / 3$	-40
$100 / 3$	0	∞	$-1 / 6$	-200	$2 / 3$	50

Range for centre $1: 160-160 / 3=106 \frac{2}{3} ; 106 \frac{2}{3}$ to ∞
Range for centre 2: $120-40=80,120+80=200 ; 80$ to 200
Range for centre 3: $80-50=30,80+40=120 ; 30$ to 120
(d)

$\Delta_{j}:$	$-11 / 3$	0	0	0	$-5 / 3$	$-4 / 3$
for $x_{2}:$	$1 / 3$	1	0	0	$1 / 3$	$-1 / 3$
Ratio :	-11	0	-	-	-5	4
for $x_{3}:$	$5 / 6$	0	1	0	$-1 / 6$	$2 / 3$
Ratio :	$-22 / 5$	-	0	-	10	-2

$\therefore \quad$ Range for $x_{1}:-\infty$ to $7 \frac{2}{3}$
$\begin{array}{ll}\text { Range for } x_{2}: 8-5=3,8+4=12 & 3 \text { to } 12 \\ \text { Range for } x_{3}: 6-2=4,6+10=16 & 4 \text { to } 16\end{array}$
(e) Minimise $G=160 y_{1}+120 y_{2}+80 y_{3}$

Subject to

$$
\begin{aligned}
y_{1}+3 y_{2}+2 y_{3} & \geq 4 \\
3 y_{1}+4 y_{2}+y_{3} & \geq 8 \\
2 y_{1}+2 y_{2}+2 y_{3} & \geq 6 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

Optimal values : $y_{1}=0, y_{2}=5 / 3$ and $y_{3}=4 / 3$ for $G=920 / 3$
23. (i) Yes. The tableau represents an optimal solution since all $c_{j}-z_{j}$ values are ≤ 0, and there is no artificial variable in the basis.
(ii) No, because all the non-basic variables have $c_{j}-z_{j}<0$.
(iii) No, since none of the basic variables has solution value equal to zero.
(iv) Yes. This solution is feasible because there is no artificial variable in the basis.
(v) Here $S_{1}=0$ and $S_{2}=2$. Thus, machine A is used to the full capacity.
(vi) For x_{1}, we have $c_{j}-z_{j}=-1$. Thus, the price of the product x_{1} should be increased by at least Re 1 to ensure no reduction in profit.
(vii) $x_{1}=0, x_{2}=6$. Total profit $=3 \times 0+4 \times 6=$ Rs 24 .
(viii) Since marginal profitability of machine A is Rs 4 per hour, a reduction of 2 hours capacity in a week would cause a reduction of $2 \times 4=$ Rs 8 in profit.
(ix) Machine A : Rs 4/hour; Machine B: nil
(x) Machine A : Rs 4 per hour; machine B : nil.
24. Let x_{1}, x_{2} and x_{3} be the output of the products A, B and C respectively. The LPP is:

Maximise

$$
\begin{aligned}
Z=20 x_{1}+6 x_{2}+8 x_{2} & \\
8 x_{1}+2 x_{2}+3 x_{3} & \leq 250 \\
4 x_{1}+3 x_{2} & \leq 150 \\
2 x_{1}+x_{3} & \leq 50 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	8	2	3	1	0	0	250
S_{2}	0	4	3	0	0	1	0	$125 / 4$
S_{3}	0	2	0	1	0	0	1	$75 / 2$
C_{j}	20	6	8	0	0	0	$25 \leftarrow$	
Solution	0	0	0	250	150	50		
Δ_{j}	20	6	8	0	0	0		
	\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0	2	-1	1	0	-4	50
S_{2}	0	0	3	-2	0	1	-2	50
x_{1}	20	1	0	$1 / 2$	0	0	$1 / 2$	25
C_{j}	20	6	8	0	0	0	-	
Solution	25	0	0	50	50	0	$Z=500$	
Δ_{j}	0	6	-2	0	0	-10		
			\uparrow					

Simplex Tableau 3: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0	0	$1 / 3$	1	$-2 / 3$	$-8 / 3$	$50 / 3$
x_{2}	6	0	1	$-2 / 3$	0	$1 / 3$	$-2 / 3$	$50 / 3$
x_{1}	20	1	0	$1 / 2$	0	0	$1 / 2$	25
C_{j}	20	6	8	0	0	0	$50 \leftarrow$	
Solution	25	$50 / 3$	0	$50 / 3$	0	0	$Z=600$	
Δ_{j}	0	0	2	0	-2	-6		

When x_{1} is the outgoing variable:

Simplex Tableau 4: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
S_{1}	0	$-2 / 3$	0	0	1	$-2 / 3$	-3
x_{2}	6	$4 / 3$	1	0	0	$1 / 3$	0
x_{3}	8	2	0	1	0	0	1
C_{j}	20	6	8	0	0	0	50
Solution	0	50	50	0	0	0	$Z=700$
Δ_{j}	-4	0	0	0	-2	-8	

When S_{1} is the outgoing variable:

Simplex Tableau 5: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{3}	8	0	0	1	3	-2	-8	50
x_{2}	6	0	1	0	2	-1	-6	50
x_{1}	20	1	0	0	$-3 / 2$	1	$9 / 2$	0
C_{j}	20	6	8	0	0	0		
Solution	0	50	50	0	0	0	$Z=700$	
Δ_{j}	0	0	0	-6	2	10		

Simplex Tableau 6: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
x_{3}	8	$16 / 9$	0	1	$1 / 3$	$-2 / 9$	0
x_{2}	6	$4 / 3$	1	0	0	$1 / 3$	0
S_{3}	0	$2 / 9$	0	0	$-1 / 3$	$2 / 9$	1
C_{j}	20	6	8	0	0	0	50
Solution	0	50	50	0	0	0	$Z=700$
Δ_{j}	$-20 / 9$	0	0	$-8 / 3$	$-2 / 9$	0	

Optimal solution: $x_{1}=0, x_{2}=50, x_{3}=50 ; Z=700$.
Shadow Prices:
(a) From Tableau 4:

Milling: nil, Lathe: Rs $2 /$ hour, Grinder $=$ Rs $8 /$ hour
Ranges
Milling: $0 \div 1=0,50 \div 0=\infty, 50 \div 0=\infty$
Range: $250-\infty$
Lathe: $0 \div(-2 / 3)=0,50 \div 1 / 3=150,50 \div 0=\infty$
Range: $150-150,150+0$ or $0-150$
Grinder: $0 \div(-3)=0,50 \div 0=\infty, 50 \div 1=50$
Range: $50-50,50+0$ or $0-50$
(b) From Tableau 6:

Milling: Rs $8 / 9$ per hour, Lathe: Rs $2 / 9$ per hour, Grinder $=$ Rs nil
Ranges
Milling: $50 \div 1 / 3=150,50 \div 0=\infty, 0 \div(-1 / 3)=0$

Range: $250-150,250+0$ or $100-250$
Lathe: $50 \div(-2 / 9)=-225,50 \div 1 / 3=150,0 \div 2 / 9=0$
Range: $150-0,150-(-225)$ or $150-375$
Grinder: $50 \div 0=\infty, 50 \div 0=\infty, 0 \div 1=0$
Range: $50-0, \infty$ or $50-\infty$
Note: When optimal solution is degenerate, the ranges are not unique.
25. We first solve the primal problem by simplex method. For this, introducing necessary slack, surplus and artificial variables, we get
Maximise

$$
\begin{array}{r}
Z=8 x_{1}+6 x_{2}+0 S_{1}+0 S_{2}-M A_{1} \\
x_{1}-x_{2}+S_{1}=3 / 5 \\
x_{1}-x_{2}-S_{2}+A_{1}=2 \\
x_{1}, x_{2}, S_{1}, S_{2}, A_{1} \geq 0
\end{array}
$$

From the Simplex Tableau 2, we observe that infeasibility exists since the solution is final but has an artificial variable in the basis.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	1^{*}	-1	1	0	0	$3 / 5$
A_{1}	$-M$	1	-1	0	-1	1	2
C_{j}	8	6	0	0	$-M$	2	
Solution	0	0	$3 / 5$	0	2		
Δ_{j}	$8+M$	$6-M$	0	$-M$	0		

Simplex Tableau 2: Final Solution (Infeasible)

Basis	x_{1}	x_{2}	S_{1}	S_{2}	A_{1}	b_{i}	$b_{i} / a_{i j}$
x_{1}	8	1	-1	0	1	0	$3 / 5$
A_{1}	$-M$	0	0	-1	-1	-	
C_{j}	8	6	0	0	$-M$		
Solution	$3 / 5$	0	0	0	$7 / 5$		
Δ_{j}	0	14	$-M$	$-M-8$	0		
		\uparrow					

Note that this solution is final not in terms of Δ_{j} values but in the sense that the key column values are all ≤ 0. With none of these being positive, the solution process terminates.
Dual The dual to the given problem is:
Minimise

$$
G=\frac{3}{5} \quad y_{1}-2 y_{2}
$$

Subject to

$$
\begin{aligned}
y_{1}-y_{2} & \geq 8 \\
-y_{1}+y_{2} & \geq 6 \\
y_{1}, y_{2} & \geq 0
\end{aligned}
$$

With surplus variables S_{1} and S_{2}, and artificial variables A_{1} and A_{2}, the solution is given in the two tables. It is evident from the second table that the solution has an artificial variable in the basis and has all $\Delta_{j} \geq 0$. Hence, infeasibility is present. Hence, the given statement in the problem.

Simplex Tableau 1: Non-optimal Solution

Basis	y_{1}	y_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
A_{1}	M	1	-1	-1	0	1	0	8
A_{2}	M	-1	1	0	-1	0	1	6
C_{j}	$3 / 5$	-2	0	0	M	M		
Solution	0	0	0	0	8	6		
Δ_{j}	$3 / 5$	-2	M	M	0	0		
		\uparrow						

Simplex Tableau 2: Final Solution (Infeasible)

Basis	y_{1}	y_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}
A_{1}	M	0	0	-1	-1	1	1
y_{2}	-2	-1	1	0	-1	0	1
C_{j}	$3 / 5$	-2	0	0	M	M	6
Solution	0	6	0	0	14	0	
Δ_{j}	$7 / 5$	0	M	$M-2$	0	2	

26. (a) Based on the statement of the problem, it may be concluded that the constraints of the type $A \leq$ Demand (for A), etc. have been used. The shadow prices, accordingly, would relate to the slack variables that are introduced into the constraints and indicate the amount by which the total contribution will change given a unit change in demand. In case of product A, the demand constraint is binding and if demand increases by one unit then contribution would increase by two units. For B, demand is not a limiting factor since it has a zero shadow price. Product C does not appear in the final solution since each unit produced of it would reduce the profit by Rs 3 .
(b) Given the product price and the cost data, the information about shadow prices may be used to indicate which products should figure in the optimum production plan. The shadow prices also show by how much the product cost and/or prices should change in order that the currently non-profitable products may become profitable.
27. The given information is reproduced below:

C_{j}	x_{j}	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}
$21 / 2$	x_{2}	0	1	$3 / 5$	$-2 / 5$	0	300
$17 / 2$	x_{1}	1	0	$-2 / 5$	$3 / 5$	0	300
0	S_{3}	0	0	$-1 / 5$	$-1 / 5$	1	400
C_{j}		$17 / 2$	$21 / 2$	0	0	0	
Solution	300	300	0	0	400		
Δ_{j}	0	0	$-29 / 10$	$-9 / 10$	0		

(a) The given solution is optimal since all $\Delta_{j} \leq 0$ (being a maximisation problem) and feasible.
(b) The solution is feasible since there is no artificial variable in the basis.
(c) The given solution is unique because none of the non-basic variables has $\Delta_{j}=0$.
(d) Objective function value, $Z=\frac{17}{2} \times 300+\frac{21}{2} \times 300=$ Rs 5,700 .
(e) Shadow prices:

Resource $1\left(S_{1}\right)$ = Rs 2.9/unit
Resource $2\left(S_{2}\right)=$ Rs 0.9/unit
Resource $3\left(S_{3}\right)=$ nil
(f) Since the shadow price for this resource is Rs 2.9 per unit, this is the maximum amount the company be willing to pay for each unit of production capacity.
(g) We first obtain validity range of the shadow price for S_{2} as follows:

b_{i}	$a_{i j}$	$b_{i} / a_{i j}$	
300	$-2 / 5$	-750	least negative
300	$3 / 5$	500	least positive
400	$-1 / 5$	$-2,000$	

\therefore Lower limit $=500$ and Upper limit $=750$.
Since the increase in demand is only 20 units (which is within the validity range), the shadow price is constant.
Thus, increase in contribution $=20 \times 0.9=$ Rs 18
New contribution level $=5.700+18=$ Rs 5,718
New product-mix:

$$
\begin{aligned}
& x_{2}=300-(20 \times 2 / 5)=292, \text { and } \\
& x_{1}=300+(20 \times 3 / 5)=312
\end{aligned}
$$

28. (a) Let x_{1}, x_{2}, x_{3} and x_{4} be the output of producs A, B, C and D respectively. The LPP is:

Maximise $\quad Z=4 x_{1}+6 x_{2}+3 x_{3}+x_{4}$
Subject to $\quad 1.5 x_{1}+2 x_{2}+4 x_{3}+3 x_{4} \leq 550$

$$
\begin{aligned}
4 x_{1}+x_{2}+2 x_{3}+x_{4} & \leq 700 \\
2 x_{1}+3 x_{2}+x_{3}+2 x_{4} & \leq 200
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

To solve the problem by simplex method, we introduce slack variables S_{1}, S_{2} and S_{3}. The problem is:
Minimise $\quad Z=4 x_{1}+6 x_{2}+3 x_{3}+x_{4}+0 S_{1}+0 S_{2}+0 S_{3}$
Subject to

$$
\begin{array}{r}
1.5 x_{1}+2 x_{2}+4 x_{3}+3 x_{4}+S_{1}=550 \\
4 x_{1}+x_{2}+2 x_{3}+x_{4}+S_{2}=700 \\
2 x_{1}+3 x_{2}+x_{3}+2 x_{4}+S_{3}=200 \\
x_{1}, x_{2}, x_{3}, x_{4}, S_{1}, S_{2}, s_{3} \geq 0
\end{array}
$$

The solution is given in tables that follow.
Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	$3 / 2$	2	4	3	1	0	0	550	275
S_{2}	0	4	1	2	1	0	1	0	700	700
S_{3}	0	2	3^{*}	1	2	0	0	1	200	$200 / 3$
C_{j}	4	6	3	1	0	0	0			
Solution	0	0	0	0	550	700	200	$Z=0$		
Δ_{j}	4	6	3	1	0	0	0			

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	$1 / 6$	0	$10 / 3^{*}$	$5 / 3$	1	0	$-2 / 3$	$1,250 / 3$
S_{2}	0	$10 / 3$	0	$5 / 3$	$1 / 3$	0	1	$-1 / 3$	$1,900 / 3$
x_{2}	6	$2 / 3$	1	$1 / 3$	$2 / 3$	0	0	$1 / 3$	$2,00 / 3$
C_{j}	4	6	3	1	0	0	200		
Solution	0	$200 / 3$	0	0	$1,250 / 3$	$1,900 / 3$	0		$Z=400$
Δ_{j}	0	0	1	-3	0	0	-2		
			\uparrow						

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	S_{2}	S_{3}	b_{i}
$x_{3} 3$	$1 / 20$	0	1	$1 / 2$	$3 / 10$	0	$-1 / 5$	125
$S_{2} 0$	$13 / 4$	0	0	$-1 / 2$	$-1 / 2$	1	0	425
$x_{2} 6$	$13 / 20$	1	0	$1 / 2$	$-1 / 10$	0	$6 / 15$	25
C_{j}	4	6	3	1	0	0	0	
Solution	0	25	125	0	0	425	0	
Δ_{j}	$-1 / 20$	0	0	$-7 / 2$	$-3 / 10$	0	$-9 / 5$	$Z=525$

Optimal product-mix : $x_{1}=0, x_{2}=25, x_{3}=125$, and $x_{4}=0$
Total maximum profit contribution $=4 \times 0+6 \times 25+3 \times 125+1 \times 0=$ Rs 525
(b) No, since none of the non-basic variables has $\Delta \mathrm{j}$ equal to zero.
(c) Minimise $G=550 y_{1}+700 y_{2}+200 y_{3}$

Subject to $\quad 1.5 y_{1}+4 y_{2}+2 y_{3} \geq 4$

$$
2 y_{1}+y_{2}+3 y_{3} \geq 6
$$

$$
4 y_{1}+2 y_{2}+y_{3} \geq 3
$$

$$
3 y_{1}+y_{2}+2 y_{3} \geq 1
$$

$$
y_{1}, y_{2}, y_{3} \geq 0
$$

$y_{1}=3 / 10, y_{2}=0, y_{3}=9 / 5, G=525$
(d) Shadow prices : Machine I : Rs $3 / 10$ per hour, Machine II : Nil
Machine III : Rs 9/5 per hour
Machine III should be given priority.
(e) $\operatorname{Re} 0.05$ per unit
(f) Yes, since price increase is more than Δj value of 5 paise.
29. (a) From the given simplex tableau, we have: $x_{1}=120, x_{2}=300, S_{1}=S_{2}=0, S_{3}=240$. Also, $Z=80 \times 120+100 \times 300=$ Rs 39,600 .
(b) The dual to the given problem is:

$$
\begin{array}{lr}
\text { Minimise } \quad G=720 y_{1}+1,800 y_{2}+900 y_{3} \\
\text { Subject to } & =80 \\
y_{1}+5 y_{2}+3 y_{3} & \geq 80 \\
2 y_{1}+4 y_{2}+y_{3} & \geq 100 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{array}
$$

(c) Tracing the values from the Δ_{j} row of the given simplex tableau, we get $y_{1}=30, y_{2}=10$, and $y_{3}=0$. This gives $G=720 \times 30+1,800 \times 10+900 \times 0=$ Rs 39,600 .
(d) The marginal profitability of capacity of machining and fabrication is Rs 30 and Rs 10 per hour, respectively. It is nil for the assembly.
(e) Since the cost of overtime in the fabricating department is greater than the marginal profitability $(15>10)$, it is not advisable to work overtime in this department. It is worth, however, to work overtime in machining. For this, dividing b_{i} by the $a_{i j}$'s column headed S_{1}, we get $300 \div 5 / 6=360$; $120 \div(-2 / 3)=-180$; and $240 \div 7 / 6=1,440 / 7$. The least negative of these being -180 , we can work overtime up to 180 hours.
(f) For machining: same as in (e) above. For fabrication, we have $300 \div(-1 / 6)=-1,800,120 \div(1 / 3)$ $=360$, and $240 \div(-5 / 6)=-288$. Since the least negative value is -288 , we can work overtime up to 288 hours.
(g) The range of profit over which the given solution would be valid can be obtained as under:

Δ_{j}	0	0	-30	-10	0
$a_{2 j}$	1	0	$-2 / 3$	$1 / 3$	0
Ratio	0	-	45	-30	-
		\uparrow	\uparrow		

The solution would be valid over the range $80-30$ to $80+45$, or 50 to 125 . Since the profit would increase to Rs 100, there would be no change in the plan.
(h) From the given information,

Δ_{j}	0	0	-30	-10	0
$a_{1 j}$	0	1	$5 / 6$	$-1 / 6$	0
Ratio	-	0	-36	60	-
		\uparrow	\uparrow		
			least positive	least negative	

The solution would be valid over the range $100-36$ to $100+60$, or 64 to 160 .
(i) The minimum profit obtainable would be equal to the summation of the products of the capacity requirements and the corresponding marginal profitabilities. This equals $2 \times 30+3 \times 10+2 \times 0$ $=$ Rs 90 .
30. (i) Let S_{1}, S_{2} and S_{3} be the slack variables.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	4	1	0	0	1,000
S_{2}	0	6	2	0	1	0	1,200
S_{3}	0	0	$1 *$	0	0	1	600
C_{j}	30	80	0	0	0		200
Solution	0	0	1,000	1,200	200	$Z=0$	
Δ_{j}	30	80	0	0	0		
		\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	2	0	1	0	-4	200	100
S_{2}	0	6	0	0	1	-2	800	$400 / 3$
x_{2}	80	0	1	0	0	1	200	-
C_{j}	30	80	0	0	0	$Z=16,000$		
Solution	0	200	200	800	0			
Δ_{j}	30	0	0	0	-80			

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}
x_{1}	30	1	0	$1 / 2$	0	-2
S_{2}	0	0	0	-3	1	10
x_{2}	80	0	1	0	0	1
C_{j}	30	80	0	0	200	
Solution	100	200	0	200	0	200
Δ_{j}	0	0	-15	0	-20	$Z=19,000$

Optimal product mix: Lawn Mowers 100

Snow Blowers 200

Optimal profit: Rs 19,000
(ii) Shadow prices: $\begin{aligned} \text { Labour hours } & : \operatorname{Rs~} 15 / \text { hour } \\ & \text { Steel } \\ & \text { Snowblower engines: Rs 20/engine }\end{aligned}$

Snowblower engines have the highest marginal value.
(iii) Labour hour : $800-1,067[1,000-200,1,000-(-200 / 3)]$

Steel $\quad: 1,000-\infty \quad[1,200-200]$
Engines : 180-250 [200-20, 200-(-50)]
(iv) $x_{1}: 0-40 \quad[30-30=0,30+10=40]$
$x_{2}: 60-\infty \quad[80-20=60]$
(v) Let y_{1}, y_{2} and y_{3} be the dual variables. The dual is:
$\begin{array}{rr}\text { Minimise } \quad G=1,000 y_{1}+1,200 y_{2}+200 y_{3} \\ \text { Subject to } & 2 y_{1}+6 y_{2} \geq 30 \\ 4 y_{1}+2 y_{2}+y_{3} \geq 80\end{array}$
$y_{1}, y_{2}, y_{3} \geq 0$
Solution to the dual: $y_{1}=15, y_{2}=0$ and $y_{3}=20$.

CHAPTER 5

1.

Initial Solution (VAM): Optimal

Origin	Destination					Capacity	u_{i}
	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}		
O_{1}	$(-1)^{12}$	00^{4}	$9 \lcm{9}$	$\begin{array}{l\|l} \hline 5 & 30 \\ \end{array}$	$-5{ }^{9}$	55	4
O_{2}	$8 \quad 10$		$6{ }_{6}{ }^{15}$	$(-4)^{6}$	(-6) ${ }^{7}$	45	1
O_{3}		$-18{ }^{12}$	$(-5)^{4}$	$-12{ }^{7}$	$-13)^{7}$	30	-6
O_{4}	$(-2)^{10}$	$(-14)^{15}$	$6{ }_{6} 10$	(-7) ${ }^{9}$	140	50	1
Req.	40	20	50	30	40	180	
v_{j}	7	0	5	1	0		

Total cost $=$ Rs 695
The solution is not unique since a cell $O_{1} D_{2}$ has $\Delta_{i j}=0$.
An alternate optimal solution is:

$$
O_{1} D_{2}=20, O_{1} D_{3}=5, O_{1} D_{4}=30, O_{2} D_{1}=10, O_{2} D_{3}=35, O_{3} D_{1}=30, O_{4} D_{3}=10 \text { and } O_{4} D_{5}=40
$$

2. The given solution is reproduced in the table and is found to be non-optimal as all $\Delta_{i j}$'s are not less than, or equal to, zero. This solution involves a total cost of Rs 1,335 .

Proposed Solution: Non-optimal

Source	Destination					Supply	u_{i}
	1	2	3	4	5		
1	15	$(6)^{7}$	$\text { (6) } 12$	8	$(1)^{12}$	55	0
2	$(-5)^{11}$	4.20	$9 \quad 25$	$-10)^{9}$	$-6)^{10}$	45	-9
3	$4 \quad 15$	$-13)^{15}$	$7 \quad 15$	$(-13)^{10}$	$(-8)^{10}$	30	-11
4	$(-7)^{13}$	$-14)^{18}$	$9 \times$	$(-13)^{12}$	44	50	-9
Demand	40	20	50	30	40	180	
v_{j}	12	10	15	5	10		

Now initial solution to the problem using VAM is contained in the table below. This solution involves a total cost of Rs 1,235 and is found to be optimal.

Initial Feasible solution: Optimal

Source	Destination					Supply	u_{i}
	1	2	3	4	5		
1	$(-1)^{12}$	0^{4}	$9 \lcm{25}$	$\begin{array}{l\|l} \hline & 30 \\ \hline \end{array}$	$(-5)^{9}$	55	0
2	$8 \quad 10$	1.20	$6 \longdiv { 1 5 }$	$-4)^{6}$	(-6) ${ }^{7}$	45	-3
3	$\begin{array}{l\|l} \hline 1 & 30 \\ \end{array}$	$-18)^{12}$	$-5)^{4}$	$(-12)^{7}$	$\left(-13{ }^{7}\right.$	30	-10
4	$-2)^{10}$	$-14)^{15}$	$6 \quad 10$	$(-7)^{9}$	140	50	-30
Demand	40	20	50	30	40	180	
v_{j}	11	4	9	5	4		

3. In this problem, $A D=30$ while $A S=34$. Thus, it is an unbalanced problem. A dummy rolling mill, M_{6}, is introduced with zero cost elements, as shown in table. In this table, initial solution using VAM is also given.

The given solution has seven occupied cells while the required number is $3+6-1=8$. Thus, it is degenerate. Accordingly, an ε is placed in the cell $F_{1} M_{6}$, which is as independent cell.

Initial Solution: Degenerate, Non-optimal

	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	Supply	u_{i}
F_{1}		2	1^{3}	2	$-5{ }^{6}$	\rightarrow_{-}	8	0
F_{2}	$\text { (1) }{ }^{5}$	$(-2)^{4}$	$-1)^{5}$		$\begin{array}{l\|l} \hline & 8 \\ 1 \end{array}$	(0) 0	12	0
F_{3}		$(-3)^{5}$	4	$-5{ }^{7}$	$-6{ }^{7}$		14	0
Demand	4	4	6	8	8	4	34	
v_{j}	6	2	4	2	1	0		

Now, the solution is tested for optimality and found to be non-optimal. The cell $F_{1} M_{1}$ has the largest $\Delta_{i j}$ value. Beginning with this cell, a closed path is drawn and a revised solution is obtained.

This is tested for optimality and found to be optimal. Thus, optimum shipping schedule is: $F_{1} M_{2}: 4$, $F_{1} M_{4}: 4, F_{2} M_{4}: 4, F_{2} M_{5}: 8, F_{3} M_{1}: 4$ and $F_{3} M_{3}: 6$. Total cost $=$ Rs 80.

Improved Solution: Optimal

	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	Supply	u_{i}
F_{1}	4	$\begin{array}{l\|l} & 4 \\ 2 \end{array}$	$(-1)^{3}$	24	$(-5)^{6}$	$-2)^{0}$	8	0
F_{2}	$(-1)^{5}$	$-2)^{4}$	$(-3)^{5}$	24		$-2)^{0}$	12	0
F_{3}	$\begin{array}{l\|l} \hline & 4 \\ 6 \end{array}$	$-1)^{5}$	4	$(-3)^{7}$	$-4)^{7}$	$\begin{array}{l\|l} \hline & 4 \\ 0 \end{array}$	14	2
Demand	4	4	6	8	8	4	34	
v_{j}	4	2	2	2	1	-2		

4. The initial feasible solution using VAM is given in table below. On testing, it is found to be optimal. However, since Δ_{11} and Δ_{31} are each equal to zero, the solution is not unique and multiple optima exist.

Initial Feasible Solution: Optimal

	1	2	3	4	Supply	u_{i}
1	(0) $\begin{aligned} & 8 \\ & +\end{aligned}$	8	(-1) ${ }^{5}$	-1) ${ }^{12}$	7	0
2	\prod^{6}	$\text { (-3) }{ }^{9}$	-9 ${ }^{11}$		7	-2
3	(0) ${ }^{10}$	$(-5)^{15}$	6	$\uparrow_{13} \begin{aligned} & 2 \\ & \\ & \hline \end{aligned}$	10	2
4	$\text { (-1) }{ }^{6}$	(-3) ${ }^{8}$	(-6) ${ }^{7}$	$8 \quad 6$	6	-3
5	(-1) ${ }^{11}$	$+_{10}{ }^{3}$	(-5) ${ }^{11}$	$\underbrace{}_{-} 13{ }^{2}$	5	2
6	$\begin{array}{l\|l} \hline 8 & 6 \\ \end{array}$	$\underbrace{14}$	(-1) ${ }^{5}$	(-1) ${ }^{12}$	6	0
Demand	9	10	8	14	41	
v_{j}	8	8	4	11		

Total cost $=8 \times 7+6 \times 3+9 \times 4+6 \times 8+13 \times 2+8 \times 6+10 \times 3+13 \times 2+8 \times 6=$ Rs 336
One alternate optimal solution may be obtained through the closed loop shown in the table. The solution is: $x_{11}=2, x_{12}=5, x_{21}=1, x_{24}=6, x_{34}=2, x_{44}=6, x_{52}=5$, and $x_{61}=6$.

Plant	Warehouse					Prod. ('000)	u_{i}
	P	Q	R	S	Dummy		
X	$(-4)^{15}$	$\begin{array}{l\|l} \hline 13 & 18 \\ \hline \end{array}$	$\begin{array}{l\|l} \hline 14 & 2 \\ \hline 14 \end{array}$	$(-3)^{16}$	$(-8)^{0}$	20	-8
Y	$(-6)^{16}$	$(-2)^{14}$	$+\begin{array}{l\|l} 13 \\ \hline \end{array}$		$(-9)^{0}$	16	-9
Z	$19 \lcm{15}$	$(1)^{20}$	$\underbrace{}_{22} 8$	$\text { (3) }{ }^{18}$	$\begin{array}{l\|l} \hline & 2 \\ \hline \end{array}$	25	0
Demand ('000)	15	18	12	14	2	61	
v_{j}	19	21	22	21	0		

Total cost $=$ Rs 917,000
Revised Solution: Optimal

Plant	Warehouse					Prod. ('000)	u_{i}
	P	Q	R	S	Dummy		
X	$(-1)^{15}$	$\begin{array}{l\|l} \hline 13 & 18 \\ \hline \end{array}$	$\begin{array}{l\|l} \hline 14 & 2 \\ \end{array}$	$(-3)^{16}$	$(-5)^{0}$	20	-5
Y	$(-3)^{16}$	$(-2)^{14}$	$13 \stackrel{10}{ }$	$12 \quad 6$	$(-6)^{0}$	16	-6
Z	$19 \quad 15$	$(-2)^{20}$	$-(-3)^{22}$	$\begin{array}{l\|l} \hline & 8 \\ 18 \end{array}$	$\begin{array}{l\|l} \hline & 2 \\ \hline \end{array}$	25	0
Demand ('000)	15	18	12	14	2	61	
v_{j}	19	18	19	18	0		

Total cost $=$ Rs 893,000
6. The initial solution to this problem is given in table. This solution, obtained by VAM is tested for optimality and is found to be optimal.

Initial solution: Optimal

Source	Distination				Supply	u_{i}
	1	2	3	4		
1	$0+$	$\rightarrow 18^{10}$	$22 \lcm{20}$	$(0)^{16}$	30	0
2	$(-2) 15$	(-3) 19	$20{ }^{5}$	$14{ }^{35}$	40	-2
3	$\left.\right\|_{13}$		$-3{ }^{23}$	$-3{ }^{17}$	30	-2
Demand	20	20	25	35	100	
v_{j}	15	18	22	16		

However, since all $\Delta_{i j}$ values are not negative, the solution is not unique optimal. Alternate optimal solutions may be obtained by drawing a closed path beginning with (i) the cell 1,1 and (ii) cell 1,4 . In table, a closed path beginning with cell 1,1 is drawn and a revised solution is obtained as shown in table given below. Similarly, another solution may be worked out by starting from the cell 1,4 .

Alternate Optimal Solution

7. Here $A D=145$ units and $A S=105$ units. The $A D$ being greater than the $A S$, a total of 40 units of demand is obviously going to be unsatisfied. Since the penalty for unsatisfied demand is given, the cost elements for the row representing dummy factory (needed to balance the problem) would not be taken to be zero. The given penalties instead would be taken. The restructured problem is given in the table. The initial solution by VAM is also given, which is found to be optimal.

Initial Solution (VAM): Optimal

Total cost $=$ Rs $830+$ Rs 160 (penalty) $=$ Rs 990
8.

Initial Solution (VAM): Non-optimal Solution

Plant	Distribution Centres				Supply	u_{i}
	D_{1}	D_{2}	D_{3}	D_{4}		
P_{1}	$20 \quad 5$	$-26)^{30}$	$-53)^{50}$	$\begin{array}{l\|l} \hline 17 & 2 \\ \hline \end{array}$	7	0
P_{2}	$(-7)^{70}$	$\text { (12) }{ }^{35}$	$40 \quad 7$		10	43
P_{3}	$-12)^{40}$		60	$+25$	18	8
Demand	5	8	7	15	35	
v_{j}	20	4	-3	17		

Revised Solution: Optimal

Plant	Distribution Centres				Supply	u_{i}
	D_{1}	D_{2}	D_{3}	D_{4}		
P_{1}	$\begin{array}{l\|l} \hline & 5 \\ 20 \end{array}$	-26	$-41{ }^{50}$		7	0
P_{2}	$-19)^{70}$		$\begin{array}{l\|l} \hline & 7 \\ 40 \end{array}$	$-12)^{60}$	10	31
P_{3}	-(12) ${ }^{40}$	$\begin{array}{l\|l} \hline 12 \\ \hline \end{array}$	$(-43)^{60}$	$\begin{array}{l\|l} \hline 25 & 13 \\ \hline \end{array}$	18	8
Demand	5	8	7	15	35	
v_{j}	20	4	9	17		

Total cost $=$ Rs 904
Maximum savings $=1200-904=$ Rs 296
9.

Initial Solution (VAM): Non-optimal

Plant	Distribution Centres				Production	u_{i}
	W	X	Y	Z		
A	$\begin{array}{l\|l} \hline & \varepsilon \\ 500 \end{array}$	1000	$\begin{array}{l\|l} \hline 10 \\ 150 \end{array}$	$\begin{gathered} 800 \\ -400 \end{gathered}$	10	400
B	$\begin{array}{l\|l} \hline & 8 \\ 200 \end{array}$	$\begin{gathered} 700 \\ -700 \end{gathered}$	-600	$\begin{array}{l\|l} \hline & 4 \\ 100 \end{array}$	12	100
C	$\begin{array}{l\|l} \hline 600 \\ \hline \end{array}$		150	$\begin{gathered} 900 \\ -400 \end{gathered}$	8	500
Dummy	t_{200}	$\rightarrow{ }^{\text {¢ }}$	$-150)^{0}$	$100{ }^{0}$	2	100
Demand	9	9	10	4	32	
v_{j}	100	-100	-250	0		

(Note: Supply and demand in '000 units)

Improved Solution: Optimal

Plant	Distribution Centres				Production	u_{i}
	W	X	Y	Z		
A	500	$\begin{gathered} 1000 \\ -500 \end{gathered}$	$\begin{array}{l\|l} \hline & 10 \\ 150 \end{array}$	-400	10	400
B	$\begin{array}{l\|l} \hline & 8 \\ 200 \end{array}$	$\overbrace{-500}^{700}$	$\begin{gathered} 500 \\ -650 \end{gathered}$	$\begin{array}{l\|l} \hline & 4 \\ 100 \end{array}$	12	100
C	$\overbrace{-200}^{600}$	$\begin{array}{l\|l} \hline & 8 \\ 400 \end{array}$	-50	$\begin{gathered} 900 \\ -600 \end{gathered}$	8	300
Dummy	$\begin{array}{l\|l} \hline & 1 \\ \end{array}$	$\begin{aligned} & \hline \\ & \hline \end{aligned}$	0^{0}	${ }^{0}$	2	-100
Demand	9	9	10	4	32	
v_{j}	100	100	-250	0		

Total Cost $=$ Total Tonne Miles \times Cost per Tonne-mile

$$
=6700,000 \times 10=\text { Rs } 67,000,000
$$

When $C X$ is not allowed:

Optimal Solution

Plant	Distribution Centres				Production	u_{i}
	W	X	Y	Z		
A	$\begin{array}{l\|l} \hline & 8 \\ 500 \end{array}$	0^{1000}	$\begin{array}{l\|l} \hline & 2 \\ 150 \end{array}$	-400	10	400
B	$\begin{array}{l\|l} \hline & 1 \\ 200 \end{array}$	$70{ }^{7}$	$\begin{gathered} 500 \\ -650 \end{gathered}$	$\begin{array}{l\|l} \hline & 4 \\ 100 \end{array}$	12	100
C	-150	M	$\begin{array}{l\|l} \hline & 8 \\ 100 \end{array}$	$\begin{gathered} 900 \\ -550 \end{gathered}$	8	350
Dummy	$\begin{array}{r} 0 \\ -500 \end{array}$	$\begin{array}{l\|l} \hline & 2 \\ 0 \end{array}$	$\begin{array}{r} 0 \\ -850 \end{array}$	$\begin{array}{r} 0 \\ -600 \end{array}$	2	-600
Demand	9	9	10	4	32	
v_{j}	100	600	-250	0		

Total Cost $=$ Total Tonne Miles \times Cost per Tonne-mile

$$
=10,600,000 \times 10=\text { Rs } 106,000,000
$$

10. (a) Initial Solution (VAM): Optimal

Factory	Warehouse				Supply	u_{i}
	X	Y	Z	W		
A	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	-21	-25	$-16{ }^{60}$	60	44
B	-14	$\begin{aligned} & 150 \\ & +30 \\ & \hline \end{aligned}$		$\rightarrow 4090$	140	40
C	$\begin{array}{l\|l} \hline 36 & 30 \\ \end{array}$	$\left.\right\|_{-2}{ }^{\text {2 }}$	$\begin{array}{l\|l\|} \hline 26 & 120 \\ \hline \end{array}$	-11	150	55
D	-14	$\begin{array}{l\|l} & 50 \\ 30 \end{array}$	-30	$\overbrace{}^{50}$	50	40
Dummy	$-19)^{0}$	-10	-29		50	0
Demand	90	100	120	140	450	
v_{j}	-19	-10	-29	0		

Total Cost $=$ Rs 12,300
(b) From the solution in (a) the $\Delta_{i j}$ value for the cell $C-W$ is seen to be equal to -11 . If the cost on this route is reduced to Rs 50 , the $\Delta_{i j}$ would work out to be +5 , so that every unit moved through this route would reduce the cost by Rs 5 . To obtain improved solution, we draw closed path as shown in the table. However, only ε moves through closed path. Hence, effectively, no cost reduction can be achieved.
11. (i) and (ii) The given solution is reproduced in table below. The test of optimality shows that this solution is not optimal since the route $C X$ shows a positive $\Delta_{i j}$ value.

Initial Solution: Non-optimal

Beginning with the cell $C X$, a closed path is drawn and a revised solution is obtained. This is shown in table below. The solution is found to be an optimal one. The solution is:

Rout	Units	Cost
A to Y	56	$56 \times 8=448$
B to X	41	$41 \times 16=656$
B to Z	41	$41 \times 16=656$
C to X	31	$31 \times 8=248$
C to Y	46	$46 \times 16=736$

Revised Solution: Optimal

(iii) The problem has multiple optimal solutions. This is because a cell (B, Y) has $\Delta_{i j}=0$. An alternate optimal solution, obtained by drawing a closed path beginning with this cell and making adjustments, is produced in table that follows.

Factory	Stockist			Capacity	u_{i}
	X	Y	Z		
A	$(-4)^{4}$	$\begin{array}{l\|l\|} \hline & 56 \\ & \end{array}$	$(-8)^{8}$	56	0
B	0^{16}	2441 4	$\begin{array}{l\|l} \hline & 41 \\ 16 \end{array}$	82	16
C	$\begin{aligned} & \hline 72 \\ & 8 \end{aligned}$		$-16{ }^{24}$	77	8
Demand	72	102	41	215	
v_{j}	0	8	0		

(iv) The significance of multiple optimal solutions lies in the fact that they provide the management with operational flexibility in terms of solving the problem at hand. They provide alternatives to the management that are equally effective.
(v) If 20 units are considered necessary to send from A to Z, then the cost would increase by Rs $8 \times 20=$ Rs 160 . The revised shipping plan can be obtained by drawing a closed path, starting from the cell A, Z. The resulting schedule is given in table given here.

Revised Solution

Factory	Stockist						Capacity
	X		Y		Z		
				36		20	
A	4		8		8		56
				61		21	
B	16		24		16		82
		72		5			
C	8		16		24		77
Demand	72		102		41		215

(vi) The route A, Z is unoccupied in terms of the optimal solution to the problem. An increase in per unit cost would not change this status. Hence, the solution will not change.
12. The given solution is reproduced here and tested for optimality.

(i) The given solution is not degenerate because the number of occupied cells is 6 , which is equal to $m+n-1$.
(ii) The solution is tested for optimality and found to be optimal as all $\Delta i j$ values are less than zero. Further, the solution is unique since none of the $\Delta i j$ values is equal to zero.
(iii) Rs 15 , since $\Delta i j=-15$.
(iv) It would increase the cost by Rs 8 per unit transported on this route.
13. (a)

Initial Solution (VAM): Optimal

Shop	Warehouse					Supply	u_{i}
	I	II	III	IV	V		
A	$-3)^{20}$	1815	$18 \lcm{85}$	$-5)^{21}$	$(-1)^{19}$	100	18
B	$\text { (0) }{ }^{21}$	$\begin{array}{l\|l} \hline 20 \\ 22 \end{array}$		20	$-2{ }^{24}$	125	22
C	$\begin{array}{l\|l} \hline & 60 \\ 18 \end{array}$		$(2)^{21}$	$-1)^{18}$	$\begin{array}{l\|l} \hline 70 \\ \hline 19 \end{array}$	175	19
Demand	60	80	85	105	70	400	
v_{j}	-1	0	0	-2	0		

Total Cost $=$ Rs 7605
(b) The solution in (a) is not unique. An alternate solution is: $x_{12}=15, x_{13}=85, x_{21}=20, x_{24}=105, x_{31}=$ $40, x_{32}=65$ and $x_{35}=70$.
(c) The dual is:

Maximise $Z=100 u_{1}+125 u_{2}+175 u_{3}+60 v_{1}+80 v_{2}+85 v_{3}+105 v_{4}+70 v_{5}$
Subject to

$u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$: Unrestricted in sign
Optimal values of dual variables are:
$u_{1}=18, u_{2}=22, u_{3}=19, v_{1}=-1, v_{2}=0, v_{3}=0, v_{4}=-2$ and $v_{5}=0$. With these, $Z=7605$.
14.

Initial Solution (VAM): Non-optimal

Company	Depot					Supply	u_{i}
	1	2	3	4	Dummy		
1	$\overbrace{}^{5.00}$	$\begin{aligned} & \hline 165000 \\ & \hline \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline & 110000 \\ \hline & 4.50 \\ + \end{array}$	$\begin{aligned} & 5.50 \\ & -1.00 \end{aligned}$	$\begin{array}{r} 0 \\ -0.50 \end{array}$	2,75,000	-0.50
2	$\frac{110000}{4.75}$ $-\longleftarrow$			$\begin{gathered} 6.00 \\ -1.50 \end{gathered}$	385000 0	5,50,000	0
3		$\begin{array}{r} 6.75 \\ -1.25 \\ \hline \end{array}$	\rightarrow 5.00 ${ }^{\text {220000 }}$	440000 4.50	00^{0}	6,60,000	0
Demand	1,10,000	2,20,000	3,30,000	4,40,000	3,85,000	1,485,000	
v_{j}	4.75	5.50	5.00	4.50	0		

Revised Solution: Optimal

Company	Depot					Supply	u_{i}
	1	2	3	4	Dummy		
1	$-1.25{ }^{5.00}$	55000 5.00	220000 4.50	$\int^{5.50}$	$\begin{array}{r} 0 \\ -0.50 \end{array}$	2,75,000	-0.50
2	$-0.50^{4.75}$	165000 5.50	$\underbrace{6.00}_{-1.00}$	1.50	385000 0	5,50,000	0
3	110000 4.25	$\underbrace{6.75}$	110000 5.00	440000 4.50	(0) ${ }^{0}$	6,60,000	0
Demand	1,10,000	2,20,000	3,30,000	4,40,000	3,85,000	1,485,000	
v_{j}	4.25	5.50	5.00	4.50	0		

Total Cost $=$ Rs 5170,000
Dual: Let $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5} be the dual variables. With these, the dual is:
Maximise $Z=275,000 u_{1}+550,000 u_{2}+660,000 u_{3}+110,000 v_{1}+220,000 v_{2}+330,000 v_{3}+440,000 v_{4}+$ $385,000 v_{5}$
Subject to

$u_{1}+v_{1} \leq 5.00$	$u_{2}+v_{4} \leq 6.00$
$u_{1}+v_{2} \leq 5.00$	$u_{2}+v_{5} \leq 0.00$
$u_{1}+v_{3} \leq 4.50$	$u_{3}+v_{1} \leq 4.25$
$u_{1}+v_{4} \leq 5.50$	$u_{3}+v_{2} \leq 6.75$
$u_{1}+v_{5} \leq 0.00$	$u_{3}+v_{3} \leq 5.00$
$u_{2}+v_{1} \leq 4.75$	$u_{3}+v_{4} \leq 4.50$
$u_{2}+v_{2} \leq 5.50$	$u_{3}+v_{5} \leq 0.00$
$u_{2}+v_{3} \leq 6.00$	

$u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ unrestricted in sign. Substituting u_{i} and v_{j} values from the table, $Z=5170,000$.
15. (a) Initial Solution (VAM): Non-optimal

Improved Solution: Optimal

Total: 700
(b) With $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$ and v_{3} as dual variables, the dual is:

Maximise $Z=40 u_{1}+30 u_{2}+30 u_{3}+20 v_{1}+50 v_{2}+30 v_{3}$
Subject to

$$
\begin{aligned}
u_{1}+v_{1} & \leq 12 \\
u+v_{2} & \leq 8 \\
u_{1}+v_{3} & \leq 2 \\
u_{2}+v_{1} & \leq 9 \\
u_{2}+v_{2} & \leq 10 \\
u_{2}+v_{3} & \leq 9 \\
u_{3}+v_{1} & \leq 7 \\
u_{3}+v_{2} & \leq 15 \\
u_{3}+v_{3} & \leq 6
\end{aligned}
$$

u_{i}, v_{j} : Unrestricted in sign, $i=1,2,3 j=1,2,3$
With u_{i} and v_{j} values from the table, we have
$Z=40 \times 2+30 \times 4+30 \times 6+20 \times 1+50 \times 6+30 \times 0=700$.
16. (a) and (b) The proposed solution is tested for optimality in table. It is found to be non-optimal. To improve this solution, a closed path is drawn beginning with the cell CS.

The revised solution is given in second table. It is found to be optimal. The minimum transportation cost involved is Rs 149 . The optimal schedule is: A to $Q: 12 ; A$ to $R: 2 ; A$ to $S: 8 ; B$ to $R: 15 ; C$ to $P: 7$; and C to S : 1 .

Proposed Solution: Non-optimal

Warehouse	Market				Supply	u_{i}
	P	Q	R	S		
A	(-4) ${ }^{6}$	$3 \begin{array}{l\|l} 12 \\ \hline \end{array}$			22	0
B	(6) ${ }^{5}$	(9) ${ }^{9}$	215	(6) ${ }^{7}$	15	-3
C	\square	$\underbrace{7}$	$\underbrace{}_{-} 8^{4} 1$	(1) $\square^{6}+$	8	3
Req.	7	12	17	9	45	
v_{j}	2	3	5	4		

Total cost $=3 \times 12+5 \times 1+4 \times 9+2 \times 15+5 \times 7+8 \times 1=$ Rs 150

Improved Solution: Optimal

Warehouse	Market				Supply	u_{i}
	P	Q	R	S		
A	$(-3)^{6}$	$3 \xrightarrow{12}$	${ }_{5} \quad 2$	$4{ }_{4} 8$	22	0
B	$(-5)^{5}$	$(-9)^{9}$	$2 \longdiv { 1 5 }$	$(-6)^{7}$	15	-3
C	${ }_{5} \quad 7$	$(-2)^{7}$	$(-1)^{8}$	$6 \quad 1$	8	2
Req.	7	12	17	9	45	
v_{j}	3	3	5	4		

Total cost $=3 \times 12+5 \times 2+4 \times 8+2 \times 15+5 \times 7+6 \times 1=$ Rs 149
(c) For the route C to Q, we have $\Delta_{i j}=-2$. This implies that the rate should be reduced by at least Rs 2 per unit by the carrier to get the business.
17. The initial solution, using VAM, is presented in table. When tested for optimality, it is found to be optimal. The solution is not unique, however, since Δ_{21} and Δ_{54} are both equal to zero. The optimal solution involves a total cost of Rs 2,340.

Initial Basic Feasible Solution: Optimal

	Store					Surplus	u_{i}
	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}		
W_{1}	$9 \longdiv { 1 0 }$	$-2)^{12}$	(-4) 10	$\begin{aligned} & 90 \\ & \hline \end{aligned}$	$6 \lcm{50}$	150	0
W_{2}	(0) ${ }^{5}$	(-12) ${ }^{18}$	(-10) 12	(-5) ${ }^{11}$	$2 \lcm{30}$	30	-4
W_{3}	(-8) 10	M	(-8) ${ }^{7}$	3120	-21) 20	120	-7
W_{4}	$5 \longdiv { 7 0 }$	$6 \stackrel{40}{4}$	220	M	(-6) 8	130	-4
W_{5}	$(-1)^{0}$	$0_{0} 20$	(-4) 0	(0) 0	(-4) 0	20	-10
Req.	80	60	20	210	80	450	
v_{j}	9	10	6	10	6		

Total cost $=9 \times 10+10 \times 90+6 \times 50+2 \times 30+3 \times 120+5 \times 70+6 \times 40+2 \times 20=$ Rs 2,340
18. This problem can be conceived as a transportation problem by taking the sources as the cash inflows for the various months as $A R$ Oct, $A R$ Nov, and $A R$ Dec along with the bank loan, while taking the destinations as the accounts payable for the three months $A P$ Oct, $A P$ Nov, and $A P$ Dec. The cost elements can be derived as follows:
(i) Money available in a month but not used until the following month earns an interest of 1 per cent. Accordingly, the cost is taken to be 0 when money is used in the same month, -1 when used in the next month, and -2 when used in the month following that.
(ii) Payments can be delayed only by one month. A two-month delay is, thus, infeasible and attracts a very large penalty (M).
(iii) Interest on bank loan is taken as $7.5,5.0$ and 2.5 per cent for loan taken in October, November, and December respectively.
The information is shown tabulated in table given here.

Transportation Problem: Funds Management

	Destination			
Sources	AP Oct	AP Nov	AP Dec	Supply
$A R$ Oct	0	-1	-2	18
$A R$ Nov	2	0	-1	27
AR Dec	-	2	0	35
Loan	7.5	5.0	2.5	15
Demand	20	32	43	95

The initial solution using VAM is presented in table below and tested for optimality. The solution is found to be optimal.

Initial Solution: VAM

Sources	Destinations			Supply	u_{i}
	AP Oct	AP Nov	AP Dec		
AR Oct	18 0	(-1) ${ }^{-1}$	$(-2)^{-2}$	18	0
$A R$ Nov	2	${ }_{0} 25$	$(-1)^{-1}$	27	2
$A R$ Dec	M	2	$0_{0} \stackrel{28}{ }$	35	4
Loan	$(-1)^{7.5}$	$-0.5{ }^{5.0}$	2.5	15	6.5
Demand	20	32	43	95	
v_{j}	0	-2	-4		

The optimal solution implies:
(a) Use Rs 18 lakh of receipts of accounts receivable (A / R) in October to pay off accounts payable (A / P) of October.
(b) Use Rs 27 lakh of receipts of A / R in November to pay off Rs 25 lakh of A / P of November and Rs 2 lakh of A / P of October.
(c) Use Rs 35 lakh of A / R in December to pay off Rs 28 lakh of A / P of December and Rs 7 lakh of A / P of November.
(d) Use Rs 15 lakh of bank loan in December to pay off for A / P of December.
19. (a) Yes, the solution is feasible because all the rim requirements (demand and supply) are satisfied by it.
(b) No. It has the required number of $3+4-1=6$ occupied cells.
(c) Yes, it is optimal since it has all $\Delta_{i j}$'s less than, or equal to, zero. It is unique since any of the $\Delta_{i j}$ values for the unoccupied cells is not equal to zero.
(d) Rs 15 (given by the $\Delta_{i j}$ value).
(e) Optimal values of the dual variables are: $u_{1}=10, u_{2}=5, u_{3}=7, v_{1}=1, v_{2}=-2, v_{3}=10$, and $v_{4}=0$. The objective function values are given here:
For primal: $8 \times 250+20 \times 150+6 \times 200+15 \times 100+17 \times 100+7 \times 400=12,200$.
For dual: $400 \times 10+300 \times 5+500 \times 7+200 \times 1-250 \times 2+350 \times 10+400 \times 0=12,200$.
(f) The u_{i} value at each source indicates value of the product at i th origin while v_{j} is indicative of its delivered value at particular destination. For a given route, the delivered value of the product at the destination plus the value at the source involved in that route, cannot be greater than the cost of transporting a unit on that route.
(g) The cost would increase by Rs 8 .
(h) Marginal gain $=25$ per cent of Rs $12=$ Rs 3 per unit. Marginal cost $=$ Rs 7 (given by the $\Delta_{i j}$ value). Since $M G<M C$, it would not be advisable to accept the offer.
(i) The indicated adjustment in the output would cause a change of $2 \times 5-2 \times 10=-10$. Any such adjustment which brings a reduction, like here, would imply that the cost would reduce while a positive change would cause the cost to rise. Thus, the total cost here would reduce by Rs 10 .
(j) The management should concentrate in distribution centre D_{2} since it has the smallest opportunity cost.
20. To derive the profit (or loss) obtainable by selling at a particular agency a unit produced at a particular plant, we proceed as follows. First, the cost of producing a unit at the plant is determined, and to this is added the appropriate shipping cost value, considering the agency to which it is sent. This total cost is then subtracted from the sales price at which it would be sold at that agency to get the unit profit. For example, an item produced in plant 1 and sold at agency 3 would involve a total cost of $18+7=25$, where it can be sold for Rs 31 . Thus, the profit value corresponding to the cell 1,3 would be $31-25=6$. Similarly, other values are determined as follows.

Plant	Agency				
	1	2	3	4	
1	12	12	6	15	400
2	0	7	1	10	300
3	9	11	7	11	800
Demand	300	400	300	500	1,500

To solve this problem for maximisation, we first convert it into an opportunity loss matrix by subtracting each cell value from the largest value, 15. Then it is solved as a minimisation problem. This is shown in table below. The table also gives the initial solution using VAM.

Initial Feasible Solution: Non-optimal

Plant	Agency				Supply	u_{i}
	1	2	3	4		
1			$\text { (2) }{ }^{9}$	$\begin{aligned} & \hline 400 \\ & 0 \\ & \hline \end{aligned}$	400	0
2	$\overbrace{}^{-5}{ }^{15}$		$-2{ }^{14}$		300	5
3	$\left.6\right\|_{-\longleftrightarrow} ^{300}$	$\downarrow_{\substack{ \\++}}$	$8{ }_{8} \mathbf{3 0 0}$	$\text { (-3) } \quad 4$	800	1
Demand	300	400	300	500	1,500	
v_{j}	5	3	7	0		

Total profit $=15 \times 400+7 \times 200+10 \times 100+9 \times 300+11 \times 200+7 \times 300=$ Rs 15,400

The solution in the table is seen to be non-optimal. An improved solution is given below which is tested to be optimal.

Improved solution: Optimal

Plant	Agency				Supply	u_{i}
	1	2	3	4		
1	32	$(-2)^{3}$	(-4) 9	$0 \longdiv { 2 0 0 }$	400	0
2	(-7) 15	-2) ${ }^{8}$	(-4) 14	5^{300}	300	5
3	$6 \longdiv { 1 0 0 }$	4400	8	(-1) ${ }^{4}$	800	3
Demand	300	400	300	500	1,500	
v_{j}	3	1	5	0		

Total profit $=12 \times 200+15 \times 200+10 \times 300+9 \times 100+11 \times 400+7 \times 300=$ Rs 15,800
21. From the given information, it is evident that the problem is an unbalanced one. A dummy row is introduced and the problem is balanced as shown below.

Investment made at the beginning of year	Investment type					Rupees available (in ‘000)
	A		$\begin{gathered} C \\ \text { return } \end{gathered}$	D	E	
1	0.80	0.90	0.60	0.75	1.00	500
2	0.55	0.65	0.40	0.60	0.50	600
3	0.30	0.25	0.30	0.50	0.20	750
4	0.15	0.12	0.25	0.35	0.10	800
Dummy	0	0	0	0	0	1,000
Maximum rupee investment ('000)	750	600	500	800	1,000	

Being a maximisation problem, it is first converted into a minimisation problem. The opportunity loss matrix is presented in table below. The loss entries here are expressed in paise for simplicity of presentation.
The initial solution using VAM is also given in the table. The solution is degenerate as the number of occupied cells is eight, as against the required nine $(=5+5-1)$. To remove degeneracy, an ε is placed in the cell 1,2 . From the $\Delta_{i j}$ values calculated, it is evident that the solution is not optimal. Accordingly, a revised solution may be obtained for which a closed path in drawn starting from the cell 5 , 2, which has largest $\Delta_{i j}$ value.

Opportunity Loss Matrix: Initial Solution

Year	Investment					Availability	u_{i}
	A	B	C	D	E		
1	$-^{20}$			$-45)^{25}$	00^{500}	500	0
2	-20	35^{6}	$-45{ }^{60}$	$-35)^{40}$	-255^{50}	600	25
3	0^{70}	5^{75}	$-10{ }^{70}$	50^{750}	$-^{80}$	750	70
4	85^{250}	7^{88}	75^{500}		$-5{ }^{90}$	800	85
Dummy	100^{500}		-10			1,000	100
Max. Investment	750	600	500	800	1,000	3,650	
v_{j}	0	10	-10	-20	0		

The revised solution is given here. Since all $\Delta_{i j}$'s in this solution are seen to be less than, or equal to, zero, it is optimal.

Revised Solution: Optimal

Year	Investment					Availability	u_{i}
	A	B	C	D	E		
1	(-20) 20	$(-10)^{10}$	(-50) ${ }^{40}$	$(-45)^{25}$	$0_{00} 500$	500	0
2	$\left(-10{ }^{45}\right.$	35^{600}	(-35) 60	$\left(-25{ }^{40}\right.$	$(-15)^{50}$	600	35
3	0^{70}	(-5 ${ }^{75}$	-10 70	${ }_{50} 7$	$\left(-10^{80}\right.$	750	70
4	$\begin{array}{l\|l\|} \hline 250 \\ \hline \end{array}$	$-3)^{88}$	75500	$\begin{array}{l\|l\|} \hline & 50 \\ \hline \end{array}$	$-5{ }^{90}$	800	85
Dummy	100 500		$-10{ }^{100}$	-20	1005	1,000	100
Max. Investment	750	600	500	800	1,000	3,650	
v_{j}	0	0	-10	-20	0		

The optimal allocation is:

Year	Investment type	Amount (000 Rs)
1	E	500
2	B	600
3	D	750
4	A	250
4	C	500
4	D	50

22. Option 1: When plant is situated at C

Opportunity Loss Matrix - Initial Solution (VAM): Optional

Plant	Product				Capacity	u_{i}
	P_{1}	P_{2}	P_{3}	Dummy		
A	$2 \begin{aligned} & 500 \\ & 2 \end{aligned}$	$(-4)^{13}$	$-17)^{17}$	37 100	600	0
B	$(-5)^{7}$	$9 \begin{aligned} & 9 \\ & 9\end{aligned}$	$-12)^{12}$	37 	1,000	0
C	$-15{ }^{17}$	$-3{ }^{12}$	600 0	$\begin{array}{l\|l\|} \hline 200 \\ \hline 37 \end{array}$	800	0
Demand	500	800	600	500	2,400	
v_{j}	2	9	0	37		

Total profit $=$ Rs 62,100
Option 2: When plant is situated at D

Opportunity Loss Matrix - Initial Solution (VAM): Optimal

Plant	Product				Capacity	u_{i}
	P_{1}	P_{2}	P_{3}	Dummy		
A	$0 \quad 500$	$-^{11}$	$-5{ }^{15}$	$35 \quad 100$	600	0
B	$-5)^{5}$		$1 0 \longdiv { 6 0 0 }$	354	1,000	0
D	$-15)^{11}$	$\begin{array}{l\|l} \hline 800 \\ \end{array}$	$-1)^{7}$	-4^{35}	800	-4
Demand	500	800	600	500	2,400	
v_{j}	0	7	10	35		

Total profit $=$ Rs 58,100
Conclusion: Plant should be setup in city C.
23. The total amount required by five projects is Rs 750 thousand. Since a private bank can give any amount of credit, the amount allocated to this is $750-(400+250)=$ Rs 100 thousand. The initial solution using VAM is given in table below.

Initial Feasible Solution: Optimal

Bank	Project					Avail.	u_{i}
	P	Q	R	S	T		
Pvt.	$(-2)^{20}$			$-(-1)^{17}$		100	2
Nat.	$16 \begin{array}{\|l\|l\|} \hline 200 \\ 16 \end{array}$		16	$(-1)^{15}$		400	0
Co-op.	$(0)^{15}$	00^{15}	$+\begin{aligned} & \downarrow 50 \\ & + \\ & \hline \end{aligned}$	$13 \begin{array}{\|c\|c\|} \hline 125 \\ \hline \end{array}$	$\rightarrow-14^{45}$	250	-1
Req.	200	150	200	125	75	750	
v_{j}	16	16	16	14	15		

The solution is tested and found to be an optimal one. It involves a total interest of $100 \times 18 \%+200 \times 16 \%$ $+50 \times 16 \%+150 \times 16 \%+50 \times 15 \%+125 \times 13 \%+75 \times 14 \%=$ Rs 116.25 thousand or Rs $1,16,225$.
The solution is no unique, however, since some of the unoccupied cells have $\Delta_{i j}=0$. A closed path drawn from each cell with $\Delta_{i j}=0$ would yield an alternate optimal solution. One such solution is obtainable by starting with the cell 1,5 , as shown in the table. The alternate optimal solution is shown below.

Revised Solution: Alternate Optimal

Bank	Project					Avail.	u_{i}
	P	Q	R	S	T		
Pvt.	$-2)^{20}$	$\begin{array}{l\|l\|} \hline & 25 \\ \hline \end{array}$	(0) 18	$-1)^{17}$	$\begin{array}{l\|l\|} \hline & 75 \\ \hline 17 \end{array}$	100	0
Nat.	16^{200}	16^{125}	16	-1) 15	$-1 \begin{gathered} 16 \\ -1 \end{gathered}$	400	-2
Co-op.	(0) 15	(0) 15	$15^{\square} 125$	$\begin{array}{l\|l\|} \hline 125 \\ \hline \end{array}$	$\text { (0) } 14$	250	-3
Req.	200	150	200	125	75	750	
v_{j}	18	18	18	16	17		

24. This problem is an unbalanced one since the amount available is Rs 230 lakh while the investment requirement is Rs 210 lakh. The problem is restated adding a dummy investment as shown here.

Investment made at the beginning of year	Net return data (in paise) of selected investments					
	Amount available (lakh)					
	P	Q	R	S	Dummy	
1	95	80	70	60	0	70
2	75	65	60	50	0	40
3	70	45	50	40	0	90
4	60	40	40	30	0	30
Maximum Investment (lakh)	40	50	60	60	20	230

To solve this problem, it is first converted into an equivalent minimisation problem, as shown in table below. The initial solution, using VAM, is also given in the table.

Opportunity Loss Matrix: Initial Solution

Year	Investment					Avail.	u_{i}
	P	Q	R	S	Dummy		
1	$\begin{array}{l\|l\|} \hline & 40 \\ 0 & \end{array}$		(-5) 25	$-5)^{35}$	$-35{ }^{95}$	70	0
2	$(-5)^{20}$		$\begin{array}{l\|l\|} \hline & 20 \\ 35 \end{array}$	0^{45}	$-20)^{95}$	40	15
3	0^{25}	$-^{10} 50$	$\begin{array}{l\|l\|} \hline & 40 \\ \hline 45 \end{array}$	$\begin{array}{l\|l} \hline & 50 \\ \end{array}$	$-^{95}$	90	25
4	$(0)^{35}$	$(-5)^{55}$	$(0)^{55}$	$\begin{array}{l\|l\|} \hline & 10 \\ \hline \end{array}$	${ }_{95}{ }^{20}$	30	35
Invest.	40	50	60	60	20	230	
v_{j}	0	15	20	30	60		

According to the solution obtained, the optimal investment plan is:

Year	Investment	Net return
1	Rs 40 lakh in P	Rs 40 lakh $\times 0.95=$ Rs $38,00,000$
	Rs 30 lakh in Q	Rs 30 lakh $\times 0.80=$ Rs $24,00,000$
2	Rs 20 lakh in Q	Rs 20 lakh $\times 0.65=$ Rs $13,00,000$
	Rs 20 lakh in R	Rs 20 lakh $\times 0.60=$ Rs $12,00,000$
3	Rs 40 lakh in R	Rs 40 lakh $\times 0.50=$ Rs $20,00,000$
	Rs 50 lakh in S	Rs 50 lakh $\times 0.40=$ Rs $20,00,000$
4	Rs 10 lakh in S	Rs 10 lakh $\times 0.30=$ Rs $3,00,000$
		Total Rs 1,30,00,000

25. By subtracting the wage scales for various applicant categories, we shall first obtain the efficiency matrix. Thus, for category value A, we shall subtract 1,000 from each of the values $1,000,1,200,1,000$, and 1,500 respectively. Similarly, other values can be determined as shown below.

Relative Efficiency Matrix

Category	Skill requirement level							
	A	B	C	D	E	F	Dummy	Applicants
I	0	0	300	100	0	-50	0	54
II	200	150	0	50	0	-100	0	57
III	100	0	0	100	100	100	0	45
IV	500	400	400	100	0	0	0	74
Req.	25	29	31	40	33	17	55	230

Here, since the number of applicants exceeds the requirement, a column headed dummy has been introduced to balance the two. To solve this problem for maximisation of efficiency, we convert the problem into a minimisation problem, obtain the initial solution using VAM, and test the solution for optimality. The optimality test indicates that the solution is optimal.

Initial Feasible Solution: Optimal

Cat.	Skill Requirement Level							App.	u_{i}
	A	B	C	D	E	F	Dummy		
		500	11	40	3	550			
I	500		200	400	500		500	54	0
II	300	350	500	450	 500	600	 50 50	57	0
	400				28	17			
III		500	500	400	400	400	500	45	-100
	25	29	20						
IV	0	100	100	400	500	500	500	74	-100
Req.	25	29	31	40	33	17	55	230	
v_{j}	100	200	200	400	500	500	500		

According to the given values of u_{i} and v_{j}, we have
$\Delta_{11}=-400, \Delta_{12}=-300, \Delta_{16}=-50, \Delta_{17}=0, \Delta_{21}=-200, \Delta_{22}=-150, \Delta_{23}=-300, \Delta_{24}=-50, \Delta_{26}=-100$, $\Delta_{31}=-400, \Delta_{32}=-400, \Delta_{33}=-400, \Delta_{34}=-100, \Delta_{37}=-100, \Delta_{44}=-100, \Delta_{45}=-100, \Delta_{46}=-100, \Delta_{47}=-100$.
The optimal solution, then, is to select $X_{I C}=11, X_{I D}=40, X_{I E}=3, X_{I I E}=2, X_{I I E}=28, X_{I V A}=25, X_{I V B}=29$, and $X_{I V C}=20$.
26.

Production Planning Problem

Prod. Month	Supply month						Capacity
	Jan	Feb	Mar	Apr	May	Dummy	
Jan	24	29	34	39	44	0	250
Feb	M	27	32	37	42	0	225
Mar	M	M	32	37	42	0	250
Apr	M	M	M	30	35	0	200
May	M	M	M	M	34	0	225
Demand	200	250	150	80	120	350	1,150

Production Planning-Optimal Solution

Prod. Month	Supply month						Capacity	u_{i}
	Jan	Feb	Mar	Apr	May	Dummy		
Jan	200 24	$\begin{array}{l\|l} & 25 \\ 29 \end{array}$	$-2)^{34}$	$-9)^{39}$	$-^{44}$	25 0	250	0
Feb	M	$\begin{array}{\|c} 225 \\ 27 \end{array}$	$-2)^{32}$	$-9)^{37}$	$-10{ }^{42}$	$-2)^{0}$	225	-2
Mar	M	M	32	$-7)^{37}$	$-8)^{42}$	100 0	250	0
Apr	M	M	M	$\begin{aligned} & \hline 80 \\ & 30 \end{aligned}$	$-1)^{35}$	120 0	200	0
May	M	M	M	M	$\begin{aligned} & \hline 120 \\ & 34 \end{aligned}$	$\begin{aligned} & 105 \\ & 0 \\ & \hline \end{aligned}$	225	0
Demand	200	250	150	80	120	350	1,150	
v_{j}	24	29	32	30	34	0		

Total cost $=$ Rs 22,880
27. The cost matrix based on the given information, along with initial solution to the problem, is given in table below. The solution involves a total cost equal to Rs 2,230 and is non-optimal.
The improved solution is given in table that follows, which is found to be optimal, involving a total cost equal to Rs 2,210 . It is not unique. The two optimal production plans are:
Plan I:

Production

Month 1:40 units
Month 2: 30 units
Month 3:30 units
Month 4:40 units
Plan II:
Production
Month 1:40 units
Month 2:30 units
Month 3: 30 units
Month 4:40 units

For use in
Month 1:20 units, Month $2: 20$ units
Month 2: 10 units, Month 3 : 20 units
Month 3 : 30 units
Month 4 : 40 units

For use in
Month 1:20 units, Month $2: 20$ units
Month 2 : 30 units
Month 3 : 30 units
Month 4 : 40 units

Initial Basic Feasible Solution: Non-optimal

(Contd)

Total cost = Rs 2,230
Improved Solution: Optimal

Month	Month					Supply	u_{i}
	1	2	3	4	Dummy		
	20	20					
1	14	15	16	$(-1)^{17}$	(-1) 0	40	0
		10	20		20		
2	M	16	17	$-1)^{18}$	0	50	1
3	M	M	1530 15	$-1)^{16}$	(-2) 0	30	-1
				40	10		
4	M	M	M	17		50	1
Demand	20	30	50	40	30	170	
v_{j}	14	15	16	16	-1		

Total cost = Rs 2,210
28. Using given information, the cost matrix has been developed as shown in table. Here JN indicates January normal time, JOT indicates January overtime and so on, while JS shows January standard while JD shows January deluxe, and so on. The initial solution using VAM is obtained and, upon testing, found to be nonoptimal. Subsequent tables δ are prepared to obtain optimal solution. The optimal solution involves a total cost of Rs 6,43,000.

Initial Feasible Solution: Non-optimal

	JS	$J D$	FS	$F D$	MS	$M D$	Dummy	Out.	u_{i}
JN		$\begin{aligned} & \hline 100 \\ & 750 \end{aligned}$	$\text { (4) } 406$	$\text { (0) }{ }^{760}$	${ }^{412}$	-150 770	$-30{ }^{0}$	300	0
JOT	$\underbrace{\square}$200 450	$\overbrace{-20}^{820}$	$\text { (4) } 456$	-20	$-8{ }^{462}$		$-20{ }^{0}$	200	50
FN	M	M	100 400	$\begin{array}{l\|l} \hline 180 \\ 750 \end{array}$	$\text { (4) }{ }^{406}$	760 20	-40	300	-10
FOT	M	M	$\begin{array}{r} 200 \\ 450 \end{array}$	$-20{ }^{820}$	$\text { (4) }^{456}$	$-20)^{830}$		200	40
MN	M	M	M	M	295 400	$\underset{\rightarrow+}{ } \underset{750}{ } \underbrace{5}$	$-^{50}$	300	-20
MOT	M	M	M	M	¢ 225 450 $+\longleftarrow$	$-20)^{820}$	- 175 -1	200	30
Dem.	250	100	300	180	320	175	175	1,500	
v_{j}	400	750	410	760	420	770	-30		

Improved Solution 1: Non-optimal

	JS	JD	FS	$F D$	MS	$M D$	Dummy	Out.	u_{i}
JN	$\begin{aligned} & \hline 200 \\ & 400 \end{aligned}$	$\begin{array}{l\|l} \hline 100 \\ 750 \end{array}$	$-16{ }^{406}$	-20	$-12)^{412}$	-20	-50	300	0
JOT	$\begin{array}{l\|l} \hline & 50 \\ 450 \end{array}$	-20	-16	$-40{ }^{830}$	-12	-40	150 0	200	50
$F N$	M	M	$\begin{array}{r} \hline 100 \\ +400 \\ + \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 750 \end{aligned}$	$\text { (4) }{ }^{406}$	$\rightarrow \begin{aligned} & \hline 760 \\ & \rightarrow \end{aligned}$	-40	300	10
FOT	M	M	¢ 200	-20	(4)	$\text { (-20) }{ }^{830}$	${ }^{10}{ }^{0}$	200	60
$M N$	M	M	M	M	$\begin{array}{l\|l\|} \hline & 145 \\ 400 \\ \hline \end{array}$	$\underset{+}{\substack{155 \\ 750}}$	-50)	300	0
MOT	M	M	M	M		$\underbrace{820}$	$\rightarrow-\quad \begin{aligned} & \text { L } 25 \\ & 0\end{aligned}$	200	50
Dem.	250	100	300	180	320	175	175	1,500	
v_{j}	400	750	390	740	400	750	-50		

Improved Solution 2: Optimal

	$J S$	$J D$	FS	$F D$	MS	MD	Dummy	Out.	u_{i}
$J N$	200 400	$\begin{array}{c\|c} 100 \\ 750 \end{array}$	$-^{406}$	$-10{ }^{760}$	$-(12)^{412}$	-20^{770}	-50^{0}	300	0
JOT	$\begin{array}{l\|l} \hline & 50 \\ 450 \end{array}$	$-^{820}$	$\overbrace{}^{456}$	$-^{830}$	$-^{462}$		150 0	200	50
FN	M	M	120 400	180 750	$\underbrace{406}$	$-10{ }^{760}$	$-50{ }^{0}$	300	0
FOT	M	M	180 450	$-20{ }^{820}$	-6	$-30{ }^{830}$	20 0	200	50
$M N$	M	M	M	M	$\begin{aligned} & 125 \\ & 400 \end{aligned}$	$\begin{aligned} & 175 \\ & 750 \end{aligned}$	-50	300	0
MOT	M	M	M	M	195 450	$-20{ }^{820}$	5 0	200	50
Dem.	250	100	300	180	320	175	175	1,500	
v_{j}	400	750	400	750	400	750	-50		

29. (a) The given data are presented in table here. Using VAM, the initial solution is found and presented in the table.

Initial Solution: Non-optimal

	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	Avail.	u_{i}
A_{1}	$-45{ }^{71}$	$-31{ }^{70}$	$(11)^{57}$	$\begin{array}{\|l\|l\|} \hline & 400 \\ \rightarrow_{i} \\ \hline \end{array}$	$-29)^{50}$	400	0
A_{2}	$\begin{array}{\|l\|} \hline 280 \\ 55 \end{array}$	$\begin{array}{l\|l\|} \hline 180 \\ 68 \end{array}$	$\underbrace{4}_{-} \begin{array}{r}\text { ¢ } \\ \hline\end{array}$		$-3)^{53}$	800	29
A_{3}	$-58{ }^{58}$	$-37{ }^{50}$	$\begin{array}{\|l\|} \hline 400 \\ \hline 42 \end{array}$	$-63{ }^{58}$	$-32{ }^{27}$	400	-26
A_{4}	$-28{ }^{66}$	$\begin{array}{l\|l\|} \hline 180 \\ 51 \end{array}$	$-13{ }^{93}$	$(-2)^{35}$	$\begin{array}{l\|l} \hline 220 \\ 33 \end{array}$	400	12
Req.	280	360	460	680	220	2,000	
v_{j}	26	39	68	21	21		

The solution is tested for optimality and is found to be non-optimal. The cell 1,3 is found to have $\Delta_{i j}>0$. Thus, beginning with this cell, a closed path is drawn as shown in the table. The revised
solution is given in the following table. This is seen to be optimal. The solution involves a total cost of Rs 88,440 .

Revised Solution: Optimal

	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	Avail.	u_{i}
A_{1}	$-45)^{71}$	$-31{ }^{70}$	$\begin{array}{l\|l\|} \hline & 60 \\ \end{array}$	$\begin{array}{l\|l\|} \hline 21 & 340 \\ \hline \end{array}$	$-29{ }^{50}$	400	0
A_{2}	$\begin{array}{l\|l} \hline & 280 \\ 55 \end{array}$	$68 \quad 180$	$-11{ }^{97}$	$\begin{array}{\|l\|l\|} \hline & 340 \\ 50 \\ \hline \end{array}$	$(-3)^{53}$	800	29
A_{3}	$-47)^{58}$	-26	$\begin{array}{l\|l\|} \hline 42 \\ \hline \end{array}$	$-52)^{58}$	$-21)^{27}$	400	-15
A_{4}	$-28{ }^{66}$		$-24)^{93}$	$-2{ }^{35}$	$\begin{array}{l\|l\|} \hline 33 & 220 \\ \hline \end{array}$	400	12
Req.	280	360	460	680	220	2,000	
v_{j}	26	39	57	21	21		

(b) The problem is presented as a transhipment problem in table below. The initial solution is found to be non-optimal. Successively improved solutions are given in the following tables.

From table, we observe the optimal solution to be: A_{1} to $B_{4}: 680$ units; A_{2} to $A_{1}: 280$ units; A_{2} to $B_{1}: 280$ units; A_{2} to $B_{2}: 240$ units; A_{3} to $B_{3}: 400$ units; A_{4} to $B_{2}: 120$ units: A_{4} to $B_{5}: 280$ units; and B_{5} to $B_{3}: 60$ units. Total cost Rs 85,260 .

Improved Solution: Non-optimal

30. (a) From the given information, the cost matrix is shown below. Also given in the table is the initial feasible solution using VAM. The solution is tested and found to be optimal, though not unique. The solution are: $x_{12}=40, x_{13}=200, x_{21}=80, x_{22}=80$; and $x_{12}=120, x_{13}=120, x_{21}=80, x_{23}=80$. Total cost $=36,400$.

Initial Feasible Solution: Optimal

	W_{1}	W_{2}	W_{3}	Capacity	u_{i}
P_{1}	$-30{ }^{100}$		60 200	240	0
P_{2}		$\begin{array}{l\|l} \hline & 80 \\ 140 \end{array}$	$\text { (0) } 110$	160	50
Req.	80	120	200	400	
v_{j}	70	90	60		

(b) The given problem is represented as a transhipment problem in table given below. The optimal solution obtained in (a) above is reproduced. Upon testing, it is found to be optimal in this case as well. In addition to the above two optimal solutions, another one can be traced. This is: P_{1} to $W_{3}\left(x_{15}\right)=240$, P_{2} to $W_{1}\left(x_{23}\right)=80, P_{2}$ to $W_{2}\left(x_{24}\right)=80$, and W_{3} to $W_{2}\left(x_{54}\right)=40$ units.

Initial Feasible Solution: Optimal

	P_{1}	P_{2}	W_{1}	W_{2}	W_{3}	Capacity	u_{i}
P_{1}	-0 0	-130	-30	\square 90 90	200 60	240	0
P_{2}	-30	-0 0	80 120	$\begin{array}{l\|l} \hline 80 \\ 140 \end{array}$	$\text { (0) } 110$	160	50
W_{1}	$\begin{gathered} 100 \\ -170 \end{gathered}$	-240	-0 0	$-40{ }^{60}$	$-90{ }^{80}$	0	-70
W_{2}	$\underbrace{90}$	-280	-80	$\begin{aligned} & \hline-0 \\ & 0 \end{aligned}$	$-60{ }^{30}$	0	-90
W_{3}	-120	-220	$-70{ }^{80}$	$(0)^{30}$	$\square-0$ 0	0	-60
Req.	0	0	80	120	200	400	
v_{j}	0	-50	70	90	60		

31. The optimal solution to the given problem, assuming it to be a transportation problem, is shown in table below.

Table 1: Optimal solution as a TP

Now, we consider the solution to the problem as a transhipment problem. The solution is shown in Tables 1 through 5. The optimal solution involves a total cost of Rs 405.

Table 2 Initial Feasible Solution: Non-optimal

Terminal	A	B	C	D	E	F	Supply	u_{i}
A	$\begin{array}{l\|l} \hline & -0 \\ \end{array}$	$-7{ }^{3}$	$-2{ }^{2}$	$-7{ }^{6}$	$4{ }_{4} 15$	$\begin{aligned} & \hline 35 \\ & 1 \end{aligned}$	50	0
B	$(1)^{3}$	0^{-1}	0^{4}	$\begin{array}{r} 420 \\ 3 \\ + \\ \hline \end{array}$		$-2{ }^{7}$	40	4
C	$-\left(-2{ }^{2}\right.$	$-8{ }^{4}$	0				60	0
D	$(-5)^{6}$		$-3{ }^{4}$		$\int^{\frac{\curlyvee}{+2}}$	$-3)^{5}$	0	1
E	$-8)^{4}$	$-16)^{8}$	$-^{4}$	$-7)^{2}$	$\begin{array}{l\|l\|} \hline & -0 \\ \hline \end{array}$	$(4)^{1}$	0	-4
F	$-2{ }^{1}$	$-12)^{7}$	$-3)^{2}$	$-7{ }^{5}$	2^{1}	${ }_{0}{ }^{-}$	0	-1
Demand	0	0	0	20	95	35	150	
v_{j}	0	-4	0	-1	4	1		

Total cost: $4 \times 15+1 \times 35+3 \times 20+8 \times 20+4 \times 60=$ Rs 555

Table 3 Improved Solution: Non-optimal

Terminal	A	B	C	D	E	F	Supply	u_{i}
A	$\begin{array}{l\|l} \hline & -0 \\ \end{array}$	$-4)^{3}$	$-2)^{2}$	$-4)^{-6}$	π_{4}		50	0
B	$-2)^{3}$	${ }_{0} \square^{-0}$	$-5)^{4}$	$3{ }^{40}$	(3) 8	7	40	1
C	$(-2)^{2}$	$(-5)^{4}$	$\begin{array}{l\|l} \hline & -0 \\ \hline \end{array}$	$\text { (-2) }{ }^{4}$	4	$(-1)^{2}$	60	0
D	$\text { (-8) }{ }^{6}$	$(6)^{3}$	$\underbrace{4}$	-20 0	$2_{2} \quad 20$		0	-2
E	$(-8)^{4}$	$(-13)^{8}$	$(-8)^{4}$	$(-4)^{2}$	$\begin{array}{ll} \hline & -0 \\ 0 & \\ \hline \end{array}$	$\text { (-4) }{ }^{1}$	0	-4
F	$(-2)^{1}$	$-9)^{7}$	$-3)^{2}$	(-4)			0	-1
Demand	0	0	0	20	95	35	150	
v_{i}	0	-1	0	2	4	1		

Total cost: $4 \times 15+1 \times 35+3 \times 40+4 \times 60+2 \times 60=$ Rs 495
Table 4 Improved Solution: Non-optimal

Terminal	A	B	C	D	E	F	Supply	u_{i}
A	$\begin{array}{l\|l} \hline & -0 \\ \hline \end{array}$	$-6)^{3}$	$(-4)^{2}$	$-6{ }^{6}$	$-2)^{4}$	50 1	50	0
B	00^{3}	${ }_{0}{ }^{-0}$	$-5)^{4}$	340	$-^{8}$	$-3)^{7}$	40	3
C	00^{2}	$(-5)^{4}$	$0_{0}+0$	$-2)^{4}$		$\rightarrow_{(1)}{ }^{+}$	60	2
D	$\underbrace{6}$	$(-6)^{3}$	$\underbrace{4}$	-20 0	2^{20}	\qquad	0	0
E	$(-6)^{4}$	$(-13)^{8}$	$(-8)^{4}$	$-4)^{2}$	0	$\underbrace{1}$	0	-2
F	$-2)^{1}$	$(-11)^{7}$	$(-5)^{2}$	$(-6)^{5}$		$\downarrow^{0}{ }^{-15}$	0	-1
Demand	0	0	0	20	95	35	150	
v_{j}	0	-3	-2	0	2	1		

Total cost: $1 \times 50+3 \times 40+4 \times 60+2 \times 20+1 \times 75=$ Rs 465

Table 5 Improved Solution: Optimal

Termimal	A	B	C	D	E	F	Supply	u_{i}
A	$\begin{array}{l\|l} \hline & -0 \\ \end{array}$	$-6)^{3}$	$(-3)^{2}$	$-6{ }^{6}$	-2 ${ }^{4}$	$1_{1} 50$	50	0
B	00^{3}	${ }_{0} \underline{L}_{-0}$	$-(-2)^{4}$	340	$-^{8}$	$-3)^{7}$	40	3
C	$-1)^{2}$	$(-6)^{4}$	$0{ }_{0}$	$-3{ }^{4}$	$-^{4}$	60 2	60	1
D	(-6) ${ }^{6}$	$(-6)^{3}$	$-^{4}$	-20 0	$\begin{aligned} & 20 \\ & 2 \end{aligned}$	-4	0	0
E	$(-6)^{4}$	$(-13)^{8}$	$(-7)^{4}$	$(-4)^{2}$	$\begin{aligned} & \hline{ }^{4}-0 \\ & \hline \end{aligned}$	$(-2)^{1}$	0	-2
F	$-2)^{1}$	$(-11)^{7}$	$(-4)^{2}$	$(-6)^{5}$	$\begin{aligned} & 75 \\ & \hline \end{aligned}$	0_{0}	0	-1
Demand	0	0	0	20	95	35	150	
v_{j}	0	-3	-1	0	2	1		

Total cost $=1 \times 50+3 \times 40+2 \times 60+2 \times 20+1 \times 75=$ Rs 405

CHAPTER 6

1. (a) Formulation of assignment problem as transportation problem:

Transportation Problem

Worker	Job			Supply
	1	2	3	
1	3	4.5	7	1
2	6	4	6	1
3	5	M	4	1
Demand	1	1	1	3

(b) Assignment problem as a linear programming problem:

$$
\text { Minimise } \quad Z=3 x_{11}+4.5 x_{12}+7 x_{13}+6 x_{21}+4 x_{22}+6 x_{23}+5 x_{31}+M x_{32}+4 x_{33}
$$

Subject to

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}=1 \\
& x_{21}+x_{22}+x_{23}=1 \\
& x_{31}+x_{32}+x_{33}=1 \\
& x_{11}+x_{21}+x_{31}=1 \\
& x_{12}+x_{22}+x_{32}=1 \\
& x_{13}+x_{23}+x_{33}=1 \\
& x_{i j}=0 \text { or } 1, \text { for } i=1,2,3 ; j=1,2,3
\end{aligned}
$$

2. The problem is:

Worker	Job 1	Job 2	Job 3
A	8	5	6
B	6	9	4
C	5	7	7

3. Enumeration Method:

$A-1$	$B-2$	$C-3$	15
$A-1$	$B-3$	$C-2$	12
$A-2$	$B-1$	$C-3$	16
$A-2$	$B-3$	$C-1$	$9 *$
$A-3$	$B-1$	$C-2$	20
$A-3$	$B-2$	$C-1$	16

4.

Reduced-Cost Table 1

0	2	3	1	7
4	0	3	6	2
4	1	0	2	5
2	5	0	4	3
2	0	4	3	6

Assignments:

$A-1$	$B-2$	$C-3$	24
$A-1$	$B-3$	$C-2$	19
$A-2$	$B-1$	$C-3$	18
$A-2$	$B-3$	$C-1$	14^{*}
$A-3$	$B-1$	$C-2$	19
$A-3$	$B-2$	$C-1$	20
HAM.			

HAM:

$A-2, B-3, C-1$

Reduced-Cost Table 2

Reduced-Cost Table 3

The optimal assignment is:

Brand	Set up	Cost
B_{1}	S_{1}	4
B_{2}	S_{5}	5
B_{3}	S_{4}	6
B_{4}	S_{3}	7
B_{5}	S_{2}	5
	Total	27

5. (a) To determine the optimal assignment pattern that minimises the total time taken, we apply Hungarian method to the given matrix. The row reductions are shown in Reduced-Cost Table 1 while the column reductions are presented in Reduced-Cost Table 2. Note that although the given data are in hours, the word 'Cost' is used in a broad sense while presenting the results in Reduced-Cost tables.

Reduced-Cost Table 1

5	7	1	1	0
5	0	5	5	4
0	1	6	7	4
0	4	1	1	3
4	4	7	2	0

Reduced-Cost Table 2

The minimum number of lines covering all zeros is five here, which equals the matrix order. Thus, assignments are made. Here, there are two alternate solutions as:

	Alternative 1		Alternative 2			
Job	Employee	Time		Job	Employee	Time
1	C	3		1	D	3
2	B	1		2	B	1
3	A	3		3	A	3
4	D	2		4	C	2
5	E	2		5	E	2

(b) Cost Matrix

Job	Employee				
	A	B	C	D	E
1	105	135	45	39	26
2	90	15	90	78	65
3	45	60	135	130	91
4	15	75	30	26	52
5	90	90	135	52	26

RCT-1

79	109	19	13	0
75	0	75	63	50
0	15	90	85	46
0	60	15	11	37
64	64	109	26	0

RCT-2

79	109	4	2	0
75	0	60	52	50
0	15	75	74	46
0	60	0	0	37
64	64	94	15	0

RCT-3

Optimal assignments: $1-D, 2-B, 3-A, 4-C, 5-E$. Total Cost $=155$
6.

RCT-1				
25	0	50	40	50
25	0	65	50	50
22	0	67	52	57
25	0	75	45	55
25	0	65	47	50

RCT-3

3	3	0	0	3
0	0	12	7	0
0	3	17	12	10
0	0	22	2	$\$$
0	0	12	4	0

Alternate optimal assignments:

Job	Machine	Machine	
J_{1}	M_{3}	M_{3}	Total Cost $=365$
J_{2}	M_{2}	M_{5}	
J_{3}	M_{1}	M_{1}	
J_{4}	M_{4}	M_{4}	
J_{5}	M_{5}	M_{2}	

7.

RCT-1

RCT-2

RCT-4

The problem has multiple optimal solutions. One such solution is given here. Patrol units 1, 3, 4 and 5 should respond. Average response time is 3.5 minutes.
8. To solve this problem, we first balance it by introducing two rows with zero elements, dummy stores. The problem is restated below stating the bids in units of Rs 10,000 s.

Store	Construction company					
	1	2	3	4	5	6
1	853	880	875	824	891	867
2	789	774	774	765	793	783
3	820	813	824	806	835	817
4	843	846	862	833	844	855
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Reduced-Cost Table 1

29	56	51	\emptyset	67	43
24	9	9	0	28	18
14	7	18	0	29	11
10	13	29	0	11	22
-0	0	0	0	0	0
0	0	0	0	0	0

Reduced-Cost Table 3

Reduced-Cost Table 2

Reduced-Cost Table 4

The optimal assignment is:

Store	Company	Cost (Rs lakh)
1	4	82.4
2	3	77.4
3	2	81.3
4	1	84.3
	Total	325.4

9.

Reduced-Cost Table 1

120	110	90	110	70	ϕ	ϕ	ϕ
70	130	100	120	60	0	0	0
0	10	110	10	30	0	0	0
140	0	0	60	20	0	0	0
90	30	0	70	0	0	0	0
10	20	30	10	20	0	0	0
40	120	40	0	20	0	0	0
80	10	70	30	40	0	0	0

Reduced-Cost Table 2

Optimal assignments are:

T_{1}	$-;$	T_{5}	$5 ;$	
T_{2}	$-;$	T_{6}	$-;$	
T_{3}	$1 ;$	T_{7}	$4 ;$	
T_{4}	$3 ;$	T_{8}	$2 ;$	
Total cost $=380$				

10.(i)

Cost Matrix (Revised)

Project	Contractor				
	A	B	C	D	E
1	18	25	22	26	25
2	26	29	26	27	24
3	28	31	30	M	31
4	26	28	27	26	29
5	0	0	0	0	0

Reduced-Cost Table 2

0	6	3	8	7
2	4	1	3	0
0	2	1	M	3
0	1	0	0	3
1	0	0	1	1
1				

Reduced-Cost Table 1

Contractor				
A	B	C	D	E
ϕ	7	4	$\$$	\rangle
2	5	2	3	0
0	3	2	M	3
0	2	1	0	3
0	0	0	\oint	\oint

Reduced-Cost Table 3

Optimal assignment schedule is: $1-A ; 2-E ; 3-C ; 4-D$.
(ii) Mimimum Total Cost $=18+24+30+26=$ Rs 98 thousand.
11.

RCT-1

0	3	1	2
M	4	3	0
0	M	2	0
4	4	2	0

RCT-2

RCT-3

\boldsymbol{H}	0	0	3
M	0	1	O
0	M	1	1
3	0	O	0

Alternate optimal assignments:

Clerk	Job	Job
I	C	B
II	B	D
III	A	A
IV	D	C

12.

Reduced-Cost Table 1

Optimal assignment is:

Machine	Place	Cost $($ Rs $)$
M_{1}	A	9
M_{2}	B	9
M_{3}	E	7
M_{4}	D	7
	Total	32

13. The given information is presented below where time taken by various swimmers is given in seconds. The swimmer-swimming style combinations not feasible are indicated by M. Further, a dummy style has been added to balance the problem. Based on this, Reduced-Cost Table 1 is obtained where each row is considered and its least value is subtracted from every value. Lines are drawn to cover zeros. Since four lines cover all zeros, which is less than $n(=5)$, assignments cannot be made.

Swimming Time Matrix

Swimmer	Style				
	Back-stroke	Breaststroke	Freestyle	Butterfly	Dummy
Anand	69	75	M	M	0
Bhaskar	M	76	61	80	0
Chandru	70	80	65	72	0
Dorai	M	M	M	71	0
Easwar	80	76	66	70	0

Reduced-Cost Table 1

Reduced-Cost Table 2

Optimal assignment is:

Anand	: Breaststroke
Bhaskar	: Freestyle
Chandru	: Back-stroke
Easwar	: Butterfly

Dorai would be left out of the relay.
14. (i) Due to requirement (c), the following bids are not acceptable: $3-A, 4-D$, and $2-E$.
(ii) After introducing a column for dummy contract and replacing the cost element for each prohibited assignment by M, the cost matrix is given here:

	Contract					
Bidder	A	B	C	D	E	F
1	7	8	8	12	7	0
2	9	13	10	14	M	0
3	M	7	6	13	11	0
4	17	17	7	M	8	0
5	8	12	7	15	16	0
6	10	10	10	16	8	0

Reduced-Cost Table 1

-0	1	2	0	0	ϕ
2	6	4	2	M	0
M	0	0	1	4	0
10	10	1	M	1	0
1	5	1	3	9	0
3	3	4	4	1	0

Reduced-Cost Table 2

The least number of lines covering all zeros matches with the matrix order. Hence, assignments are shown made. The successful bidders are:

$$
1-D, 3-B, 4-C, 5-A, \text { and } 6-E .
$$

(iii) Contract assignment cost $=12+7+7+8+8$

$$
=\text { Rs } 42 \text { thousand. }
$$

(iv) If requirement (c) is waived, the cost matrix would appear as:

	Contract					
Bidder	A	B	C	D	E	0
1	7	8	8	12	7	0
2	9	13	10	14	5	0
3	3	7	6	13	11	0
4	17	17	7	8	8	0
5	8	12	7	15	16	0
6	10	10	10	16	8	0

Reduced-Cost Table 3

Reduced-Cost Table 4

The total number of lines covering all zeros in RCT 4 is six that equals n. Hence, assignments are made. The optimal assignment pattern is:
$1-B, 2-E, 3-A, 4-D$, and $5-C$.
Total Cost $=8+5+3+8+7=$ Rs 31 thousand.
15. (a) The given problem appears to be an unbalanced one. However, a careful consideration suggests that it is not so since two jobs can be done internally. Thus, the completed table is given here in which the cost row for 'internal' is included twice.

		Job						
	1	2	3	4	5	6		
Firm	1	48	72	36	52	50	65	
	2	44	67	41	53	48	64	
	3	46	69	40	55	45	68	
	4	43	73	37	51	44	62	
	I_{1}	50	65	35	50	46	63	
	I_{2}	50	65	35	50	46	63	

Reduced-Cost Table 1

12	36	0	16	14	29
3	26	0	12	7	23
6	29	0	15	5	28
6	36	0	14	7	25
15	30	0	15	11	28
15	30	0	15	11	28

Reduced-Cost Table 3

7	8	ϕ	2	7	4
0	0	2	0	2	0
3	3	2	3	0	5
1	8	0	0	0	0
10	2	0	1	4	3
10	2	ϕ	1	4	3

Reduced-Cost Table 2

9	10	0	4	9	6
-0	0	0	0	2	0
-3	3	0	3	0	5
3	10	0	2	2	2
12	4	0	3	6	5
12	4	0	3	6	5

Reduced-Cost Table 4

Reduced-Cost Table 5

Firm	Job	Cost
1	3	36
2	1	44
3	5	45
4	6	62
I_{1}	2	65
I_{2}	4	50
	Total	302

(0,000 Rs)
16.

Revised-Time Matrix

Operator	Job						
	1	2	3	4	5	6	
1	6	2	5	2	6	0	
2	2	5	8	7	7	0	
3	7	8	6	9	8	0	
4	6	2	3	4	5	0	
5	9	3	8	9	7	0	
6	4	7	4	6	8	0	

Reduced-Cost Table 2

Reduced-Cost Table 1

Job					
1	2	3	4	5	6
-4	0	2	0	1	0
0	3	5	5	2	0
5	6	3	7	3	0
4	0	0	2	0	0
7	1	5	7	2	0
2	5	1	4	3	0

Optimal assignment schedule is:

Operator	Job	Time
1	4	2
2	1	2
3	6	-
4	5	5
5	2	3
6	3	4

Determination of dual variable values: For determining the dual variables, the given problem is formulated and expressed as a transportation problem. The optimal solution is substituted into it. The degeneracy of the solution is removed by placing necessary number of epsilons as shown. The u_{i} and v_{j} values represent the optimal values of the dual variables. These are presented in the following table.

Obtaining Dual Variable Values

DD: Demand, SS: Availability
17. Since the problem is of maximisation type, we first convert it into a minimisation type. The relative inefficiency matrix is obtained by subtracting each score from 50. After this, the problem is solved using Hungarian method.

Relative Inefficiency Matrix

30	24	8
26	18	0
18	16	6

Reduced-Cost Table 2

10	6	0
14	8	0
0	0	0

Reduced-Cost Table 1

22	16	0
26	18	0
12	10	0

Reduced-Cost Table 3

The optimal assignment pattern is:
P_{1} : Education, P_{2} : Housing, P_{3} : Health.
Total performance score $=26+50+32=108$
18. As a first step, we balance the given problem by introducing a dummy salesman. This is shown below. Now, to solve it, we transform it into an equivalent minimisation problem. For this, we subtract each element of the matrix from the largest value, which is 85 . This is expressed as opportunity Loss Matrix and given alongside.

Sales (Rs in lakh)				
Salesman	Market			
	I	$I I$	$I I I$	$I V$
A	80	70	75	72
B	75	75	80	85
C	78	78	82	78
D	0	0	0	0

Opportunity Loss Matrix

Market			
I	$I I$	$I I I$	$I V$
5	15	10	13
10	10	5	0
7	7	3	7
85	85	85	85

Reduced-Cost Table 1

The result of optimal assignment is:

Salesman	Market	Sales (Rs lakh)
A	I	80
B	$I V$	85
C	III	82
	Total	247

19.

49	33	61	10	29
40	27	50	38	52
24	19	0	40	30
63	47	24	34	31
III	III	III	III	III

Reduced-Cost Table 2

20.

Opportunity Loss Matrix

35	15	10	25
5	15	0	15
10	15	13	5
7	5	13	10

Reduced-Cost Table 1

25	5	0	15
5	15	0	15
5	10	8	0
2	0	8	5

Reduced-Cost Table 2

23	5	0	15
3	15	0	15
3	10	8	0
0	0	$\$$	5

Reduced-Cost Table 3

Optimal assignment: $A-Y, B-W, C-Z, D-X$
Total monthly sales $=145+150+150+150=$ Rs 595 lakh.
21.

Salesman	Sales territories				
	I	$I I$	$I I I$	$I V$	V
A	75	80	85	70	90
B	91	71	82	75	85
C	78	90	85	80	80
D	65	75	88	85	90
E	0	0	0	0	0

Reduced-Cost Table 1

Opportunity Loss matrix

Sales territories				
I	$I I$	$I I I$	$I V$	V
16	11	6	21	1
0	20	9	16	6
13	1	6	11	11
26	16	3	6	1
91	91	91	91	91

Reduced-Cost Table 2

The optimal assignment schedule, accordingly, is:

Salesman	$:$	A	B	C	D
Territory	$:$	V	I	$I I$	$I I I$

Total Sales : $90+91+90+88=$ Rs 359 lakh.
When D cannot be assigned Territory III: The solution can be obtained by replacing element three in the opportunity Loss Matrix given earlier, lying on the intersection of D-III, by M. It is given here.

Opportunity Loss Matrix (Revised)

Salesman	Sales territories				
	I	$I I$	$I I I$	$I V$	V
A	16	11	6	21	1
B	0	20	9	16	6
C	13	1	6	11	11
D	26	16	M	6	1
E	91	91	91	91	91

Reduced-Cost Table 3

Sales territories				
I	$I I$	$I I I$	$I V$	V
15	10	5	20	0
0	20	9	16	\oint
12	0	5	10	10
25	15	M	5	0
0	0	0	0	0

Reduced-Cost Table 4

10	5	$\not \partial$	15	ϕ
0	20	9	16	11
12	0	5	10	15
20	10	M	0	0
0	0	0	O	5

Thus, optimal assignment schedule is:

Salesman	Territory	Sales (Rs lakh)
A	V	90
B	I	91
C	$I I$	90
D	$I V$	85
		Total

Reduced-Cost Table 1

C_{1}	C_{2}	C_{3}	C_{4}
10	30	10	0
50	10	20	0
40	30	20	0
10	30	10	0

Alternate optimal assignments are:
$P_{1}-C_{1}, P_{2}-C_{2}, P_{3}-C_{4}, T A-C_{3} ;$
$P_{1}-C_{3}, P_{2}-C_{2}, P_{3}-C_{4}, T A-C_{1}$.

Reduced-Cost Table 1

10	10	15	25	0
0	12	26	17	15
10	12	20	0	10
5	6	5	7	0
2	0	1	5	7

Reduced-Cost Table 3

The assignments are:

$$
\begin{aligned}
& P: V, Q: I, R: I V, S: I I I, T: I I . \\
& \text { Total runs }=50+42+60+20+60=232 .
\end{aligned}
$$

(ii) Now we include another batsman U in the minimisation matrix by subtracting average runs of the batsman U from 60 as before. To balance the resulting problem, a dummy batting position is added. This is shown in the revised Relative Inefficiency Matrix given below. Reduced-Cost Table 4 is derived from this by column reductions.

Relative Inefficiency Matrix (R)

20	20	25	35	10	0
18	30	44	35	33	0
10	12	20	0	10	0
40	41	40	42	35	0
2	0	1	5	7	0
15	8	22	10	11	0

Reduced-Cost Table 4

18	20	24	35	3	ϕ
16	30	43	35	26	0
-8	12	19	0	3	0
38	41	39	42	28	0
0	0	0	5	0	0
13	8	21	10	4	0

Reduced-Cost Table 5

15	17	21	32	ϕ	ϕ
13	27	40	32	2β	0
8	12	19	0	3	$3-$
35	38	36	39	25	0
0	0	0	5	0	3
10	5	18	7	1	0

Reduced-Cost Table 7

2	4	8	2η	ϕ	ϕ
0	14	27	27	23	ϕ
0	4	11	0	8	$\$$
22	25	23	34	25	0
0	0	0	13	13	16
5	0	13	10	9	$\$$

Reduced-Cost Table 6

10	12	16	27	ϕ	ϕ
8	22	35	27	23	0
8	12	19	0	8	$\$$
30	33	31	34	25	0
-0	0	0	5	5	$\$$
-5	0	13	2	1	0

Optimal assignment is:

Batsman	Position	Runs
P	V	50
Q	I	42
R	$I V$	60
S	Dummy	-
T	III	59
U	$I I$	52

Thus, batsman U will be included in the team at position $I I$ and he would replace batsman S. Total runs equal 263.
24.

Opportunity Loss Matrix					
	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
G_{1}	52	54	89	60	65
G_{2}	94	76	92	85	95
G_{3}	71	66	80	46	74
G_{4}	28	8	39	0	37
G_{5}	110	110	110	110	110

Reduced-Cost Table 2

Reduced-Cost Table 1

Reduced-Cost Table 3

The optimal group-city combinations are:
$G_{1}: C_{1}, G_{2}: C_{3}, G_{3}: C_{4}$ and $G_{4}: C_{2}$ for Total Sales $=$ Rs $242,000$.
25. We first calculate the total profit resulting from introducing a product in a particular plant. To illustrate, if product A is introduced in plant P_{1} then the production and distribution costs aggregate to Rs 32 . With a Selling Price of Rs 50 and a sale of 800 units, the total profit will amount to $(50-32) \times 800=$ Rs 14,400 . The profit matrix is given here:

Total Profit Matrix

Product	Plant				
	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
A	14,400	16,000	12,800	9,600	12,800
B	24,000	16,000	2,000	15,000	18,000
C	12,800	18,000	11,200	12,000	15,200

	Reduced-Cost Table 1										
9,600	8,000	11,200	14,400	11,200							
0	8,000	22,000	9,000	6,000							
11,200	6,000	12,800	12,000	8,800							
24,000	24,000	24,000	24,000	24,000							
24,000	24,000	24,000	24,000	24,000		\quad	$1,60 \phi$	ϕ	3,200	6,400	3,200
:---:	---:	---:	---:	---:							
0,200	8,000	22,000	9,000	6,000							
0	0	6,800	6,000	2,800							
0	0	0	0	0							

Reduced-Cost Table 2

1,600	¢	400	3,600	406
0	8,000	400	6,200	3,200
5,200	\%	4,000	3,200	0
2,800	2,800	0	0	*
2,800	2,800	0	0	H

Optimal assignments:

Product	Plant	Profit
A	P_{2}	16,000
B	P_{1}	24,000
C	P_{5}	15,200
	Total	55,200

26. First we calculate expected profit by multiplying the amount of profit obtainable from a sale to a customer by the probability of making the sale. It is given here. Also provided is the Opportunity Loss Matrix, obtained by subtracting each of the values from the largest value in the matrix, 486. Notice the introduction of a dummy customer.

Expected Profit Matrix

	S_{1}	S_{2}	S_{3}	S_{4}
C_{1}	350	200	250	400
C_{2}	225	360	270	315
C_{3}	162	486	324	108
C_{4}	0	0	0	0

Opportunity-Loss Matrix

S_{1}	S_{2}	S_{3}	S_{4}
136	286	236	86
261	126	216	171
324	0	162	378
486	486	486	486

Using the values given in the Opportunity Loss Matrix, Reduced-Cost Table 1 is derived using row reductions. Reduced-Cost Table 2 is based on RCT 1 since number of lines $<n$.

Reduced-Cost Table 1

Reduced-Cost Table 2

50	200	150	0
135	0	90	45
324	0	162	378
0	0	0	0

50	245	150	0
90	0	45	0
279	0	117	333
0	45	0	0

Since the number of lines covering all zeros is smaller than four in Reduced-Cost Table 2 as well, an improved solution is obtained in the form of Reduced-Cost Table 3. Here four lines are needed to cover all zeros. Accordingly, assignments can be made as shown in the table.

Reduced-Cost Table 3

Optimal assignment is:

Customer	Salesman	Profit (Rs)
C_{1}	S_{4}	400
C_{2}	S_{3}	270
C_{3}	S_{2}	486
	Total	1,156

27. As a first step, we obtain the matrix of expected responses. The expected responses are obtained by multiplying the number of household expected to interview in each city with the probability of a household contact. After this, the regret matrix is obtained by subtracting each of the values from the largest value. This problem is then solved as a minimisation problem.

Taking 1, 2, 3, and 4 to represent Saturday morning, Saturday evening, Sunday morning, and Sunday evening respectively, the expected responses matrix is given here. Alongside, the regret matrix is provided.

Expected No. of Responses

	C_{1}	C_{2}	C_{3}	C_{4}
1	48	85	32	128
2	90	56	190	160
3	105	35	80	124
4	15	72	128	180

Regret Matrix

C_{1}	C_{2}	C_{3}	C_{4}
142	105	158	62
100	134	0	30
85	155	110	66
175	118	62	10

The Hungarian method is now applied to the regret matrix to obtain solution. The row reductions are given in Reduced-Cost Table 1, while column reductions are shown in Reduced-Cost Table 2.

Reduced-Cost Table 1

80	43	96	0
100	134	0	30
19	89	44	0
165	108	52	0

Reduced-Cost Table 2

It is clear from Reduced-Cost Table 2 that the minimum number of lines covering all zeros matches with the order of the matrix. Accordingly, assignments are made as shown. Thus, optimal assignment is: Saturday morning: City 2 ; Sunday morning: City 1 ; Saturday evening: City 3; Sunday evening: City 4 . Total expected response $=560$.
28. Since the service time is constant, it would not affect the decision of stationing the crew. To begin with, if the entire crew resides at Chennai, then the waiting time at Bangalore for different service line connections may be calculated. These are given below. Similarly, if the crew is assumed to reside at Bangalore then the waiting time at Chennai for different route combinations would be as shown here.

Waiting Time at Bangalore

Route	1	2	3	4	5
a	17.5	21.0	3.0	6.5	12.0
b	16.0	19.5	1.5	5.0	10.5
c	12.0	15.5	21.5	1.0	6.5
d	4.5	8.0	14.0	17.5	23.0
e	23.0	2.5	8.5	12.0	17.5

Waiting Time at Chennai

Route	1	2	3	4	5
a	18.5	15.0	9.0	5.5	0.0
b	20.0	16.5	10.5	7.0	1.5
c	0.0	20.5	14.5	11.0	5.5
d	7.5	4.0	22.0	18.5	13.0
e	13.0	9.5	3.5	0.0	18.5

Now, since the crew can be asked to reside at either of the places, minimum waiting times from the above operation can be obtained for different route connections by selecting the corresponding lower value out of the above two above two waiting times, provided that the waiting time is greater than four hours. The resulting waiting time matrix is given below. Applying Hungarian method, row reductions are carried out and results are shown in Reduced-Cost Table 1.

Waiting Time Matrix

Route	1	2	3	4	5
a	17.5	15.0	9.0	5.5	12.0
b	16.0	16.5	10.5	5.0	10.5
c	12.0	15.5	14.5	11.0	5.5
d	4.5	8.0	14.0	17.5	13.0
e	13.0	9.5	8.5	12.0	17.5

Reduced-Cost Table 1

Route	1	2	3	4	5
a	12.0	9.5	3.5	0.0	6.5
b	11.0	11.5	5.5	0.0	5.5
c	6.5	10.0	9.0	5.5	0.0
d	0.0	3.5	9.5	13.0	8.5
e	4.5	1.0	0.0	3.5	9.0

Similarly, we apply column reductions to RCT 1 and the resulting values are tabulated in Reduced-Cost Table 2. Here four lines are seen to cover all zeros, against the matrix order five. Accordingly, we obtain revised matrix in the form of Reduced-Cost Table 3. In this matrix, five lines are covering all the zeros. Thus, assignments are made.

Reduced-Cost Table 2

Route	1	2	3	4	5
a	12.0	8.5	3.5	0.0	6.5
b	11.0	10.5	5.5	0.0	5.5
c	6.5	9.0	9.0	5.5	0.0
d	0.0	2.5	9.5	13.0	8.5
e	4.5	0.0	0.0	3.5	9.0

Reduced-Cost Table 3

Route	1	2	3	4	5
a	8.5	5.0	0.0	0.0	3.0
b	7.5	7.0	2.0	0.0	2.0
c	6.5	9.0	9.0	9.0	0.0
d	0.0	2.5	9.5	16.5	8.5
e	4.5	0.0	0.0	7.0	9.0

The optimal assignment for the crew is:

Crew	Residence
1	Chennai
2	Bangalore
3	Bangalore
4	Chennai
5	Bangalore

Route No.	Waiting time (hrs)
$1-d$	4.5
$2-e$	9.5
$3-a$	9.0
$4-b$	5.0
$5-c$	5.5
Total	33.5

CHAPTER 7

1. Let $x_{i}(i=1,2,3,4)$ be the variables indicating project A, B, C and D respectively. Each of these can take the value 1 or 0 accordingly as a project is selected or not. Thus,

$$
\begin{aligned}
x_{i}(i=1,2,3,4) & =1, \text { if the project is selected } \\
& =0 \text { otherwise }
\end{aligned}
$$

The problem is:
Maximise $\quad Z=18,00,000 x_{1}+2,00,000 x_{2}+7,20,000 x_{3}+8,00,000 x_{4}$
Subject to $3,00,000 x_{1}+1,20,000 x_{2}+3,00,000 x_{3}+2,00,000 x_{4} \leq 6,50,000$ $4,00,000 x_{1}+80,000 x_{2}+2,00,000 x_{3}+4,00,000 x_{4} \leq 8,00,000$ $4,00,000 x_{1}+2,00,000 x_{3}+4,00,000 x_{4} \leq 8,00,000$ $3,00,000 x_{1}+40,000 x_{2}+2,00,000 x_{3}+1,00,000 x_{4} \leq 5,00,000$ $x_{i}=0$ or 1
2. Let x_{1}, x_{2} and x_{3} represent the quantities to be produced on machines 1,2 and 3 respectively, and d_{1}, d_{2} and d_{3} indicate whether a machine is be used (1) or not (0). Accordingly, the fixed cost would be $9,000 d_{1}+$ $6,000 d_{2}+4,500 d_{3}$, while the variable cost would be $11 x_{1}+10 x_{2}+16 x_{3}$. The IPP is:
Minimise

$$
Z=9,000 d_{1}+6,000 d_{2}+4,500 d_{3}+11 x_{1}+10 x_{2}+16 x_{3}
$$

Subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \geq 5,000 \\
x_{1} & \leq 4,000 d_{1} \\
x_{2} & \leq 3,000 d_{2} \\
x_{3} & \leq 1,000 d_{3} \\
x_{1}, x_{2}, x_{3} & \geq 0 ; d_{1}, d_{2}, d_{3}=0,1
\end{aligned}
$$

3. Let x_{1} and x_{2} be the number of technicians and apprentices, respectively, employed by the company. The problem is:
Maximise $\quad Z=8 x_{1}+3 x_{2} \quad$ Productivity
Subject to

$$
\begin{aligned}
6 x_{1}+4 x_{2} & \leq 25 & & \text { Man-hours limit } \\
120 x_{1}+82 x_{2} & \leq 240 & & \text { Cash-flow limit } \\
x_{1}, x_{2} & \geq 0, & & \text { Integer }
\end{aligned}
$$

4. Let the variables $x_{1}, x_{2} \ldots . x_{8}$ represent projects $1,2, \ldots 8$ respectively. According to given conditions, the constraints are:
(a) $x_{3}+x_{8}=1$
(b) $x_{4}-x_{7} \geq 0$
(c) $x_{1}+x_{3}+x_{5}+x_{8} \leq 2$
(d) $x_{3}-x_{6} \geq 0$
(e) $2 \leq x_{1}+x_{2}+x_{4}+x_{5}+x_{6}+x_{8} \leq 4$
(f) $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}=5$
5. Let x_{1}, x_{2}, x_{3} and x_{4} represent the products $1,2,3$ and 4 respectively. Further, $x_{j}=1$ if j th product is made and $x_{j}=0$ if j th product is bought. With the given information,
Objective function: $\mathrm{Z}=(110 \times 2.25) x_{1}+110 \times 3.10\left(1-x_{1}\right)+(110 \times 2.22) x_{2}+(110 \times 2.60)\left(1-x_{2}\right)+(110$ $\times 4.50) x_{3}+(110 \times 4.75)\left(1-x_{3}\right)+(110 \times 1.90) x_{4}+(110 \times 2.25)\left(1-x_{4}\right)$
Thus, the problem is:
Minimise

$$
Z=1,397-93.5 x_{1}-41.8 x_{2}-27.5 x_{3}-38.5 x_{4}
$$

Subject to

$$
\begin{aligned}
0.04 x_{1} \quad+0.02 x_{3}+0.08 x_{4} & \leq 40 \\
0.02 x_{1}+0.01 x_{2}+0.06 x_{3}+0.04 x_{4} & \leq 40 \\
0.02 x_{1}+0.05 x_{2}+\quad 0.15 x_{4} & \leq 40 \\
0.15 x_{2}+0.06 x_{3} & \leq 40
\end{aligned}
$$

$$
\begin{array}{ll}
0.03 x_{1}+0.09 x_{2}+0.20 x_{3} & \leq 40 \\
0.06 x_{1}+0.06 x_{2}+0.02 x_{3}+0.05 x_{4} & \leq 40 \\
x_{j}=1 \text { product is made } & \\
x_{j}=0 \text { product is bought } &
\end{array}
$$

6. Let $x_{i}(i=1,2,3,4)$ be the variables representing projects $1,2,3$ and 4 . Each of these can take a value 1 or 0 accordingly as the project is accepted or not. The problem is,
Maximise

$$
Z=1250 x_{1}+1320 x_{2}+620 x_{3}+740 x_{4}
$$

Subject to

$$
\begin{array}{ll}
720 x_{1}+880 x_{2}+300 x_{3}+350 x_{4} & \leq 1400 \\
560 x_{1}+550 x_{2}+170 x_{3}+210 x_{4} & \leq 800 \\
400 x_{1}+360 x_{2}+110 x_{3} & \leq 440 \\
x_{1}+x_{2} & \leq 1 \\
x_{3}-x_{4} & \geq 0 \\
x_{i}=0 \text { or } 1 &
\end{array}
$$

7. Let x_{1} and x_{2} be the daily output of the shirts X and Y respectively. The problem may be stated as follows:

Maximise
Subject to

$$
\begin{aligned}
& Z=10 x_{1}+40 x_{2} \\
& \\
& 2 x_{1}+4 x_{2} \leq 7 \\
& 5 x_{1}+3 x_{2} \leq 15 \\
& x_{1}, x_{2} \geq 0 \text { and integers }
\end{aligned}
$$

We first obtain solution to the LP relaxation of this problem, allowing for fractional values of x_{1} and x_{2}. This is given in tables below.

Simplex Tableau 1: Non-optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	4^{*}	1	0	7	$7 / 4 \leftarrow$
S_{2}	0	5	3	0	1	15	5
C_{j}		10	40	0	0		
Solution	0	0	7	15			
Δ_{j}	10	40	0	0			
		\uparrow					

Simplex Tableau 2: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	
x_{2}	40	$1 / 2$	1	$1 / 4$	0	$7 / 4$
S_{2}	0	$7 / 2$	0	$-3 / 4$	1	$39 / 4$
C_{j}		10	40	0	0	
Solution	0	$7 / 4$	0	$39 / 4$		
Δ_{j}	-10	0	-10	0		

Since the optimal does not involve all integer values, a Gomory constraint is introduced by considering the second of the constraints given in the table above. The revised tableau is presented in below while the table following contains an improved solution.

Simplex Tableau 3: Non-optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{2}	40	$1 / 2$	1	$1 / 4$	0	0	$7 / 4$	$7 / 2$
S_{2}	0	$7 / 2$	0	$-3 / 4$	1	0	$39 / 4$	$39 / 14$
S_{3}	0	$-1 / 2 *$	0	$-1 / 4$	0	1	$-3 / 4$	$3 / 2$
C_{j}		10	40	0	0	0		
Solution	0	$7 / 4$	0	$39 / 4$	$-3 / 4$			
Δ_{j}	-10	0	-10	0	0			
	\uparrow							

Simplex Tableau 4: Non-optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}
x_{2}	40	0	1	0	0	1	1
S_{2}	0	0	0	$-5 / 2$	1	7	$9 / 2$
x_{1}	10	1	0	$1 / 2$	0	-2	$3 / 2$
C_{j}		10	40	0	0	0	
Solution	$3 / 2$	1	0	$9 / 2$	0		
Δ_{j}	0	0	-5	0	-20		

Addition of another Gomory constraint, considering second constraint in Simplex Tableau 4, leads to revised tableau, given here.

Simplex Tableau 5: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$	
x_{2}	40	0	1	0	0	1	0	1	-
S_{2}	0	0	0	$-5 / 2$	1	7	0	$9 / 2$	-
x_{1}	10	1	0	$1 / 2$	0	-2	0	$3 / 2$	3
S_{4}	0	0	0	-12^{*}	0	0	1	$-1 / 2$	$1 \leftarrow$
C_{j}	10	40	0	0	0	0			
Solution	$3 / 2$	1	0	$9 / 2$	0	$-1 / 2$			
Δ_{j}	0	0	-5	0	-20	0			

The improved solution, contained in Simplex Tableau 6, is optimal as it involves all integer variables. From the solution, we have $x_{1}=1, x_{2}=1$ and $Z=50$.

Simplex Tableau 6: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	
x_{2}	40	0	1	0	0	1	0	1
S_{2}	0	0	0	0	1	7	-5	7
x_{1}	10	1	0	0	0	-2	1	1
S_{1}	0	0	0	1	0	0	-2	1
C_{j}	10	40	0	0	0	0		
Solution	1	1	1	7	0	0		
Δ_{j}	0	0	0	0	-20	-10		

8. The given solution is represented in Simplex Tableau 1.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	
x_{2}	9	0	1	$7 / 22$	$1 / 22$	$21 / 2$
x_{1}	7	1	0	$-1 / 22$	$3 / 22$	$27 / 2$
C_{j}	7	9	0	0		
Solution	$27 / 2$	$21 / 2$	0	0	$Z=189$	
Δ_{j}	0	0	$-28 / 11$	$-15 / 11$		

The solution values are not integers. Revised Simplex Tableau 1 includes a cut in respect of the first row $\left(x_{2}\right)$.

Revised Simplex Tableau 1

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
x_{2}	9	0	1	$7 / 22$	$1 / 22$	0	$21 / 2$	-
x_{1}	7	1	0	$-1 / 22$	$3 / 22$	0	$27 / 2$	56
S_{3}	0	0	0	$-7 / 22$	$-1 / 22$	1	$-1 / 2$	$11 / 7 \leftarrow$
C_{j}	7	9	0	0	0			
Solutiom	$27 / 2$	$21 / 2$	0	0	$-1 / 2$			
Δ_{j}	0	0	$-28 / 11$	$-15 / 11$	0			

Revised Simplex Tableau 2

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	
x_{2}	9	0	1	0	0	1	10
x_{1}	7	1	0	0	$1 / 7$	$-1 / 7$	$95 / 7$
S_{1}	0	0	0	1	$1 / 7$	$-22 / 7$	$11 / 7$
C_{j}	7	9	0	0	0		
Solution	$95 / 7$	10	$11 / 7$	0	0	$Z=185$	
Δ_{j}	0	0	0	-1	-8		

Another cut is introduced in respect of second row $\left(x_{1}\right)$ and shown in Revised Simplex Tableau 3.
Revised Simplex Tableau 3

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
x_{2}	9	0	1	0	0	1	0	10	-
x_{1}	7	1	0	0	$1 / 7$	$-1 / 7$	0	$95 / 7$	95
S_{1}	0	0	0	1	$1 / 7$	$-22 / 7$	0	$11 / 7$	11
S_{4}	0	0	0	0	$-1 / 7$	$-6 / 7$	1	$-4 / 7$	4
C_{j}	7	9	0	0	0	0			
Solution	$95 / 7$	10	$11 / 7$	0	0	$-4 / 7$			
Δ_{j}	0	0	0	-1	-1	0			
				\uparrow					

Revised Simplex Tableau 4

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}
x_{2}	9	0	1	0	0	1	0	10
x_{1}	7	1	0	0	0	-1	1	13
S_{1}	0	0	0	1	0	-4	1	1
S_{2}	0	0	0	0	1	6	-7	4
C_{j}	7	9	0	0	0	0		
Solution	13	10	1	4	0	0	$Z=181$	
Δ_{j}	0	0	0	0	-2	-7		

The solution given in Revised Simplex Tableau 4 is optimal solution to the IPP as all the variables have integer solution values. The solution is: $x_{1}=13$ and $x_{2}=10$, with $Z=181$.
9. Let x_{1} and x_{2} be number of Molina and Suzie dolls produced per week. The problem is:

Maximise
Subject to

$$
\begin{aligned}
& Z=6 x_{1}+18 x_{2} \\
& \\
& 3 x_{1}+x_{2} \leq 50 \\
& 4 x_{1}+4 x_{2} \leq 90 \\
& x_{1}, x_{2} \geq 0 \text { and integer }
\end{aligned}
$$

With slack variables S_{1} and S_{2} we first solve the LPP without restriction of integer variables.
Simplex Tableau 1: Non-optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	3	1	1	0	50	50
S_{2}	0	4	4	0	1	90	$45 / 2 \leftarrow$
C_{j}		6	18	0	0		
Solution	0	0	50	90	$Z=0$		
Δ_{j}	6	18	0	0			
		\uparrow					

Simplex Tableau 2: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	
S_{1}	0	2	0	1	$-1 / 4$	$55 / 2$
x_{2}	18	1	1	0	$1 / 4$	$45 / 2$
C_{j}		6	18	0	0	
Solution	0	$45 / 2$	$55 / 2$	0	$Z=405$	
Δ_{j}	-12	0	0	$-9 / 2$		

Since the optimal values of the variables are not integers, we introduce a cut in the first row $\left(S_{1}\right)$.

Revised Simplex Tableau 1

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	0	1	$-1 / 4$	0	$55 / 2$	-
x_{2}	18	1	1	0	$1 / 4$	0	$45 / 2$	90
S_{3}	0	0	0	0	$-3 / 4$	1	$-1 / 2$	$2 / 3 \leftarrow$
C_{j}		6	18	0	0	0		
Solution	0	$45 / 2$	$55 / 2$	0	$-1 / 2$			
Δ_{j}	-12	0	0	$-9 / 2$	0			

Revised Simplex Tableau 2

Basis		x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}
S_{1}	0	2	0	1	0	$-1 / 3$	$83 / 3$
x_{2}	18	1	1	0	0	$1 / 3$	$67 / 3$
S_{2}	0	0	0	0	1	$-4 / 3$	$2 / 3$
C_{j}		6	18	0	0	0	
Solution	0	$67 / 3$	$83 / 3$	$2 / 3$	0	$Z=402$	
Δ_{j}	-12	0	0	0	-6		

A cut is introduced in row $1\left(S_{1}\right)$ and Revised Simplex Tableau 3 is derived.

Revised Simplex Tableau 3

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	2	0	1	0	$-1 / 3$	0	$83 / 3$	-
x_{2}	18	1	1	0	0	$1 / 3$	0	$67 / 3$	67
S_{2}	0	0	0	0	1	$-4 / 3$	0	$2 / 3$	-
S_{4}	0	0	0	0	0	$-2 / 3$	1	$-2 / 3$	$1 \leftarrow$
C_{j}	6	18	0	0	0	0			
Solution	0	$67 / 3$	$87 / 3$	$2 / 3$	0	$-2 / 3$			
Δ_{j}	-12	0	0	0	-6	0			
					\uparrow				

Revised Simplex Tableau 4

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	
S_{1}	0	2	0	1	0	0	$-1 / 2$	28
x_{2}	18	1	1	0	0	0	$1 / 2$	22
S_{2}	0	0	0	0	1	0	-2	2
S_{3}	0	0	0	0	0	1	$-3 / 2$	1
C_{j}	6	18	0	0	0	0		
Solution	0	22	28	2	1	0	$Z=396$	
Δ_{j}	-12	0	0	0	0	-9		

The optimal solution is: $x_{1}=0$ and $x_{2}=22$, with $Z=$ Rs 396 .
10. Maximise $\mathrm{Z}=2 x_{1}+4 x_{2}+3 x_{3}$

Subject to

$$
\begin{array}{ll}
3 x_{1}+4 x_{2}+2 x_{3} & \leq 60 \\
2 x_{1}+x_{2}+2 x_{3} & \leq 40 \\
x_{1}+3 x_{2}+2 x_{3} & \leq 80 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

First we solve this LP relaxation of the given problem.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	3	4	2	1	0	0	60
S_{2}	0	2	1	2	0	1	0	40
S_{3}	0	1	3	2	0	0	1	80
C_{j}	2	4	3	0	0	0		40
Solution	0	0	0	60	40	80	$Z=0$	
Δ_{j}	2	4	3	0	0	0		

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
x_{2}	4	$3 / 4$	1	$1 / 2$	$1 / 4$	0	0	15
S_{2}	0	$5 / 4$	0	$3 / 2$	$-1 / 4$	1	0	25
S_{3}	0	$-5 / 4$	0	$1 / 2$	$-3 / 4$	0	1	35
C_{j}	2	4	3	0	0	0	70	
Solution	0	15	0	0	25	35	$Z=60$	
Δ_{j}	-1	0	1	-1	0	0		
			\uparrow					

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	b_{i}
x_{2}	4	$1 / 3$	1	0	$1 / 3$	$-1 / 3$	0
x_{3}	3	$5 / 6$	0	1	$-1 / 6$	$2 / 3$	0
S_{3}	0	$-5 / 3$	0	0	$-2 / 3$	$-1 / 3$	1
C_{j}	2	4	3	0	0	0	$80 / 3$
Solution	0	$20 / 3$	$50 / 3$	0	0	$80 / 3$	$Z=230 / 3$
Δ_{j}	$-11 / 6$	0	0	$-5 / 6$	$-2 / 3$	0	

The optimal solution involves fractional values. So we introduce Gomory's cut. The cut, in respect of the first row is designed and shown in the table. The next table shows improved solution which involves allinteger values and is, therefore, optimal.

Table 1: Gomory's Cut

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
x_{2}	4	$1 / 3$	1	0	$1 / 3$	$-1 / 3$	0	0	$20 / 3$
x_{3}	3	$5 / 6$	0	1	$-1 / 6$	$2 / 3$	0	0	$50 / 3$
S_{3}	0	$-5 / 3$	0	0	$-2 / 3$	$-1 / 3$	1	0	$80 / 3$
S_{4}	0	$-1 / 3$	0	0	$-1 / 3$	$-2 / 3^{*}$	0	1	$-2 / 3$
C_{j}	2	4	3	0	0	0	0		
Solution	0	$20 / 3$	$50 / 3$	0	0	$80 / 3$	$-2 / 3$		
Δ_{j}	$-11 / 6$	0	0	$-5 / 6$	$-2 / 3$	0	0		

Table 2: Optimal Solution (IPP)

Basis	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}
x_{2}	4	$1 / 6$	1	0	$1 / 2$	0	0	$-1 / 2$
7								
x_{3}	3	$7 / 6$	0	1	$-1 / 2$	0	0	1
S_{3}	0	$-11 / 6$	0	0	$-1 / 2$	0	1	$-1 / 2$
27								
S_{2}	0	$-1 / 2$	0	0	$1 / 2$	1	0	$-3 / 2$
C_{j}	2	4	3	0	0	0	0	
Solution	0	7	16	0	1	27	0	$Z=76$
Δ_{j}	$-13 / 6$	0	0	$-1 / 2$	0	0	-1	

The optimal solution, therefore, is : $x_{1}=0, x_{2}=7, x_{3}=16$ for $Z=76$.
11. Let x_{1} and x_{2} be the number of toys of A and B types, respectively, produced per day. From the given information, the profit function is $25 x_{1}+25 x_{2}$. Similarly, machine X capacity constraint is $2 x_{1}+4 x_{2} \leq 18$ whereas machine Y capacity constraint is $6 x_{1}+5 x_{2} \geq 30$. The IPP can be expressed as follows:
Maximise

$$
Z=25 x_{1}+25 x_{2}
$$

Subject to

$$
\begin{aligned}
2 x_{1}+4 x_{2} & \leq 18 \\
6 x_{1}+5 x_{2} & \leq 30 \\
x_{1}, x_{2} & \geq 0 \text { and integer }
\end{aligned}
$$

We first obtain solution to the problem as an LPP, disregarding that x_{1} and x_{2} have to be integers.
Simplex Tableau 1: Non-optimal Solution

Basis		x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	2	4	1	0	18	9
S_{2}	0	6^{*}	5	0	1	30	5
C_{j}		25	25	0	0		
Solutiion	0	0	18	30			
Δ_{j}	25	25	0	0			
	\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0	$7 / 3 *$	1	$-1 / 3$	8
x_{1}	25	1	$5 / 6$	0	$1 / 6$	5
C_{j}		25	25	0	0	6
Solution	5	0	8	0		
Δ_{j}	0	$25 / 6$	0	$-25 / 6$		
		\uparrow				

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}
x_{2}	25	0	1	$3 / 7$	$-1 / 7$
x_{1}	25	1	0	$-5 / 14$	$2 / 7$
C_{j}	25	25	0	0	$15 / 7$
Solution	$15 / 7$	$24 / 7$	0	0	
Δ_{j}	0	0	$-25 / 14$	$-25 / 7$	

It is evident from Simplex Tableau 3 that the optimal solution to the problem is not in integer values. Therefore, we introduce Gomory's cut. Consider the first constraint given in this tableau, which is given below:

$$
0 x_{1}+1 x_{2}+\frac{3}{7} S_{1}-\frac{1}{7} S_{2}=\frac{24}{7}
$$

It may be re-expressed as:
or
or

$$
\begin{aligned}
0 x_{1}+1 x_{2}+\frac{3}{7} S_{1}-S_{2}+\frac{6}{7} S_{2} & =3+\frac{3}{7} \\
\frac{3}{7} S_{1}+\frac{6}{7} S_{2} & =\frac{3}{7}+\left(3-x_{2}+S_{2}\right) \\
\frac{3}{7} S_{1}+\frac{6}{7} S_{2} & \geq \frac{3}{7} \\
-\frac{3}{7} S_{1}-\frac{6}{7} S_{2}+S_{3} & \leq-\frac{3}{7}
\end{aligned}
$$

This constraint is introduced and the revised tableau is presented in Simplex Tableau 4. For improving the solution given in this table, the incoming variable is S_{1} (since it has the least $\Delta_{j} / a_{i j}$ value) while the outgoing variable is S_{3}.
Tableau 5 contains an improved solution.

Simplex Tableau 4: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
x_{2}	25	0	1	$3 / 7$	$-1 / 7$	0	$24 / 7$	8
x_{1}	25	1	0	$-5 / 14$	$2 / 7$	0	$15 / 7$	-
S_{3}	0	0	0	$-3 / 7^{*}$	$-6 / 7$	1	$-3 / 7$	$1 \leftarrow$
C_{j}		25	25	0	0	0		
Solution	$15 / 7$	$24 / 7$	0	0	$-3 / 7$			
Δ_{j}	0	0	$-25 / 14$	0	$-25 / 7$			

Simplex Tableau 5: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	
x_{2}	25	0	1	0	-1	1	3
x_{1}	25	1	0	0	1	$-5 / 6$	$5 / 2$
S_{1}	0	0	0	1	2	$-7 / 3$	1
C_{j}	25	25	0	0	0		
Solution	$5 / 2$	3	1	0	0		
Δ_{j}	0	0	0	0	$-25 / 6$		

Since the solution here also does not involve all integers, another cut is introduced in respect of the second constraint that involves a fraction. The next table contains the revised tableau.

Simplex Tableau 6: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}	$b_{i} / a_{i j}$
x_{2}	25	0	1	0	-1	1	0	3
x_{1}	25	1	0	0	1	$-5 / 6$	0	$5 / 2$
S_{1}	0	0	0	1	2	$-7 / 3$	0	1
S_{4}	0	0	0	0	0	$-1 / 6^{*}$	1	$-1 / 2$
C_{j}	25	25	0	0	0	0		
Solution	$5 / 2$	3	1	0	0	$-1 / 2$		
Δ_{j}	0	0	0	0	$-25 / 6$	0		
					\uparrow			

An improved solution is given in Simplex Tableau 7. All the variables in this solution are seen to be integers.
Simplex Tableau 7: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	b_{i}
x_{2}	25	0	1	0	-1	0	6
x_{1}	25	1	0	0	1	0	-5
S_{1}	0	0	0	1	2	0	-14
S_{3}	0	0	0	$0\}$	0	1	-6
C_{j}	25	25	0	0	0	0	3
Solution	5	0	8	0	3	0	
Δ_{j}	0	0	0	0	0	-25	

The optimal integer solution is to produce 5 toys of type A and none of type B. This would yield a total profit of Rs 125 .
12. Let x_{1} and x_{2} represent the output of products P_{1} and P_{2} respectively. The problem may be stated as:

Maximise	$Z=30 x_{1}+50 x_{2}$	Total profit
Subject to	$2 x_{1} \leq 50$	Machine M_{1}
	$x_{1}+4 x_{2} \leq 16$	Machine M_{2}
	$2 x_{2} \leq 20$	Machine M_{3}
	$x_{1}, x_{2} \geq 0$	and integers.

To solve this problem, we first obtain solution to the LP relaxation of it where x_{1} and x_{2} are not required to be integers.

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	2	0	1	0	0	50	-
S_{2}	0	1	4^{*}	0	1	0	16	$4 \leftarrow$
S_{3}	0	0	2	0	0	1	20	10
C_{j}		30	50	0	0	0		
Solution	0	0	50	16	20			
Δ_{j}	30	50	0	0	0			
		\uparrow						

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	2	0	1	0	0	50	25
x_{2}	50	$1 / 4^{*}$	1	0	$1 / 4$	0	4	16
S_{3}	0	$-1 / 2$	0	0	$-1 / 2$	1	12	-24
C_{j}	30	50	0	0	0			
Solution	0	4	50	0	12			
Δ_{j}	$35 / 2$	0	0	$-25 / 2$	0			
	\uparrow							

Simplex Tableau 3: Optimal Solution

Basis	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	
S_{1}	0	0	-4	1	-1	0	18
x_{1}	30	1	4	0	1	0	16
S_{3}	0	0	2	0	0	1	20
C_{j}	30	50	0	0	0		
Solution	16	0	18	0	20		
Δ_{j}	0	-70	0	-30	0		

The optimal solution obtained in Simplex Tableau 3, evidently involves all variables having only integer values. Thus, no further improvement is called for. The optimal integer solution to the problem, therefore, is: $x_{1}=16$ and $x_{2}=0$. Total profit $=$ Rs $30 \times 16=$ Rs 480 .
13. The given information can be presented as an IPP as follows:

Let x_{1} : the number of scoops of cottage cheese, and
x_{2} : the number of scoops of scrambled egg.
Minimise

$$
\begin{array}{rlrl}
Z=2 x_{1}+2 x_{2} & & \text { Total cost } \\
3 x_{1}+2 x_{2} & \geq 12 & & \text { Vitamin } \mathrm{E} \\
3 x_{1}+8 x_{2} & \geq 24 & & \text { Iron } \\
x_{1} & \geq 2 & & \text { Min. consumption } \\
x_{1}, x_{2} & \geq 0 & \text { and } & \text { integer }
\end{array}
$$

Here since $x_{1} \geq 2$, we may replace $x_{1}=2+x_{3}$ in the problem and restate it as follows:
Minimise

$$
\begin{aligned}
& Z=2 x_{3}+2 x_{2}+4 \\
& 3 x_{3}+2 x_{2} \geq 6 \\
& 3 x_{3}+8 x_{2} \geq 18 \\
& x_{3}, x_{2} \geq 0 \text { and integer }
\end{aligned}
$$

Subject to

To solve this problem, we first consider solution to its LP equivalent. Introducing necessary surplus and artificial variables, we get
Minimise

$$
\begin{aligned}
& Z=2 x_{3}+2 x_{2}+4+0 S_{1}+0 S_{2}+M A_{1}+M A_{2} \\
& 3 x_{3}+2 x_{2}-S_{1}+A_{1}=6 \\
& 3 x_{3}+8 x_{2}-S_{2}+A_{2}=18 \\
& x_{3}, x_{2}, S_{1}, S_{2}, A_{1}, A_{2} \leq 0
\end{aligned}
$$

Subject to

Simplex Tableau 1: Non-optimal Solution

Basis		x_{3}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$
A_{1}	M	3	2	-1	0	1	0	6	3
A_{2}	M	3	$8 *$	0	-1	0	1	18	$9 / 4$
C_{j}	2	2	0	0	M	M			
Solution	0	0	0	0	6	18			
Δ_{j}	$2-6 M$	$2-10 M$	M	M	0	0			
		\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	x_{3}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	$b_{i} / a_{i j}$	
A_{1}	M	$9 / 4^{*}$	0	-1	$1 / 4$	1	$-1 / 4$	$3 / 2$	$2 / 3 \leftarrow$
x_{2}	2	$3 / 8$	1	0	$-1 / 8$	0	$1 / 8$	$9 / 4$	6
C_{j}	2	2	0	0	M	M			
Solution	0	$9 / 4$	0	0	$3 / 2$	0			
Δ_{j}	$\frac{5}{4}-\frac{9 M}{4}$	0	M	$\frac{1}{4}-\frac{M}{4}$	0	$-\frac{1}{4}+\frac{M}{4}$			

Simplex Tableau 3: Optimal Solution

Basis	x_{3}	x_{2}	S_{1}	S_{2}	A_{1}	A_{2}	b_{i}	
x_{3}	2	1	0	$-4 / 9$	$1 / 9$	$4 / 9$	$-1 / 9$	$2 / 3$
x_{2}	2	0	1	$1 / 6$	$-1 / 6$	$-1 / 6$	$1 / 6$	2
C_{j}	2	2	0	0	M	M		
Solution	$2 / 3$	2	0	0	0	0		
Δ_{j}	0	0	$5 / 9$	$1 / 9$	0	0		

The solution given in Simplex Tableau 3 is not an all-integer solution. Hence, a Gomory constraint is added by considering the first constraint as follows:
or

$$
\begin{aligned}
& x_{1}+0 x_{2}-\frac{4}{9} S_{1}+\frac{1}{9} S_{2}=\frac{2}{3} \\
& x_{1}+0 x_{2}-S_{1}+\frac{5}{9} S_{1}+\frac{1}{9} S_{2}=\frac{2}{3} \\
& \frac{5}{9} S_{1}+\frac{1}{9} S_{2} \geq \frac{2}{3} \quad \text { or } \quad-\frac{5}{9} S_{1}-\frac{1}{9} S_{2}+S_{3}=-\frac{2}{3}
\end{aligned}
$$

or
The revised tableau is presented in Simplex Tableau 4. The improved solution is given in Tableau 5. A test of optimality indicates the solution to be optimal.

Simplex Tableau 4: Non-optimal Solution

Basis	x_{3}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$	
x_{3}	2	1	0	$-4 / 9$	$1 / 9$	0	$2 / 3$	6
x_{2}	2	0	1	$1 / 6$	$-1 / 6$	0	2	-
S_{3}	0	0	0	$-5 / 9$	$-1 / 9$	1	$-2 / 3$	$6 \leftarrow$
C_{j}	2	2	0	0	0			
Solution	$2 / 3$	2	0	0	$-2 / 3$			
Δ_{j}	0	0	$5 / 9$	$1 / 9$	0			
			\uparrow					

Simplex Tableau 5: Optimal Solution

Basis	x_{3}	x_{2}	S_{1}	S_{2}	S_{3}	b_{i}	
x_{3}	2	1	0	-1	0	1	0
x_{2}	2	0	1	1	0	$-3 / 2$	3
S_{2}	0	0	0	5	1	-9	6
C_{j}	2	2	0	0	0		
Solution	0	3	0	6	0		
Δ_{j}	0	0	0	0	1		

From the optimal solution in Simplex Tableau 5, we have $x_{3}=0$ and $x_{2}=3$. Thus, solution to the given problem is: $x_{1}=2+0=2$ and $x_{2}=3$. Total cost involved is Rs $2 \times 2+$ Rs $2 \times 3=$ Rs 10 .
14. A feasible tour is $1-2-3-4-5-1$. From the given data, this tour involves a total cost of $15+22+19+19+$ $19=94$. This may be set as upper bound on the solution. We now solve the problem as an assignment problem, by setting for the routes $1-1,2-2,3-3,4-4$ and $5-5$, an M in the cost matrix. Applying HAM, reduced-cost tables are obtained here.

Reduced Cost Table 1

M	0	7	2	3
0	M	7	1	2
0	2	M	4	0
0	3	4	M	3
2	0	4	3	M

Reduced Cost Table 2

From the assignments in RTC-2, we get two sub-tours: $1-2-4-1$ and $3-5-3$. The total cost equal to 83 sets lower bound on the solution. We now break the sub-tour 3-5-3.
Make 3-5 unacceptable
RCT-2 is modified by placing an M for the route $3-5$, and produced as RCT-3. Applying HAM. Reduced Cost Tables 4 and 5 drawn up. Assignments in this provide a tour 1-2-4-5-3-1, with a cost of Rs 86 .

Reduced Cost Table 3

M	0	3	1	3
0	M	3	0	2
0	2	M	3	M
0	3	0	M	3
2	0	0	2	M

Reduced Cost Table 4

Reduced Cost Table 5

M	0	3	\nsim	\nless
0	M	4	0	0
0	2	M	2	M
0	3	0	M	0
2	0	0	1	M
2	0			

Make 5-3 unacceptable
For this, RTC-2 is modified by placing an M for the route $5-3$ and given as RTC-6. An improvement leads to RCT-7, wherein assignments made also lead to a tour: 1-4-3-5-2-1, involving a cost of Rs 84.
Since the cost of this tour is smaller than the one obtained earlier, it represents the optimal solution.

Reduced Cost Table 6

M	0	3	1	3
0	M	3	0	2
0	2	M	3	0
0	3	0	M	3
2	0	M	2	M

Reduced Cost Table 7

Optimal tour: $1-4-3-5-2-1$ Total cost $=$ Rs 84.
15. A feasible tour is $A-B-C-D-E-A$, which entails a total distance of $17+18+19+18+14=86$ (hundred) km . Thus, we set initial upper bound $=86$. To set the power bound, we solve the given problem as an assignment problem. The given matrix is represented below in this context.

Distance-profile

	A	B	C	D	E
A	M	17	16	18	14
B	17	M	18	15	16
C	16	18	19	17	18
D	18	15	17	18	M
E	14	16			

The solution is given here.

Reduced-Cost Table 1

	A	B	C	D	E
A	M	3	2	4	0
B	2	M	3	0	1
C	0	2	3	1	
D	3	2	3	3	M
E	0	2	4	3	

Reduced-Cost Table 2

	A	B	C	D	E
A	M	3	0	4	0
B	2	M	1	0	1
C	0	2	M	3	1
D	3	0	2	M	3
E	0	2	1	4	M

Reduced-Cost Table 3

	A	B	C	D	E
A	M	4	\not	4	0
B	3	M	1	0	1
C	0	2	M	2	M
D	3	0	1	M	2
E	\times	2	0	3	M

Assignment : $\quad A-E, B-D, C-A, D-B, E-C$
Sub-tours : $A-E-C-A, B-D-B$
Total distance : 77 (hundred) km (Lower bound)
Since the optimal solution does not yield a tour and instead provides to sub-tours, we break the sub-tour $B-D-B$.
When $B-D$ is unacceptable:
In the RCT-3, we make the route $B-D$ unacceptable and re-solve the problem. An M is placed in the cell $B-D$ and the solution is obtained as given in RCT-4 and RCT-5.

Reduced-Cost Table 4

	A	B	C	D	E
A	M	4	0	4	0
B	2	M	M	0	
C	0	2	M	2	0
D	3	2	0	3	2
E	0		M	M	

Reduced-Cost Table 5

	A	B	C	D	E
A	M	4	\dagger	2	*
B	2	M	0	M	0
C	*	2	M	0	$*$
D	,	0		M	2
E	0	2	*	1	M

Assignments : $\quad A-C, B-E, C-D, D-B, E-A$
Tour : $A-C-D-B-E-A$
Total distance : 80 (hundred) km
Since the optimal solution here yields a tour, the upper bound is revised downward at 80 .
When $D-B$ is unacceptable:
We place an M in the cell $D-B$ and solve the problem, beginning with RCT-3. The solution is given in RCT-6 and RCT-7.

Reduced-Cost Table 6

	A	B	C	D	E
A	M	4	0	4	0
B	3	M	1	0	1
C	0	2	2	0	1
D	2	M	0	3	M

Reduced-Cost Table 7

	A	B	C	D	E
A	M	2		A	0
B	3	M	1	0	0
C	0	M	0	1	
D	2	0	0	M	1
E	\varnothing	0	O	3	M

Assignments
$A-E, B-D, C-A, D-C, E-B$
Tour : $A-E-B-D-C-A$
Total distance : 80 (hundred) km
This optimal solution also involves a tour with a total distance of 80 (hundred) km . Thus, the optimal solution to the salesman problem is a tour $A-C-D-B-E-A$ or $A-E-B-D-C-A$.
16. Since a feasible sequence is $A-B-C-D-A$, the total set-up cost of $4+6+7+3=20$ may be set as the upper bound. Now, we solve the given problem as an assignment problem. The given cost matrix is reproduced here with cost elements of each of the cells at the diagonal being set equal to M.

Cost Matrix

	A	B	C	D
A	M	4	7	3
B	4	M	6	3
C	7	6	M	7
D	3	3	7	M

The solution is given in RCT-1 and RCT-2
Reduced-Cost Table 1

	A	B	C	D
A	M	1	4	0
B	1	M	3	0
C	1	0	M	1
D	0	0	4	M

Reduced-Cost Table 2

	A	B	C	D
A	M	1	1	0
B	1	M	0	O
C	0	0	M	1
D	0	O	1	M

Assignments : $A-D, B-C, C-B, D-A$
Sub-tours : $A-D-A, B-C-B$
Total cost : $6+12=18$ (Lower bound)
Since the optimal solution involves two sub-tours, we now re-solve the problem by breaking one of these: $A-D-A$. For this, we make $A-D$ and $D-A$ unacceptable, one by one.
When $A-D$ is unacceptable:
Placing an M in the cell $A-D$ in RCT-2, and solving it, we get the tour $A-C-B-D-A$ with a total cost of 19 .
Reduced-Cost Table 3

	A	B	C	D
A	M		0	M
B	1	M	0	0
C	1	0	M	0
D	0		M	1
		M	1	M

Assignments : $\quad A-C, B-D, C-B, D-A$
Tour : $A-C-B-D-A$
Total cost : 19
The upper bound is revised to 19 .
When $D-A$ is unacceptable:
We place an M in the cell $D-A$ in RCT-2 and solve as a new problem. From the solution obtained to the problem, we get the tour $A-D-B-C-A$, involving a total cost of 19 . Accordingly, the optimal solution to the given problem is to set up the jobs either as $A-C-B-D-A$ or $A-D-B-C-A$, for a total cost of 19 .

Reduced-Cost Table 4

	A	B	C	D
A	M	1	1	0
B	O	M	0	\varnothing
C	0	O	M	M
D	M	0	1	M

Assignments	$:$
Tour	$: A-D, B-C, C-A, D-B$
Total cost	$:$
Tou	19

17. For the given data, a tour $C_{1}-C_{2}-C_{3}-C_{4}-C_{5}-C_{1}$ is feasible and involves a total distance of $10+12+13+10$ $+12=57$ hours. Accordingly, we get the initial upper bound $=57$ hours. To determine the lower bound, we state and solve the given problem as an assignment problem. The problem is restated on the next page:

Travelling time (in hours)

City	City				
	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
C_{1}	M	10	13	11	M
C_{2}	10	M	12	10	12
C_{3}	14	13	M	13	11
C_{4}	11	10	14	M	10
C_{5}	12	11	12	10	M

The solution to the assignment problem is given in RCT-1, RCT-2 and RCT-3.

Reduced-Cost Table 1

City	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
C_{1}	M	0	3	1	M
C_{2}	0	M	2	0	2
C_{3}	3	2	M	2	0
C_{4}	1	0	4	M	0
C_{5}	2	1	2	0	M

Reduced-Cost Table 2

City	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
C_{1}	M	0	1	1	M
C_{2}	0	M	0	0	2
C_{3}	3	2	M	2	0
C_{4}	1	0	2	M	0
C_{5}	2	1	0	0	M

Reduced-Cost Table 3

City	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
C_{1}	M	0	0	0	M
C_{2}	0	M	0	0	3
C_{3}	2	2	M	1	0
C_{4}	-0	0	1	M	0
C_{5}	2	2	0	0	M

The optimal solution obtained yields a tour $C_{1}-C_{2}-C_{3}-C_{5}-C_{4}-C_{1}$, involving a total distance of 54 hours. Thus, we revise the upper bound to this value and obtain this solution as the optimal travelling plan for the salesman.
18. Let the depot, vendor A, vendor B, vendor C, and vendor D be represented as $1,2,3,4$ and 5 respectively, Here, a feasible tour is $1-2-3-4-5-1$ that involves a distance of $3.5+4.0+4.5+4.0+2.0=18 \mathrm{~km}$. This is set as upper bound for the solution. We now state the given problem as an assignment problem, assigning as M the 'cost' in each of the cells at the diagonal.

Distance profile

	1	2	3	4	5
1	M	3.5	3.0	4.0	2.0
2	3.5	M	4.0	2.5	3.0
3	3.0	4.0	M	4.5	3.5
4	4.0	2.5	4.5	M	4.0
5	2.0	3.0	3.5	4.0	M

This solution to this problem is contained in RCT-1 through RCT-3.

Reduced-Cost Table 1

	1	2	3	4	5
1	M	1.5	1.0	2.0	0.0
2	1.0	M	1.5	0.0	0.5
3	0.0	1.0	M	1.5	0.5
4	1.5	0.0	2.0	M	1.5
5	0.0	1.0	1.5	2.0	M

Reduced-Cost Table 2

	1	2	3	4	5
1	M	1.5	0.0	2.0	0.0
2	1.0	M	0.5	0.0	0.5
3	0.0	1.0	M	1.5	0.5
4	1.5	0.0	1.0	M	1.5
5	0.0	1.0	0.5	2.0	M

Reduced-Cost Table 3

	1	2	3	4	5
1	M	1.5	0	0	2.5
2	1	0	M	0	0
3	0	0	0.5	M	1.5
4	2	0	0.0	1	0
5	0	0	0.5	Q	M

Assignments : $\quad 1-3,2-4,3-5,4-2,5-1$
Sub-tours : $1-3-5-1,2-4-2$
Total distance $: \quad 8.5+5.0=13.5 \mathrm{~km}$ (Lower bound)
The optimal solution involves two sub-tours. We now break the sub-tour 2-4-2, making 2-4 and 4-2 unacceptable one by one.
When 4-2 is unacceptable:
We make 2-4 unacceptable in RCT 3, by replacing the zero by M and then solve it. The solution is given on the next page.

Reduced-Cost Table 4

	1	2	3	4	5
1	M	1.5	0.0	1.0	De
2	1.0	M	D嵒	M	0.0
3	-0. 1	0.5	M	0.0	20
4	2.0	0.0	1.0	M	1.5
5	0.0	0.5	景	0.5	M

Assignments : $1-3,2-5,3-4,4-2,5-1$
Tour : 1-3-4-2-5-1
Total distance : 15 km
When 4-2 is unacceptable:
We now make 4-2 unacceptable and obtain the solution. The solution is given in RCT-5 and RCT-6.
Reduced-Cost Table 5

	1	2	3	4	5
1	M	1.5	0.0	2.5	0.0
2	1.0	M	0.0	0.0	0.0
3	0.0	0.5	M	1.5	0.0
4	1.0	M	0.0	M	0.5
5	0.0	0.5	0.0	2.0	M

Reduced-Cost Table 6

	1	2	3	4	5
1	M	1.0	0.0	2.5	0.0
2	1.0	M	0.0	0.0	0.0
3	0.0	0.0	M	1.5	0.0
4	1.0	M	M	M	0.5
5	-0.0	0.0	0.0	2.0	M

Assignments : $\quad 1-5,2-4,3-1,4-3,5-2$
Tour : 1-5-2-4-3-1
Total distance : 15 km
Since each of the two sets of calculation yields a tour, involving a distance of 15 km , the upper bound is revised to 15 . Also, it provides optimal solution to the problem. Thus, the optimal schedule is: Depotvendor D-vendor A-vendor C-vendor B-depot, or in the reverse order. It entails a total distance of 15 kilometres.
19. Let the weights of the four factors be x_{1}, x_{2}, x_{3} and x_{4} respectively. Using deviational variables in respect of various goal constraints, we have the following problem:
Minimise $\quad Z=d_{1}^{+}+d_{2}^{-}+d_{2}^{+}+d_{3}^{-}+d_{4}^{+}+d_{5}^{-}+d_{6}^{-}+d_{7}^{-}$
Subject to

$$
\begin{aligned}
4 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+d_{1}^{-}-d_{1}^{+}=600 & \text { Grade } A \\
3 x_{1}+4 x_{2}+3 x_{3}+3 x_{4}+d_{2}^{-}-d_{2}^{+}=360 & \text { Grade } M \\
x_{1}+2 x_{2}+2 x_{3}+x_{4}+d_{3}^{-}-d_{3}^{+}=120 & \text { Grade } Z
\end{aligned}
$$

$$
\begin{array}{rll}
x_{2}+x_{3}+x_{4}+d_{4}^{-}-d_{4}^{+} & =120 & A-G \\
x_{1}+x_{3}+x_{4}+d_{5}^{-}-d_{5}^{+} & =120 & G-M \\
x_{1}+x_{2}+x_{3}+x_{4}+d_{6}^{-}-d_{6}^{+} & =120 & M-S \\
x_{1}+x_{2}+x_{4}+d_{7}^{-}-d_{7}^{+} & =120 & S-Z
\end{array}
$$

all variables ≥ 0
20. Let x_{1} : number of hours per week to hire $G P$
x_{2} : number of hours per week to hire a nurse
x_{3} : number of hours per week to hire an internist
Minimise $Z=P_{1} d_{1}^{-}+P_{2} d_{2}^{+}+P_{3} d_{3}^{-}+P_{4} d_{4}^{-}$
Subject to

$$
\begin{array}{rlrl}
x_{2}+d_{1}^{-}-d_{1}^{+} & =30 & & \text { Nurse availability } \\
40 x_{1}+20 x_{2}+150 x_{3}+d_{2}^{-}-d_{2}^{+} & =1200 & & \text { Budget } \\
x_{1}+x_{3}+d_{3}^{-}-d_{3}^{+} & =20 & & G P \text { or internist availability } \\
x_{3}+d_{4}^{-}-d_{4}^{+} & =6 & & \text { Internist availability } \\
\text { all variables } \geq 0 & &
\end{array}
$$

21. Let x_{1}, x_{2} and x_{3} be the acerage of corn, wheat and soybeans respectively. With usual deviational variables, the problem is stated below:
Minimise $Z=P_{1} d_{1}^{-}+P_{2} d_{2}^{+}+P_{3} d_{3}^{-}+P_{4} d_{1}^{-}+P_{5} d_{4}^{-}+3 P_{6} d_{5}^{-}+4 P_{6} d_{6}^{-}+2 P_{6} d_{7}^{-}$
Subject to

$$
\begin{array}{rrr}
7 x_{1}+10 x_{2}+8 x_{3}+d_{1}^{-}-d_{1}^{+}= & 6000 \\
10,000 x_{1}+12,000 x_{2}+7,000 x_{3}+d_{2}^{-}-d_{2}^{+}= & 80,00,000 \\
3,000 x_{1}+4,000 x_{2}+2,000 x_{3}+d_{3}^{-}-d_{3}^{+}= & 1,05,00,000 \\
x_{1}+x_{2}+x_{3}+d_{4}^{-} & =1,000 \\
x_{1}+d_{5}^{-}-d_{5}^{+} & =200 \\
x_{2}+d_{6}^{-}-d_{6}^{+} & =500 \\
x_{3}+d_{7}^{-}-d_{7}^{+} & =300 \\
\text { all variables } \geq 0 &
\end{array}
$$

22. From the given information, the goal programming problem may be stated as follows:

Let x_{1}, x_{2}, x_{3} and x_{4} be the amount invested in Government bounds, blue-chip stocks, speculative stocks, and gold respectively. With appropriate deviational variables, we have
Minimise $Z=0.32 d_{1}^{-}+0.16 d_{2}^{+}+0.08 d_{3}^{-}+0.02 d_{4}^{-}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4} \leq 20,00,000 \\
& x_{4} \leq 0.15\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
& 0.08 x_{1}+0.12 x_{2}+0.16 x_{3}+0.014 x_{4}+d_{1}^{-}-d_{1}^{+}=2,50,000 \\
& x_{3}+d_{2}^{-}-d_{2}^{+}=4,00,000 \\
& x_{1}+d_{3}^{-}-d_{3}^{+}=3,00,000 \\
& 0.05 x_{2}+0.12 x_{3}+0.14 x_{4}+d_{4}^{-}-d_{4}^{+}=60,000 \\
& x_{1}, x_{2}, x_{3}, x_{4}, d_{1}^{-}, d_{1}^{+}, d_{2}^{-}, d_{2}^{+}, d_{3}^{-}, d_{3}^{+}, d_{4}^{-}, d_{4}^{+} \geq 0
\end{aligned}
$$

Notes: The provisions given in (a) and (b) represent the constraints. Each of the provisions is a goal as presented above accordingly. Since the investment limitation in speculative stocks is given an importance equal to its return, the coefficient of d_{2}^{+}in the objective function is taken to be 0.16 . Further, as per guidelines, the weightage for total return works out to be 0.32 . Finally, the weightage for the target of capital gains is taken to be 0.02 , which is one-fourth of the return on Government bounds.
23. Let the output of the three products P_{1}, P_{2} and P_{3} be x_{1}, x_{2} and x_{3} units respectively. With appropriate deviational variables, the problem is:
Minimise $Z=P_{1} d_{1}^{-}+P_{2} d_{2}^{-}+P_{3} d_{3}^{-}+P_{4} d_{4}^{-}$
Subject to

$$
\begin{aligned}
& 2.5 x_{1}+1.0 x_{2}+2.0 x_{3}+d_{1}^{-}-d_{1}^{+}=120 \\
& 50 x_{1}+80 x_{2}+35 x_{3}+d_{2}^{-}-d_{2}^{+}=8,000 \\
& 6 x_{1}+9 x_{2}+4.5 x_{3}+d_{3}^{-}-d_{3}^{+}=600 \\
& \text { all variables } \geq 0
\end{aligned}
$$

24. Let the output per year of parts $1,2,3$ and 4 be x_{1}, x_{2}, x_{3} and x_{4} respectively. Further, using appropriate deviational variables, the problem may be stated as follows:
Minimise $Z=P_{1} d_{1}^{-}+P_{1} d_{2}^{+}+P_{1} d_{3}^{+}+P_{1} d_{4}^{+}+P_{2} d_{5}^{-}+P_{2} d_{6}^{-}+P_{2} d_{7}^{-}+P_{2} d_{8}^{-}+P_{3} d_{9}^{-}+P_{4} d_{10}^{-}$
Subject to

$$
\begin{aligned}
& 9000 x_{1}+10,000 x_{2}+8,000 x_{3}+12,000 x_{4}+d_{9}^{-}-d_{9}^{+}=70,000,000 \\
& 2.6 x_{1}+1.4 x_{2}+2.5 x_{3}+3.2 x_{4}+d_{10}^{-}-d_{10}^{+}=1,50,000
\end{aligned}
$$

$$
\text { all variables } \geq 0
$$

Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	d_{5}^{-}	d_{5}^{+}	b_{i}	$b_{i} / a_{i j}$
$d_{1}^{-} 0$	2	4	1	-1	0	0	0	0	0	0	0	0	80	20
$d_{2}^{-} 0$	3	3	0	0	1	-1	0	0	0	0	0	0	80	80/3
$d_{3}^{-} 30 P_{2}$	1	0	0	0	0	0	1	-1	0	0	0	0	10	-
$d_{4}^{-} 40 P_{2}$	0	1*	0	0	0	0	0	0	1	-1	0	0	10	$10 \leftarrow$
$d_{5}^{-} P_{3}$	30	40	0	0	0	0	0	0	0	0	1	-1	1,200	30
C_{j}	0	0	0	P_{1}	0	P_{1}	$30 P_{2}$	0	$40 P_{2}$	0	P_{3}	0		
P_{3}	-30	-40	0	0	0	0	0	0	0	0	0	1	1,200	
P_{2}	-30	-40	0	0	0	0	0	30	0	40	0	0	700	
P_{1}	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	0	1	0	1	0	0	0	0	0	0	0	

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	d_{5}^{-}	d_{5}^{+}	b_{i}	$b_{i} / a_{i j}$
$d_{1}^{-} 0$	2	0	1	-1	0	0	0	0	-4	4	0	0	40	20
$d_{2}^{-} 0$	3	0	0	0	1	-1	0	0	-3	3	0	0	50	50/3
$d_{3}^{-} 30 P_{2}$	1*	0	0	0	0	0	1	-1	0	0	0	0	10	$10 \leftarrow$
$x_{2} 0$	0	1	0	0	0	0	0	0	1	-1	0	0	10	-
$d_{5}^{-} P_{3}$	30	0	0	0	0	0	0	0	-40	40	1	-1	800	80/3
C_{j}	0	0	0	P_{1}	0	P_{1}	$30 P_{2}$	0	$40 P_{2}$	0	P_{3}	0		
P_{3}	-30	0	0	0	0	0	0	0	40	-40	0	1	800	
P_{2}	-30	0	0	0	0	0	0	30	40	0	0	0	300	
P_{1}	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	0	0	1	0	1	0	0	0	0	0	0	0	

$$
\begin{aligned}
& 0.06 x_{1}+0.17 x_{2}+0.10 x_{3}+0.14 x_{4}+d_{1}^{-}-d_{1}^{+}=600 \\
& 0.18 x_{1}+0.20 x_{2} \quad+0.14 x_{4}+d_{2}^{-}-d_{2}^{+}=500 \\
& 0.07 x_{1}+0.20 x_{2}+0.08 x_{3}+0.12 x_{4}+d_{3}^{-}-d_{3}^{+}=550 \\
& 0.09 x_{1}+0.12 x_{2}+0.07 x_{3}+0.15 x_{4}+d_{4}^{-}-d_{4}^{+}=450 \\
& x_{1}+d_{5}^{-}=2,600 \\
& \begin{array}{lll}
x_{2} & +d_{6}^{-} & =1,800 \\
x_{3} & +d_{7}^{-} & =4,100
\end{array} \\
& x_{4}+d_{8}^{-} \quad=1,200
\end{aligned}
$$

Simplex Tableau 3: Non-optimal Solution

Basis	x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	d_{5}^{-}	d_{5}^{+}	b_{i}	$b_{i} / a_{i j}$	
d_{1}^{-}	0	0	0	1	-1	0	0	-2	2	-4	4^{*}	0	0	20	5
d_{2}^{-}	0	0	0	0	0	1	-1	-3	3	-3	3	0	0	20	$20 / 3$
x_{1}	0	1	0	0	0	0	0	1	-1	0	0	0	0	10	-
x_{2}	0	0	1	0	0	0	0	0	0	1	-1	0	0	10	-
$d_{5}^{-} P_{3}$	0	0	0	0	0	0	-30	30	-40	40	1	-1	500	$50 / 4$	
C_{j}	0	0	0	P_{1}	0	P_{1}	$30 P_{2}$	0	$40 P_{2}$	0	P_{3}	0			
P_{3}	0	0	0	0	0	0	30	-30	40	-40	0	1	500		
P_{2}	0	0	0	0	0	0	30	0	40	0	0	0	0		
P_{1}	0	0	0	1	0	1	0	0	0	0	0	0	0		
										\uparrow					

Simplex Tableau 4: Non-optimal Solution

Basis	x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	d_{5}^{-}	d_{5}^{+}	b_{i}	$b_{i} / a_{i j}$	
$d_{4}^{+} 0$	0	0	$1 / 4$	$-1 / 4$	0	0	$-1 / 2$	$1 / 2$	-1	1	0	0	5	10	
d_{2}^{-}	0	0	0	$-3 / 4$	$3 / 4$	1	-1	$-3 / 2$	$3 / 2^{*}$	0	0	0	0	5	$10 / 3$
$x_{1} 0$	1	0	0	0	0	0	1	-1	0	0	0	0	10	-	
x_{2}	0	0	1	$1 / 4$	$-1 / 4$	0	0	$-1 / 2$	$1 / 2$	0	0	0	0	15	30
$d_{5}^{-} P_{3}$	0	0	-10	10	0	0	-10	10	0	0	1	-1	300	30	
C_{j}	0	0	0	P_{1}	0	P_{1}	$30 P_{2}$	0	$40 P_{2}$	0	P_{3}	0			
P_{3}	0	0	10	-10	0	0	10	-10	0	0	0	1	300		
P_{2}	0	0	0	0	0	0	30	0	40	0	0	0	0		
P_{1}	0	0	0	1	0	1	0	0	0	0	0	0	0		

Simplex Tableau 5: Optimal Solution

Basis	x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	d_{5}^{-}	d_{5}^{+}	b_{i}	$b_{i} / a_{i j}$	
$d_{4}^{+} 0$	0	0	$1 / 2$	$-1 / 2$	$-1 / 3$	$1 / 3$	0	0	-1	1	0	0	$10 / 3$		
d_{3}^{+}	0	0	0	$-1 / 2$	$1 / 2$	$2 / 3$	$-2 / 3$	-1	1	0	0	0	0	$10 / 3$	
$x_{1} 0$	1	0	$-1 / 2$	$1 / 2$	$2 / 3$	$-2 / 3$	0	0	0	0	0	0	$40 / 3$		
x_{2}	0	0	1	$1 / 2$	$-1 / 2$	$-1 / 3$	$1 / 3$	0	0	0	0	0	0	$40 / 3$	
$d_{5}^{-} P_{3}$	0	0	-5	5	$-20 / 3$	$20 / 3$	0	0	0	0	1	-1	$800 / 3$		
C_{j}	0	0	0	P_{1}	0	P_{1}	$30 P_{2}$	0	$40 P_{2}$	0	P_{3}	0			
P_{3}	0	0	5	-5	$20 / 3$	$-20 / 3$	0	0	0	0	0	1	$800 / 3$		
P_{2}	0	0	0	0	0	0	30	0	40	0	0	0	0		
P_{1}	0	0	0	1	0	1	0	0	0	0	0	0	0		

Optimal Solution: $x_{1}=40 / 3 x_{2}=40 / 3$,
The first and second priority goals have been achieved. There has been under-achievement of the third priority goal with an under-achievement deviational variable d_{5}^{-}equal to $800 / 3$.
26. Let x_{1} : No. of sports ad slots, and

$$
x_{2}: \text { No. of soap opera ad slots }
$$

The goals and constraints of the problem can be stated as follows:

$$
\begin{array}{ll}
4 x_{1}+3 x_{2} \geq 20 & \text { Goal 1 (HIM requirement) } \\
5 x_{1}+8 x_{2} \geq 30 & \text { Goal 2 (MIF requirement) } \\
2 x_{1}+4 x_{2} \geq 15 & \text { Goal 3 (HIF requirement) } \\
2 x_{1}+3 x_{2} \leq 12 & \text { Budget constraint }
\end{array}
$$

Now, let
d_{i}^{-}be the amount by which we numerically fall short of the i th goal, and
d_{i}^{+}be the amount by which we numerically exceed the i th goal.
With penalty rates for falling short of various goals being given, we may state the goal programming problem as follows:
Minimise $\quad Z=2 d_{1}^{-}+d_{2}^{-}+0.8 d_{3}^{-}$
Subject to

$$
\begin{aligned}
4 x_{1}+3 x_{2}+d_{1}^{-}-d_{1}^{+} & =20 \\
5 x_{1}+8 x_{2}+d_{2}^{-}-d_{2}^{+} & =30 \\
2 x_{1}+4 x_{2}+d_{3}^{-}-d_{3}^{+} & =15 \\
2 x_{1}+3 x_{2}+S_{1} & =12
\end{aligned}
$$

All variables being non-negative.
The solution of the problem is contained in Simplex Tableaus 1 through 4.
Simplex Tableau 1: Non-optimal Solution

Basis	x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	S_{1}	b_{i}	$b_{i} / a_{i j}$	
d_{1}^{-}	2	4	3	1	-1	0	0	0	0	0	20	$20 / 3$
d_{2}^{-}	1	5	8^{*}	0	0	1	-1	0	0	0	30	$15 / 4 \leftarrow$
d_{3}^{-}	$4 / 5$	2	4	0	0	0	0	1	-1	0	15	$15 / 4$
S_{1}	0	2	3	0	0	0	0	0	0	1	12	4
C_{j}	0	0	2	0	1	0	$4 / 5$	0	0			
Solution	0	0	20	0	30	0	15	0	12			
Δ_{i}	$-\frac{73}{3}$	$-\frac{86}{5}$	0	2	0	1	0	$4 / 5$	0			
		\uparrow										

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	S_{1}	b_{i}	$b_{i} / a_{i j}$	
d_{1}^{-}	2	$17 / 8^{*}$	0	1	-1	$-3 / 8$	$3 / 8$	0	0	0	$35 / 4$	$70 / 17 \leftarrow$
x_{2}	0	$5 / 8$	1	0	0	$1 / 8$	$-1 / 8$	0	0	0	$15 / 4$	6
d_{3}^{-}	$4 / 5$	$-1 / 2$	0	0	0	$-1 / 2$	$1 / 2$	1	-1	0	0	-
S_{1}	0	$1 / 8$	0	0	0	$-3 / 8$	$3 / 8$	0	0	1	$3 / 4$	6
C_{j}	0	0	2	0	1	0	$4 / 5$	0	0			
Solution	0	$15 / 4$	$35 / 4$	0	0	0	0	0	$3 / 4$			
Δ_{i}	$-\frac{39}{10}$	0	0	2	$\frac{43}{20}$	$\frac{23}{20}$	0	$\frac{4}{5}$	0			
	\uparrow											

Simplex Tableau 3: Non-optimal Solution

Basis		x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	S_{1}	b_{i}	$b_{i} / a_{i j}$
x_{1}	0	1	0	$8 / 17$	$-8 / 17$	$-3 / 17$	$3 / 17$	0	0	0	$70 / 17$	$70 / 3$
x_{2}	0	0	1	$-5 / 17$	$5 / 17$	$4 / 17$	$-4 / 17$	0	0	0	$20 / 17$	-
d_{3}^{-}	$4 / 5$	0	0	$4 / 17$	$-4 / 17$	$-10 / 17$	$10 / 17$	1	-1	0	$35 / 17$	$7 / 2$
S_{1}	0	0	0	$-1 / 17$	$1 / 17$	$-6 / 17$	$6 / 17^{*}$	0	0	1	$4 / 17$	$2 / 3$
C_{j}	0	0	2	0	1	0	$4 / 5$	0	0			
Solution	$70 / 17$	$20 / 17$	0	0	0	0	$35 / 17$	0	$4 / 17$			
Δ_{j}	0	0	$\frac{154}{85}$	$\frac{16}{85}$	$\frac{25}{17}$	$\frac{-8}{17}$	0	$\frac{4}{5}$	0			

Simplex Tableau 4: Optimal Solution

Basis		x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	S_{1}	b_{i}
x_{1}	0	1	0	$1 / 2$	$-1 / 2$	0	0	0	0	$-1 / 2$	4
x_{2}	0	0	1	$-1 / 3$	$1 / 3$	0	0	0	0	$2 / 3$	$4 / 3$
d_{3}^{-}	$4 / 5$	0	0	$1 / 3$	$-1 / 3$	0	0	1	-1	$-4 / 3$	$5 / 3$
d_{2}^{+}	0	0	0	$-1 / 6$	$1 / 6$	-1	1	0	0	$17 / 6$	$2 / 3$
C_{j}		0	0	2	0	1	0	$4 / 5$	0	0	
Solution	4	$4 / 3$	0	0	0	$2 / 3$	$5 / 3$	0	0		
Δ_{j}	0	0	$\frac{26}{15}$	$\frac{4}{15}$	1	0	0	$\frac{4}{5}$	$\frac{16}{15}$		

From the optimal solution contained in Simplex Tableau 4, it is evident that $x_{1}=4$ and $x_{2}=4 / 3$. It would leave goal 3 under-achieved by $5 / 3$, implying thereby that the number of high-income females reached would be $40 / 3$ lakh instead of the desired 15 lakh.
27. Let the assembly line 1 run for x_{1} hours and line 2 for x_{2} hours. The goals may be expressed as follows:

Minimise $Z=P_{1} d_{1}^{-}+P_{2} d_{3}^{+}+P_{3}\left(10 d_{4}^{-}+12 d_{2}^{-}\right)+P_{4}\left(d_{2}^{+}+d_{4}^{+}\right)$
Solution to

$$
\begin{aligned}
& 10 x_{1}+12 x_{2}+d_{1}^{-}-d_{1}^{+}=200 \\
& x_{2}+d_{2}^{-}+d_{3}^{-}-d_{3}^{+}=12 \\
& x_{1}+d_{4}^{-}-d_{4}^{+}=8 \\
& x_{1}, x_{2}, d_{1}^{-}, d_{1}^{+}, d_{2}^{-}, d_{2}^{+}, d_{3}^{-}, d_{3}^{+}, d_{4}^{-}, d_{4}^{+} \geq 0
\end{aligned}
$$

The explanations follow:
Goal (i): $10 x_{1}+12 x_{2}+d_{1}^{-}-d_{1}^{+}=200$, where d_{1}^{-}is the deviational variable representing under-achievement of production level.
Goal (ii): $x_{2}+d_{2}^{-}-d_{2}^{+}=8$, where 8 represents the normal working time for line 2 and d_{2}^{+}represents the overtime. Now, since the overtime may be more, less or equal to four hours, we may write

$$
d_{2}^{+}+d_{3}^{-}-d_{3}^{+}=4
$$

or $\quad d_{2}^{+}=4-d_{3}^{-}+d_{3}^{+}$
Accordingly, the equation of working time of line 2 may be expressed as:
or

$$
\begin{aligned}
& x_{2}+d_{2}^{-}-\left(4-d_{3}^{-}+d_{3}^{+}\right)=8 \\
& x_{2}+d_{2}^{+}+d_{3}^{-}-d_{3}^{+}=12
\end{aligned}
$$

Goal (iii) and Goal (iv): Working time of assembly line 2 is considered earlier. For assembly line 1, we have

$$
x_{1}+d_{4}^{-}-d_{4}^{+}=8
$$

where d_{4}^{-}represents underutilisation and d_{4}^{+}shows overutilisation (overtime)
The solution to the problem is given in Simplex Tableaus 1 through 4.
Simplex Tableau 1: Non-optimal Solution

Basis		x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	b_{i}	$b_{i} / a_{i j}$
d_{1}^{-}		10	12	1	-1	0	0	0	0	0	0	200	100/12
d_{3}^{-}	P_{2}	0	1*	0	0	1	0	1	-1	0	0	12	$12 \leftarrow$
d_{4}^{-}	$10 P_{3}$	1	0	0	0	0	0	0	0	1	-1	8	-
C_{j}		0	0	P_{1}	0	$12 P_{3}$	P_{4}	P_{2}	0	$10 P_{3}$	P_{4}		
	P_{4}	0	0	0	0	0	0	0	0	0	0		
Δ_{j}	P_{3}	-10	0	0	0	0	0	0	0	0	10		
	P_{2}	0	-1	0	0	-1	0	0	1	0	0		
	${ }_{P_{1}}$	-10	$\begin{array}{r} -12 \\ \hline \end{array}$	0	1	0	0	0	0	0	0		

Simplex Tableau 2: Non-optimal Solution

Basis	x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	b_{i}	$b_{i} / a_{i j}$	
d_{1}^{-}	P_{1}	10^{*}	0	1	-1	$-1 / 12$	0	$-1 / 12$	$1 / 12$	0	0	56	$28 / 5 \leftarrow$
x_{2}	0	0	1	0	0	1	0	1	-1	0	0	12	-
d_{4}^{-}	$10 P_{3}$	1	0	0	0	0	0	0	0	1	-1	8	8
C_{j}		0	0	P_{1}	0	$12 P_{3}$	P_{4}	P_{2}	0	$10 P_{3}$	P_{4}		
Δ_{j}	Δ_{4}	0	0	0	0	0	0	0	0	0	0		
P_{3}	-10	0	0	0	0	0	0	0	0	10			
P_{2}	0	0	0	0	0	0	0	0	0	0			
P_{1}	-10	0	0	1	$1 / 12$	0	$1 / 12$	$-1 / 12$	0	0			
		\uparrow											

Simplex Tableau 3: Non-optimal Solution

Basis		x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	b_{i}	$b_{i} / a_{i j}$
x_{1}	0	1	0	1/10	$-1 / 10$	$-1 / 120$		120	1/120	0	0	28/5	-
x_{2}	0	0	1	0	0	0	0	1	-1	0	0	12	-
d_{4}^{-}	$10 P_{3}$	0	0	-1/10	1/10*	1/120		120	-1/120	1	-1	12/5	$24 \leftarrow$
C_{j}		0	0	P_{1}	0	$12 P_{3}$	P_{4}	P_{2}	0	$10 P_{3}$	P_{4}		
	$P^{P_{4}}$	0	0	0	0	0	0	0	0	0	1		
	P_{3}	0	0	1	-1	43/12	0	1	1/12	0	10		
	P_{2}	0	0	0	0	0	0	1	0	0	0		
	${ }_{P_{1}}$	0	0	1	0	0	0	0	0	0	0		

Simplex Tableau 4: Optimal Solution

Basis		x_{1}	x_{2}	d_{1}^{-}	d_{1}^{+}	d_{2}^{-}	d_{2}^{+}	d_{3}^{-}	d_{3}^{+}	d_{4}^{-}	d_{4}^{+}	b_{i}
x_{1}	0	1	0	0	0	0	0	0	0	1	-1	8
x_{2}	0	0	1	0	0	1	0	1	-1	0	0	12
d_{1}^{+}	0	0	0	-1	1	1/12	0	1/12	-1/12	10	-10	24
C_{j}		0	0	P_{1}	0	$12 P_{3}$	P_{4}	P_{2}	0	$10 P_{3}$	P_{4}	
Δ_{j}	$\int P_{4}$	0	0	0	0	0	1	0	0	0	1	
	P_{3}	0	0	0	0	12	0	0	0	10	0	
	P_{2}	0	0	0	0	0	0	1	0	0	0	
	P_{1}	0	0	1	0	0	0	0	0	0	0	

From Simplex Tableau 4, it is evident that the production manager should plan for running the two production lines for eight and twelve hours respectively. It would yield an output of 224 units and meet his goals.

CHAPTER 8

1. Job Sequence: $J_{1}-J_{2}$

(a)

Job Sequence: $J_{2}-J_{1}$

(b)

Gantt Chart
From the problem, the optimal sequence works out to be $J_{2}-J_{1}$ and the total elapsed time is 17 hours.
2. A total of six Gantt Charts need to be prepared here. One of them is drawn here, which represents job sequence $J_{1}-J_{2}-J_{3}$. The optimal sequence for the problem is $J_{3}-J_{1}-J_{2}$ which entails a total elapsed time of 20 hours.

3. An optimal sequence of jobs, from the times given for them is as below:

$$
2,8,7,6,1,5,4,3
$$

There are other sequences as well, which are as good as this. The total elapsed time for this sequence is 51 , which is shown calculated in the table on next page.

Calculation of Total Elapsed Time

Job	Machine M_{1}			Machine M_{2}	
	In	Out	In	Out	
2	0	3	3	11	
8	3	6	11	19	
7	6	10	19	25	
6	10	15	25	30	
1	15	22	30	38	
5	22	31	38	45	
4	31	39	45	49	
3	39	45	49	51	

4. Using Johnson's Rule as we obtain optimal sequence of tasks, it is observed that there are multiple optimal solutions to the problem. One of these is given below:

$$
A, C, I, B, H, F, D, E, G
$$

The minimum total elapsed time is 61, as calculated in the following table.

Calculation of Total Elapsed Time

Task	Machine M_{1}			Machine M_{2}	
	In	Out	In		
A	0	2	2	8	
C	2	6	8	15	
I	6	10	15	26	
B	10	15	26	34	
H	15	20	34	42	
F	20	28	42	51	
D	28	37	51	55	
E	37	43	55	58	
G	43	50	58	61	

5. In reference to the given times, the optimal sequence of jobs on the two machines is:

$$
7,6,2,4,5,1,3
$$

This sequence would result in the total elapsed time equal to 101 hours, with an idle time of 21 hours on machine B. The calculations are given in table here.

Calculation of Total Elapsed Time

Job	Machine A		Machine B		Idle Time
	In	Out	In	Out	
7	0	6	6	15	6
6	6	18	18	30	3
2	18	38	38	59	8
4	38	63	63	78	4
5	63	78	78	92	-
1	78	88	92	97	-
3	88	93	97	101	-
				Total	21

6. Using the given information, optimal sequencing of jobs can be obtained as follows:

Step 1: Schedule B in the end
Step 2: Schedule D in the end
Step 3: Schedule A and G in the end as $A G$ or $G A$
Step 4: Schedule F in the end
Step 5: Schedule C in the first and only place left
Thus, optimal schedule is: C, F, A, G, D, B; or C, F, G, A, D, B. The calculation of total elapsed time is shown in the following table.

Calculation of Total Elapsed Time

Investment	Analysis			Evaluation	
	In	Out		In	Out
C	0	10	10	17	
F	10	20	20	26	
G	20	27	27	32	
A	27	35	35	40	
D	35	43	43	47	
B	43	48	48	51	

The minimum time required for evaluation of the seven projects is, therefore, 51 hours.
7. From the given data, the optimal sequence of jobs is:

$$
2-4-5-3-6-1
$$

This sequence has the total elapsed time, $T=85$ hours which is shown calculated below.

Calculation of Total Elapsed Time

Job	Machine A		Machine B	
	In	Out	In	Out
2	0	10	10	25
4	10	22	25	39
5	22	38	39	52
3	38	49	52	62
6	49	69	69	78
1	69	77	78	85

8. Present Schedule:

Calculation of Downtime and Idle Time

Plant	Crew A		Crew B		Down Time	Idle Time	
	Start	Finish	Start	Finish		Crew A	Crew B
P_{1}	0	6	6	10	10	-	6
P_{2}	6	12	12	14	8	-	2
P_{3}	12	16	16	26	14	-	2
P_{4}	16	22	26	31	15	-	-
P_{5}	22	27	31	34	12	-	-
P_{6}	27	35	35	41	14	6	1
				Total	73	6	11

Now, Total Cost $=$ Downtime cost + Crew idle time cost

$$
\begin{aligned}
& =73 \times 800+6 \times 250+11 \times 430 \\
& =\text { Rs } 64,630
\end{aligned}
$$

Optimal schedule: From the given data, optimal sequence is: $P_{3}, P_{4}, P_{6}, P_{1}, P_{5}, P_{2}$. For this sequence, the total down-time is 71 days, idle time for crew $A=2$ days and idle time for crew $B=7$ days, as shown calculated below. Accordingly,

$$
\begin{aligned}
\text { Total cost } & =71 \times 800+2 \times 250+7 \times 430 \\
& =\text { Rs } 60,310
\end{aligned}
$$

Calculation of Downtime and Idle Time

Plant	Crew A		Crew B		Down Time	Idle Time	
	Start	Finish	Start	Finish		Crew A	Crew B
P_{3}	0	4	4	14	14	-	4
P_{4}	4	10	14	19	15	-	-
P_{6}	10	18	19	25	15	-	-
P_{1}	18	24	25	29	11	-	-
P_{5}	24	29	29	32	8	-	-
P_{2}	29	35	35	37	8	2	3
				Total	71	2	7

9. The optimal order of books processing is:

$$
4,1,3,2,5,6
$$

This sequence would involve 420 hours of processing in all, which is the minimum. The calculation of total elapsed time is shown in table below.

Calculation of Total Elapsed Time

Book	Printing time		Binding time	
	In	Out	In	Out
4	0	20	20	80
1	20	50	80	160
3	50	100	160	250
2	100	220	250	350
5	220	310	350	380
6	310	410	410	420

10. In accordance with the algorithm used for sequencing, the optimal sequence of jobs would be:

$$
J_{1}, J_{5}, J_{7}, J_{3}, J_{4}, J_{2}, J_{6}
$$

This optimal sequence is not unique, however.
The total elapsed time involved is 68 minutes, with 18 minutes idle time for knurling. The calculation is shown in table on next page.

Calculation of Total Elapsed Time

Job	Turning			Knurling	
	In	Out	In	Out	
J_{1}	0	3	3	11	3
J_{5}	3	9	11	17	-
J_{7}	9	19		31	2
J_{3}	19	31	31	41	-
J_{4}	31	47	47	57	6
J_{2}	47	56	57	60	-
J_{6}	56	67	67	68	7
			Total time	18	

11. Since the order of processing is $A C B$, we proceed as follows:

$$
\operatorname{Min} A_{i}=5, \operatorname{Max} C_{i}=5, \text { and } \operatorname{Min} B_{i}=4
$$

Now, since the condition $\operatorname{Min} A_{i} \geq \operatorname{Max} C_{i}$ is satisfied, we can solve the problem by using an algorithm. First, a consolidation table is prepared by setting $G_{i}=A_{i}+C_{i}$ and $H_{i}=B_{i}+C_{i}$. Thus, we have

$J o b$	G_{i}	H_{i}
J_{1}	15	10
J_{2}	12	14
J_{3}	9	11
J_{4}	16	11
J_{5}	11.5	11.5
J_{6}	9	8

From the above, the optimal sequence may be obtained as:

$$
J_{3}, J_{5}, J_{2}, J_{4}, J_{1}, J_{6}
$$

The total elapsed time for this sequence works out to be 62 , as shown in the table.

Calculation of Total Elapsed Time

Job	Machine A		Machine C			Machine B	
	In	Out	In	Out		In	Out
J_{3}	0	7	7	9		18	
J_{5}	7	17		17	18.5		18.5
J_{2}	17	25	25	29	29.5		
J_{4}	25	36	36	41	41	39	
J_{1}	36	48	48	51	51	47	
J_{6}	48	53	53	57	58	68	

12. Here $\operatorname{Min} A_{i}=2, \operatorname{Max} B_{i}=5$ and $\operatorname{Min} C_{i}=5$. Since the condition $\operatorname{Min} C_{i} \geq \operatorname{Max} B_{i}$ is satisfied, we can solve this problem using the sequencing algorithm. First, a consolidation table is prepared.

Consolidation Table

$J o b$	$G_{i}=A_{i}+B_{i}$	$H_{i}=B_{i}+C_{i}$
1	6	8
2	12	12
3	9	12
4	6	8
5	7	11

An optimal sequence is: 1-4-5-3-2. It involves a total elapsed time $T=42$ hours, as shown calculated below.

Calculation of Total Elapsed Time

Job	Machine A		Machine B		Machine C	
	In	Out	In	Out	In	Out
1	0	3	3	6	6	11
4	3	8	8	9	11	18
5	8	10	10	15	18	24
3	10	17	17	19	24	34
2	17	25	25	29	34	42

13. Here $\operatorname{Min} A_{i}=6$, $\operatorname{Max} B_{i}=6$ and $\operatorname{Min} C_{i}=4$, and, therefore, a necessary condition $\operatorname{Min} A_{i} \geq \operatorname{Max} B_{i}$ is satisfied. To solve the problem, a consolidation table is prepared first.

Consolidation Table

$J o b$	$G_{i}=A_{i}+B_{i}$	$H_{i}=B_{i}+C_{i}$
1	16	15
2	15	9
3	13	9
4	10	9
5	8	10

An optimal sequence is given here: 5-1-2-3-4. It involves a total elapsed time of 51 hours, shown computed below.

Calculation of Total Elapsed Time

Job	Machine A		Machine B		Machine C	
	In	Out	In	Out	In	Out
5	0	6	6	8	8	16
1	6	16	16	22	22	31
2	16	27	27	31	31	36
3	27	35	35	40	40	44
4	35	42	42	45	45	51

14. If the jobs were performed in the order desired by the manager, it would take 69 hours in all to complete them. The calculation is shown in table below.

Calculation of Total Elapsed Time

Job	Cutting and planing		Chiselling and fitting		Finishing and polishing	
	In	Out	In	Out	In	Out
1	0	12	12	18	18	25
2	12	22	22	27	27	33
3	22	31	31	37	37	43
4	31	45	45	49	49	54
5	45	52	52	54	54	58
6	52	61	61	65	65	69

We first examine whether this sequence is optimal. Here, the minimum time on cutting and planning is 7 while the maximum time on chiselling and fitting is 6 . Thus, optimal sequence can be obtained by using algorithm, since the required condition ($7 \geq 6$) is satisfied. For this, consolidation values are calculated first.

Job	G	H
1	18	13
2	15	11
3	15	12
4	18	9
5	9	6
6	13	8

The optimal sequence of jobs, determined with reference to these times is: $6,1,3,2,4,5$. The elapsed time T is equal to 67 hours. This is shown calculated in table here. The manager's decision is not the best here.

Calculation of Total Elapsed Time

Job	Cutting and planning		Chiselling and fitting		Finishing and polishing	
	In	Out	In	Out	In	Out
6	0	9	9	13	13	17
1	9	21	21	27	27	34
3	21	30	30	36	36	42
2	30	40	40	45	45	51
4	40	54	54	58	58	63
5	54	61	61	63	63	67

15. (a) Applying Johnson's Rule, the optimal sequence of jobs would be as follows:
$3,4,5,7,2,6,1$
(b) For determining the optimal sequence when this process is added, we test if the requisite condition/s is/are satisfied. We have,

$$
\operatorname{Min} A_{i}=3, \operatorname{Max} B_{i}=9, \text { and } \operatorname{Min} C_{i}=10 .
$$

Since Min $C_{i} \geq \operatorname{Max} B_{i}$ is satisfied we first prepare consolidation table. Thus,

Consolidation Table

$J o b$	$G_{i}=A_{i}+B_{i}$	$H_{i}=B_{i}+C_{i}$
1	7	12
2	13	18
3	10	18
4	9	18
5	15	21
6	12	15
7	20	19

From the times on G and H, the optimal sequence may be obtained as given here:

$$
1,4,3,6,2,5,7
$$

This sequence would minimise the total time taken to process all the items through three stages. It works out to be 86 units as shown calculated in table on next page.

Calculation of Total Elapsed Time

Job	Cutting		Sewing		Ironing and Packing	
	In	Out	In	Out	In	Out
1	0	5	5	7	7	17
4	5	9	9	14	17	30
3	9	12	14	21	30	41
6	12	19	21	26	41	51
2	19	26	26	32	51	63
5	26	32	32	41	63	75
7	32	44	44	52	75	86

16. Here $\operatorname{Min} A_{i}=8$, Max $B_{i}=7, \operatorname{Max} C_{i}=7$ and Min $D_{i}=8$. Since Min $A_{i}>\operatorname{Max} B_{I}, \operatorname{Max} C_{i}$ and $\operatorname{Min} D_{i}>$ Max B_{I}, Max C_{i}, both the conditions are satisfied so that the optimal sequence can be determined using algorithm, we first prepare the consolidation table for it.

Consolidation Table

$J o b$	$G_{i}=A_{i}+B_{i}+C_{i}$	$H_{i}=B_{i}+C_{i}+D_{i}$
J_{1}	24	20
J_{2}	17	21
J_{3}	23	19
J_{4}	15	20
J_{5}	23	25
J_{6}	21	19

From this table, we get the following two optimal sequences:

$$
J_{4}, J_{2}, J_{5}, J_{1}, J_{3}, J_{6}, J_{4}, J_{2}, J_{5}, J_{1}, J_{6}, J_{3} .
$$

The Total elapsed time can be calculated as hwon in table below.
Calculation of Total Elapsed Time (T)

Job	Machine A		Machine B		Machine C		Machine D	
	In	Out	In	Out	In	Out	In	Out
J_{4}	0	9	9	11	11	15	15	29
J_{2}	9	17	17	20	20	26	29	41
J_{5}	17	27	27	33	33	40	41	53
J_{1}	27	39	39	45	45	51	53	61
J_{3}	39	52	52	56	56	62	62	71
J_{6}	52	64	64	71	71	73	73	83

17. From the given information,
$\operatorname{Min} M_{1}=8, \operatorname{Max} M_{2}=8, \operatorname{Max} M_{3}=8$ and $\operatorname{Min} M_{4}=14$. Since $\operatorname{Min} M_{1}>\operatorname{Max} M_{2}, \operatorname{Max} M_{3}$ and $\operatorname{Min} M_{4}>$ Max M_{2}, Max M_{3}, both satisfied we can use algorithm for solving this problem. First we obtain consolidation table as follows:

Consolidation Table

$J o b$	$G=M_{1}+M_{2}+M_{3}$	$H=M_{2}+M_{3}+M_{4}$
A	28	29
B	26	33
C	21	27
D	19	26

From these values, the optimal sequence is D, C, B, A. The calculation of total elapsed time is shown in table here. It is equal to 82 .

Calculation of Total Elapsed Time

Job	Machine M_{1}		Machine M_{2}		Machine M_{3}		Machine M_{4}	
	In	Out	In	Out	In	Out	In	Out
D	0	8	8	13	13	19	19	34
C	8	17	17	24	24	29	34	49
B	17	29	29	35	35	43	49	68
A	29	42	42	50	50	57	68	82

18. The given information is presented graphically. The work on the jobs is to be planned in such a manner that cross-hatched rectangular blocks are to be avoided. The thick line in the graph depicts the work on jobs. It is clear that total time required for the two jobs is 17 hours. The work schedule is as given in lower part of the diagram.

[^0]20. The data given are depicted graphically below. The rectangular blocks show the overlappings, which are to be avoided. The work on two jobs is shown by thick line. The optimal schedule requires job B to be worked upon continuously for time $0-29$, while job A has to wait for the intervals $0-4$ and $26-29$, in the total interval of $0-31$. The two jobs would take total of 31 hours to complete.

CHAPTER 9

1. (a)

$$
\mathrm{EOQ}=\sqrt{\frac{2 A D}{h}}
$$

Here, $A=$ Rs $36 /$ order, $D=10,000$ units/year, and $h=$ Rs $2 /$ unit/year. Thus,

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 36 \times 10,000}{2}} \\
& =600 \text { unit }
\end{aligned}
$$

(b) Assuming 300 working days in a year, the demand rate $=10,000 / 300$ or $100 / 3$ units per day. With this demand rate, the number of days' supply per order would be $\mathrm{EOQ} / d=600 \div(100 / 3)$ or 18 days. Thus, the order quantity is sufficient to last for 18 working days. For a 365 -days year, the answer would be $600 \times 365 / 10,000=22$ days app.
2. Given $D=24,000$ units/year, $A=$ Rs $300 /$ order and holding cost $h=24$ per cent of Rs $60=$ Rs $14.4 /$ unit/ year. Accordingly,

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 24,000 \times 300}{14.4}} \\
& =1,000 \text { units }
\end{aligned}
$$

No. of orders in a year,

$$
\begin{aligned}
N & =\frac{D}{\mathrm{EOQ}} \\
& =\frac{24,000}{1,000} \\
& =24
\end{aligned}
$$

(i) Optimal interval between placing orders $=\frac{1}{24} \times 360$

$$
=15 \text { days }
$$

(ii) Under the policy of ordering EOQ

Total relevant cost $=$ Ordering cost + Holding cost

$$
\begin{aligned}
& =\frac{24,000}{1,000} \times 300+\frac{1,000}{2} \times 14.4 \\
& =\operatorname{Rs} 14,400
\end{aligned}
$$

When one order is placed every month,
No. of orders in the year $=12$, and
Order quantity $=24,000 / 12=2,000$ units
Accordingly,

$$
\begin{aligned}
\text { Holding cost } & =\frac{2,000}{2} \times 14.4 \\
& =\text { Rs } 14,400 \\
\text { Ordering cost } & =12 \times 300 \\
& =\text { Rs } 3,600 \\
\therefore \quad \text { Total cost } & =14,400+3,600 \\
& =\operatorname{Rs~} 18,000
\end{aligned}
$$

Thus, extra cost that the factory has to incur

$$
\begin{aligned}
& =\text { Rs } 18,000-\operatorname{Rs} 14,400 \\
& =\text { Rs } 3,600
\end{aligned}
$$

3. (a) It is given here that $D=3,000$ units, $A=\operatorname{Rs} 450 /$ order and $h=10$ per cent of Rs $300=\operatorname{Rs} 30$.

Accordingly,
(i)

$$
\begin{aligned}
\text { EOQ } & =\sqrt{\frac{2 D A}{h}} \\
& =\sqrt{\frac{2 \times 3,000 \times 450}{30}} \\
& =300 \text { units }
\end{aligned}
$$

(ii) When $A=$ Rs 600/order,

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 3,000 \times 600}{30}} \\
& =346.4 \text { units }
\end{aligned}
$$

(iii) When $h=7.5$ per cent of Rs $300=$ Rs $22.5 /$ unit/year

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 3,000 \times 450}{22.5}} \\
& =346.4 \text { units }
\end{aligned}
$$

(iv) When $A=$ Rs $600 /$ order and $h=$ Rs $22.5 /$ unit/year

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 3,000 \times 600}{22.5}} \\
& =400 \mathrm{units}
\end{aligned}
$$

(v) Total variable cost $(Q=300)=\frac{3,000}{300} \times 450+\frac{300}{2} \times 30$

$$
=\operatorname{Rs} 4,500+4,500=\operatorname{Rs} 9,000
$$

Total variable cost $(Q=600)=\frac{3,000}{600} \times 450+\frac{600}{2} \times 30$

$$
=\text { Rs } 2,250+9,000=\text { Rs } 11,250
$$

\therefore Increase in TVC as a percentage $=\frac{11,250-9,000}{9,000} \times 100$

$$
=25 \text { per cent }
$$

(b) We know

$$
\mathrm{EOQ}=\sqrt{\frac{2 D A}{h}}
$$

When demand increases by 50 per cent, the new demand level $=1.50 \mathrm{D}$. Accordingly,

$$
\begin{aligned}
\text { EOQ (new) } & =\sqrt{\frac{2 \times 1.50 D \times A}{h}} \\
& =\sqrt{\frac{2 D A}{h}} \sqrt{1.50} \\
& =1,200 \times \sqrt{1.50} \\
& =1470 \text { units }
\end{aligned}
$$

With increase in carrying cost from 25 per cent to 40 per cent, the value of h increases from $0.25 C$ to $0.40 C$. Thus, new value of h would be $0.40 C / 0.25 C=1.6$ times the original value. Now, since new demand level $=1.50 \mathrm{D}$ and new holding cost $=1.60 \mathrm{~h}$, we have

$$
\text { EOQ } \text { (new) }=\sqrt{\frac{2 \times 1.50 D \times A}{1.60 h}}
$$

$$
\begin{aligned}
& =\sqrt{\frac{2 D A}{h}} \sqrt{\frac{1.50}{1.60}} \\
& =1,200 \sqrt{\frac{1.50}{1.60}} \\
& =1,162 \text { units }
\end{aligned}
$$

(c) From the given information
4. (a)

$$
\begin{aligned}
\operatorname{EOQ}(A) & =100=\sqrt{\frac{2 D A}{h}} \\
\operatorname{EOQ}(B) & =\sqrt{\frac{2 D A}{0.2 h}}=\sqrt{\frac{2 D A}{h}} \sqrt{\frac{1}{0.2}} \\
& =100 \sqrt{5}=223.6 \text { units }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 50,000 \times 200}{0.20}} \\
& =\text { Rs } 10,000 \text { or } 400 \text { units } \\
\mathrm{EOQ} & =800 \text { units }
\end{aligned}
$$

(b) Revised
5. From the given information, we have $D=1,20,000$ units, $A=$ Rs $12 /$ order and $h=20+2+0.1=22.1 \%$ of $0.6=\operatorname{Re} 0.1326 /$ unit/year. With these,
(a)

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 D A}{h}} \\
& =\sqrt{\frac{2 \times 1,20,000 \times 12}{0.1326}} \\
& =4,660 \text { units approx. }
\end{aligned}
$$

Total annual variable cost,

$$
\begin{aligned}
T V C & =\sqrt{2 D A h} \\
& =\sqrt{2 \times 1,20,000 \times 12 \times 0.1326} \\
& =\text { Rs } 618
\end{aligned}
$$

(b) (i) When usage is 25% more, we have

$$
\begin{aligned}
T V C & =\sqrt{2 \times 1,50,000 \times 12 \times 0.1326} \\
& =\operatorname{Rs} 691
\end{aligned}
$$

$$
\text { Percent change in } \begin{aligned}
T V C & =\frac{618 \times 535}{618} \times 100 \\
& =11.81 \% \text { (increase) }
\end{aligned}
$$

(ii) When usage is 25% less, we have

$$
\begin{aligned}
T V C & =\sqrt{2 \times 90,000 \times 12 \times 0.1326} \\
& =\text { Rs } 535 \text { approx } .
\end{aligned}
$$

$$
\text { Percent change in } T V C=\frac{618-535}{618} \times 100
$$

$$
=13.43 \% \text { (decrease) }
$$

6. Here production rates of the machines are not given. Assuming that the assumptions of classical EOQ model hold, we can decide about the machine to use as follows.
With machine A:

Economic lot size, $\quad \mathrm{ELS}=\sqrt{\frac{2 A D}{h}}$
Here $D=8,000$ units, $A=$ Rs $200 /$ set up and $h=20 \%$ of Rs $18=$ Rs 3.60 . Thus,

$$
\begin{aligned}
\mathrm{ELS} & =\sqrt{\frac{2 \times 200 \times 8,000}{3.60}} \\
& =942.81 \text { units }
\end{aligned}
$$

Total cost $=$ Cost of set up and holding + Cost of production
Cost of set up and holding $=\sqrt{2 A D h}$

$$
\begin{aligned}
& =\sqrt{2 \times 200 \times 8,000 \times 3.60} \\
& =\operatorname{Rs~} 3394.11
\end{aligned}
$$

Cost of production $=8,000 \times 18$

$$
=\text { Rs } 1,44,000
$$

$\therefore \quad$ Total cost $=3394.11+1,44,000$

$$
=\operatorname{Rs} 1,47,394.11 \text { p.a. }
$$

With machine B :

$$
\begin{aligned}
\text { ELS } & =\sqrt{\frac{2 \times 100 \times 8,000}{20 \% \text { of } 18.10}} \\
& =664.82 \text { units } \\
\text { Cost of set up and holding } & =\sqrt{2 \times 100 \times 8,000 \times 3.62} \\
& =\text { Rs } 2,406.66 \\
\text { Cost of production } & =8,000 \times 18.10 \\
& =\text { Rs } 1,44,800 \\
\therefore \quad \text { Total cost } & =2,406.66+1,44,800 \\
& =\text { Rs } 1,47,206.66 \text { p.a. }
\end{aligned}
$$

Evidently, machine B should be used since it involves lower cost.
7. Assuming 360 working days, $D=360 \times 100=36,000$ and $h=0.02 \times 360=7.2$.

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 D A}{h}} \\
& =\sqrt{\frac{2 \times 36,000 \times 100}{7.2}}=1000 \text { units } \\
\text { Re-order Level } & =\text { Lead time } \times \text { Demand rate } \\
& =14 \times 100=1400 \text { units }
\end{aligned}
$$

Also,
$\operatorname{ROL}(\mathrm{LT}=7$ days $)=7 \times 100=700$ units $\operatorname{ROL}(\mathrm{LT}=21$ days $)=21 \times 100=2100$ units
8. Item A:

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 D A}{h}} \\
& =\sqrt{\frac{2 \times 8,000 \times 15}{0.06}} \\
& =2,000 \text { units } \\
\text { Reorder level } & =\text { Demand rate } \times \text { Lead time } \\
& =\frac{8,000}{250} \times 10 \\
& =320 \text { units }
\end{aligned}
$$

Item B:
With reorder level $=216$ units and lead time $=6$ days, demand rate $d=216 / 6=36$ units. Accordingly, total demand $D=36 \times 250=9,000$ units.
Now,

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 9,000 \times 40}{0.18}} \\
& =2,000 \text { units }
\end{aligned}
$$

Item C :
If A be the ordering cost per order, we have
or

$$
\begin{aligned}
300 & =\sqrt{\frac{2 \times 7,500 \times A}{30}} \\
A & =\frac{300 \times 300 \times 30}{2 \times 7,500} \\
& =\operatorname{Rs~} 180
\end{aligned}
$$

With $D=7,500$ units and number of days $=250$, the demand rate $d=7,500 / 250=30$ units/day. Further, lead time $=210 / 30=7$ days.
9. (i) From outside supplier:

With $D=10,000$ units/year, $A=$ Rs $10+20=$ Rs $30 /$ order and $h=$ Rs 2/unit/year, we have

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 A D}{h}} \\
& =\sqrt{\frac{2 \times 30 \times 10,000}{2}} \\
& -548
\end{aligned}
$$

Total annual cost of ordering $\mathrm{EOQ}=548$ units,

$$
\begin{aligned}
\mathrm{TC} & =\frac{D}{Q} \times A+\frac{Q}{2} \times h+D C \\
& =\frac{10,000}{548} \times 30+\frac{548}{2} \times 2+10,000 \times 12 \\
& =\operatorname{Rs} 121,095.45
\end{aligned}
$$

From subsidiary company:
In this case, $D=10,000$ units/year, $C=$ Rs $13 /$ unit, $A=$ Rs $10+15=$ Rs $25 /$ order, $h=$ Rs $2 /$ unit/year, the economic order quantity,

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 25 \times 10,000}{2}} \\
& =500 \text { units }
\end{aligned}
$$

Total annual cost corresponding to this order quantity,

$$
\begin{aligned}
\mathrm{TC} & =\frac{10,000}{500} \times 25+\frac{500}{2} \times 2+10,000 \times 13 \\
& =\operatorname{Rs} 1,31,000
\end{aligned}
$$

(ii) It is evident from the total cost calculations that the company should purchase from outside supplier and the order size be 548 units. The minimum total cost in this case would be Rs $1,21,095.45$ per annum.
10. The cost relevant for EOQ computation are:

Ordering cost:
Clerical and data processing
: Rs 10.625
Rail transport
: Rs 40.00

Holding cost:

Maintenance cost	$:$ Rs 4.00
Opportunity cost of storage space	$: 2 \times 0.5=$ Re 1.00

Accordingly, $D=40,000$ gallons/year, $A=$ Rs $50.625 /$ order and $h=$ Rs $5 / \mathrm{unit} /$ year. With these,

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 40,000 \times 50.625}{5}} \\
& =900 \text { gallons }
\end{aligned}
$$

The total annual costs are:

Ordering : $50.625 \times 40,000 / 9$
Holding : $5 \times 900 / 2$
Rail transport : $40,000 \times 0.20$
Storage overhead:
Purchase costs : 40,000 $\times 2$

Rs
$=2,250$
$=2,250$
$=8,000$
$=2,000$
$=80,000$
$\begin{array}{r}=80,000 \\ \hline 94,500\end{array}$
11. (a) (i) A general expression for the total annual cost of borrowing and holding cash is given by $T(C)$ where,

$$
T(C)=\frac{D}{Q} \times C_{o}+\frac{Q}{2} \times C_{h}
$$

This expression is based on the following assumptions:

1. Cash requirements are uniform during the year.
2. Funds can be obtained in a specified period of time.
3. The interest rates on bonds are constant and are not affected by the size of bond issue.
4. Shortage of funds is not permitted.
(ii) With $D=\operatorname{Rs} 100 m, C_{o}=\operatorname{Rs} 1,00,000$ and $C_{h}=8$ per cent per annum

$$
\begin{aligned}
Q & =\sqrt{\frac{2 D C_{o}}{C_{h}}} \\
& =\sqrt{\frac{2 \times 10,00,00,000 \times 1,00,000}{0.08}} \\
& =\operatorname{Rs} 1,58,11,388
\end{aligned}
$$

Number of bond issues to be floated every year,

$$
\begin{aligned}
N & =\frac{D}{Q} \\
& =\frac{10,00,00,000}{1,58,11,388} \\
& =6.32 \text { times }
\end{aligned}
$$

(iii) Total cost of floating bonds $=\frac{D}{Q} \times C_{o}$

$$
\begin{aligned}
& =\frac{10,00,00,000}{1,58,11,388} \times 100,000 \\
& =\operatorname{Rs} 6,32,455
\end{aligned}
$$

In case of EOQ, annual cost of floating bonds and the opportunity cost are equal. Thus, annual opportunity cost associated with holding cash $=$ Rs $6,32,455$.
(iv) With 255 trading days in a year and a lead time of five days, the 'reorder' level, R, is given by $R=$ Demand during lead time + Safety stock

$$
\begin{aligned}
& =\frac{10,00,00,000}{255} \times 5+0 \\
& =\text { Rs } 19,60,784
\end{aligned}
$$

Thus, when the cash level is Rs $19,60,784$, then a bond issue be initiated.
(b) If $C_{h}=12$ per cent per annum, the effects of conducting sensitivity analysis are as follows:

$$
\begin{aligned}
Q & =\sqrt{\frac{2 \times 10,00,00,000 \times 1,00,000}{0.12}} \\
& =\text { Rs } 1,29,09,945 \\
N & =\frac{10,00,00,000}{1,29,09,945} \\
& =7.75
\end{aligned}
$$

Annual cost of floating bonds

$$
\begin{aligned}
& =\frac{10,00,00,000}{1,29,09,945} \times 1,00,000 \\
& =\text { Rs } 7,74,596
\end{aligned}
$$

Also, annual opportunity cost $=$ Rs $7,74,596$
Finally, 'reorder' level, i.e., level of cash when a bond issue be initiated, will remain unchanged.
12.

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 40,000 \times 80}{0.25 \times 80}} \\
& =566 \text { units } \\
\text { Total cost }(566) & =40,000 \times 80+\frac{40,000}{566} \times 80+\frac{566}{2} \times 0.25 \times 80 \\
& =\text { Rs } 32,11,314 \\
\text { Total cost }(2000) & =40,000 \times 76+\frac{40,000}{2000} \times 80+\frac{2000}{2} \times 0.25 \times 76 \\
& =\text { Rs } 30,60,600
\end{aligned}
$$

Therefore, manager should take advantage of the discount offer.
13. With annual demand $=8 \times 200=1600$ units, ordering cost $=$ Rs $500 /$ order, holding cost $=40 \%$ of the unit cost, we have

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 1,600 \times 500}{0.40 \times 400}}=100 \text { units } \\
\mathrm{TC}(Q=100) & =1,600 \times 400+\frac{1,600}{100} \times 500+\frac{100}{2} \times 0.4 \times 400 \\
& =\text { Rs } 6,56,000 \\
\mathrm{TC}(Q=500) & =1,600 \times 360+\frac{1,600}{500} \times 500+\frac{500}{2} \times 0.4 \times 360 \\
& =\text { Rs } 6,13,600 \\
\text { Cost Saving } & =\text { Rs } 6,56,000-\text { Rs } 6,13,600=\text { Rs } 42,400
\end{aligned}
$$

14. With $c=\operatorname{Rs} 1.40$:

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times 10,00,000 \times 28.80}{0.20 \times 1.40}}=14,343 \text { (Infeasible) }
$$

With $c=$ Rs 1.60:

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 10,00,000 \times 28.80}{0.20 \times 1.60}}=13,416 \text { (Feasible) } \\
\mathrm{TC}(13,416) & =10,00,000 \times 1.60+\frac{10,00,000}{13,416} \times 28.80+\frac{13,416}{2} \times 0.2 \times 1.60 \\
& =\text { Rs } 16,04,293
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{TC}(20,000) & =10,00,000 \times 1.40+\frac{10,00,000}{20,000} \times 28.80+\frac{20,000}{2} \times 0.2 \times 1.40 \\
& =\text { Rs } 14,04,240
\end{aligned}
$$

Thus, \quad optimal order quantity $=20,000$ units
15. With normal price,

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times 2,400 \times 350}{0.24 \times 10.00}}=837 \text { units }
$$

Even at normal price, the EOQ qualifies for 12.5 per cent discount. Thus, we may recalculate EOQ at $c=$ Rs 8.75 (with a 12.5% discount).

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 2,400 \times 350}{0.24 \times 8.75}}=894 \text { units } \\
\mathrm{TC}(894) & =2400 \times 8.75+\frac{2,400}{894} \times 350+\frac{894}{2} \times 8.75 \times 0.24=\text { Rs } 22,878
\end{aligned}
$$

16. With given data,
$D=50 \times 12=600, A=10, h=0.20 \times 6=1.20$

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \mathrm{DA}}{h}} \\
& =\sqrt{\frac{2 \times 600 \times 10}{1.20}}=100 \text { units }
\end{aligned}
$$

$\mathrm{TC}(100)=600 \times 6+\frac{600}{100} \times 10+\frac{100}{2} \times 1.20=$ Rs 3,720
$\mathrm{TC}(200)=600 \times 5.70+\frac{600}{200} \times 10+\frac{200}{2} \times 0.20 \times 5.70=$ Rs 3,564
$\mathrm{TC}(1,000)=600 \times 5.40+\frac{600}{1,000} \times 10+\frac{1000}{2} \times 0.20 \times 5.40=$ Rs 3,786
Thus, optimal order size $=200$ units.
17. With $c=$ Rs 350 :

$$
\left.\mathrm{EOQ}=\sqrt{\frac{2 \times 5,000 \times 150}{0.20 \times 350}}=146 \quad \text { (Infeasible }\right)
$$

With $c=$ Rs 400 :

$$
\left.\mathrm{EOQ}=\sqrt{\frac{2 \times 5,000 \times 150}{0.20 \times 400}}=137 \quad \text { (Infeasible }\right)
$$

With $c=$ Rs 450 :

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times 5,000 \times 150}{0.20 \times 450}}=129 \quad \text { (Infeasible) }
$$

With $c=$ Rs 500:

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times 5,000 \times 150}{0.20 \times 500}}=122 \quad(\text { Feasible })
$$

We have,

$$
\mathrm{TC}(Q=122)=5,000 \times 500+\frac{5,000}{122} \times 150+\frac{122}{2} \times 0.2 \times 500=\text { Rs } 25,12,247
$$

$$
\begin{aligned}
& \mathrm{TC}(Q=1,000)=5,000 \times 450+\frac{5,000}{1,000} \times 150+\frac{1,000}{2} \times 0.2 \times 450=\text { Rs } 22,95,750 \\
& \mathrm{TC}(Q=3,000)=5,000 \times 400+\frac{5,000}{3,000} \times 150+\frac{3,000}{2} \times 0.2 \times 400=\text { Rs } 21,20,250 \\
& \mathrm{TC}(Q=5,000)=5,000 \times 350+\frac{5,000}{5,000} \times 150+\frac{5,000}{2} \times 0.2 \times 350=\text { Rs } 19,25,150
\end{aligned}
$$

$\therefore \quad$ Optimal order quantity $=5000$ units
18. Annual worth of LED read-out circuits, $D C=75,000$

Cost per order, $A=$ Rs 45
Carrying charge, $i=25 \%$ or 0.25
Since the company is using EOQ purchasing system, the total minimum cost per annum is given by

$$
\begin{aligned}
\mathrm{TC} & =\text { Material cost }+ \text { Ordering cost }+ \text { Carrying cost } \\
& =D C+\sqrt{2 D C A i} \\
& =75,000+\sqrt{2 \times 75,000 \times 45 \times 0.25} \\
& =75,000+1,299=\text { Rs } 76,299
\end{aligned}
$$

When circuits are bought in equal quantities four times in a year, then we have,
Annual material cost $=$ Rs $75,000-1.5 \%$ of Rs 75,000

$$
=\text { Rs } 75,000-\text { Rs } 1,125=\text { Rs } 73,875
$$

Worth of each order $=$ Rs 73,875/4

$$
=\text { Rs } 18,468.75
$$

$$
\text { Carrying cost }=\frac{18,468.75}{2} \times 0.25
$$

$$
=\text { Rs } 2,308.59
$$

$$
\text { Ordering cost }=4 \times 45
$$

$$
=\text { Rs } 180
$$

$$
\text { Total annual cost }=73,875+2,308.59+180
$$

$$
=\text { Rs } 76,363.59
$$

Evidently, since the total cost in the case of discount offer is more than the total cost in case of EOQ policy, the company should reject the discount offer.

To calculate the minimum discount acceptable in order that the present total cost should not be exceeded, we proceed as follows. Let the discount rate be equal to $1-R$.
With this,

$$
\begin{aligned}
\text { Annual ordering cost } & =4 \times 45 \\
& =\text { Rs } 180 \\
\text { Annual carrying cost } & =\frac{1}{2}\left[\frac{75,000}{4} \times R\right] \times 0.25 \\
& =\text { Rs } 2,343.75 R \\
\text { Annual material cost } & =75,000 R
\end{aligned}
$$

From the given information,

$$
\begin{aligned}
180+2,343.75 R+75,000 R & =76,299 \\
\text { or } & 77,343.75 R \\
\text { or } & =76,119 \\
R & =76,119 / 77,343.75 \\
\text { or } & =0.984 \\
& 1-R
\end{aligned}
$$

Hence, the minimum discount the company would expect $=0.016$ or 1.6%.
19. For the policy followed by the Purchase manager:

First buy

$$
\mathrm{TC}=500 \times 14.25+400+\frac{500}{2} \times 0.45 \times 14.25 \times \frac{1}{2}=\text { Rs } 8,327
$$

Second buy

$$
\mathrm{TC}=250 \times 15+400+\frac{250}{2} \times 0.45 \times 15 \times \frac{1}{4}=\operatorname{Rs} 4361
$$

Third buy

$$
\begin{aligned}
\mathrm{TC} & =250 \times 13.8+400+250 \times 0.45 \times 13.8 \times \frac{2}{12}+\frac{250}{2} \times 0.45 \times 13.8 \times \frac{1}{4} \\
& =\operatorname{Rs} 4303 \\
\text { Total cost } & =8,327+4,361+4,303=\text { Rs } 16,991
\end{aligned}
$$

Notes:

(i) The first buy is sufficient for six months. So holding cost for 6 months is provided.
(ii) The second buy would last for 3 months. Accordingly, the holding cost for 3 months be found for this stock.
(iii) The third buy is also good for 3 months. But the purchase is made in the beginning of month 8 . So it would be carried for two months until previous stocks last and then its consumption would begin. The holding cost is provided accordingly.
For the policy of EOQ:

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 1,000 \times 400}{0.45 \times 15}}=344 \text { units } \\
\mathrm{TC}(\mathrm{EOQ}) & =1,000 \times 15+\frac{1,000}{344} \times 400+\frac{344}{2} \times 0.45 \times 15=\operatorname{Rs} 17,324
\end{aligned}
$$

$\therefore \quad$ Cost saving by the policy followed $=17,324-16,991=$ Rs 333
20. (a) (i)

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times 5,000 \times 200}{0.20 \times 10}}=1,000 \text { units }
$$

(ii) No. of orders, $\quad n=\frac{5,000}{1,000}=5$ per annum
(iii) $\mathrm{TC}=\sqrt{2 \times 5,000 \times 200 \times 0.2 \times 10}=$ Rs 2,000 (except component cost)
(b) $\mathrm{TC}(1800)=5,000 \times 9.95+\frac{5,000}{1,800} \times 200+\frac{1,800}{2} \times 2=$ Rs 52,106

$$
\begin{aligned}
& \mathrm{TC}(2000)=5,000 \times 9.90+\frac{5,000}{2,000} \times 200+\frac{2,000}{2} \times 2=\text { Rs } 52,000 \\
& \mathrm{TC}(2400)=5,000 \times 9.85+\frac{5,000}{2,400} \times 200+\frac{2,400}{2} \times 2=\text { Rs } 52,067
\end{aligned}
$$

None of the discounts offered results in cost savings. From the cost values observed, he can either buy 1000 units (EOQ) or 2000 units each time.
21. From the given information, annual usage, $D=20 \times 365=7,300$ units, set up cost per lot, $A=$ Rs 50 and holding cost, $h=\operatorname{Re} 0.3 \times 365=\operatorname{Rs} 109.5$ units/year. Using these data,

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 D A}{h}} \\
& =\sqrt{\frac{2 \times 7,300 \times 50}{109.5}} \\
& =82 \text { units approx. }
\end{aligned}
$$

With this policy of ordering 82 units, the total cost works out to be

$$
\begin{aligned}
\mathrm{TC}(82) & =7,300 \times 4+\frac{7,300}{82} \times 50+\frac{82}{2} \times 109.5 \\
& =\text { Rs } 38,141 \text { approx. }
\end{aligned}
$$

When a discount of 10% is accepted:
Unit cost $=$ Rs 3.60 per unit and lot size $=150$. Thus,

$$
\begin{aligned}
\mathrm{TC}(150) & =7,300 \times 3.60+\frac{7,300}{150} \times 50+\frac{150}{2} \times 109.5 \\
& =\text { Rs } 36,926
\end{aligned}
$$

Thus, if the discount offer is accepted, there is a net saving of Rs $38,141-36,926=$ Rs 1,215 . In order to determine the range, or the percentage discount in the price of the item for lots of 150 units or more, that will not result in any financial advantage, we proceed as follows.

$$
\begin{aligned}
& \text { Ordering cost }=\frac{7,300}{150} \times 50=\text { Rs } 2,433.33 \\
& \text { Carrying cost }=\frac{150}{2} \times 109.5=\text { Rs } 8,212.50
\end{aligned}
$$

(These remain the same as above.)
Accordingly, the minimum purchase cost of 7,300 items

$$
\begin{aligned}
& =\text { Total cost of items without discount }-(\text { Ordering cost }+ \text { Carrying cost }) \\
& \quad \text { when order quantity is } 150 \\
& =38,141-(2,433.33+8,212.50) \\
& =\text { Rs } 27,495
\end{aligned}
$$

From this, the price of one unit of the item works out to be,

$$
\begin{aligned}
C & =27,495 / 7,300 \\
& =\text { Rs } 3.766
\end{aligned}
$$

$\therefore \quad$ Range of discount not resulting in any financial advantage will be equal to, or less than, $\frac{0.234 \times 100}{4}$ $=5.85 \%$.
22. Economic Lot Size $=\sqrt{\frac{2 \times 1,00,000 \times 5,000}{0.2 \times 10}} \sqrt{\frac{2,00,000}{2,00,000-1,00,000}}$

$$
=31,623 \text { units }
$$

Length of production run $=\frac{31,623}{2,00,000}=0.158$ year
23. Economic Lot Size $=\sqrt{\frac{2 \times 2,000 \times 300}{1.60}} \sqrt{\frac{8,000}{8,000-2,000}}$

$$
=1,000 \text { units }
$$

$\mathrm{TC}(\mathrm{ELS})=2 \times 300+\frac{1,000}{8,000} \times \frac{(8,000-2,000)}{2} \times 1.60=$ Rs 1,200
$\mathrm{TC}($ Present Policy $)=4 \times 300+\frac{500}{8,000} \times \frac{(8,000-2,000)}{2} \times 1.60=$ Rs 1,500
\therefore Saving in cost by switching to ELS policy $=$ Rs $1,500-$ Rs 1,200

$$
=\text { Rs } 300
$$

24. (a) $\mathrm{EOQ}=\sqrt{\frac{2 \times 24,000 \times 324}{0.1 \times 12}}=3,600$ units
(b) Interval between consecutive production runs $=\frac{3,600}{24,000}$

$$
=0.15 \text { year }
$$

(c) Inventory cost $=24,000 \times 12+\frac{24,000}{3,600} \times 324+\frac{3,600}{2} \times 0.1 \times 12=\operatorname{Rs} 2,92,320$
25. If h be the holding cost per unit, we have

$$
275=\sqrt{\frac{2 \times 5,000 \times 100}{h}} \sqrt{\frac{50}{50-17}}
$$

or $\quad h=$ Rs 20
With a 10% increase, revised $h=20+10 \%$ of $20=$ Rs 22
Revised ELS $=\sqrt{\frac{2 \times 5,000 \times 100}{22}} \sqrt{\frac{50}{50-17}}=262$ units
26. Here $D=1,92,000$ units, $A=$ Rs $1,080 /$ set-up, $h=0.3 \times 12=3.60 /$ pack/year, $d=1,92,000 / 240=800$ packs per day, and $p=20,000 / 20=1,000$ packs/day. With these values,
(a) Optimum losts size $=\sqrt{\frac{2 D A}{h}\left(\frac{p}{p-d}\right)}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times 1,92,000 \times 1,080}{3.60}\left(\frac{1,000}{1,000-800}\right)} \\
& =24,000 \text { packs }
\end{aligned}
$$

(b) Optimum number of production runs

$$
\begin{aligned}
& =\frac{\text { Annual demand }}{\text { Optimum lot size }} \\
& =\frac{1,92,000}{24,000} \\
& =8
\end{aligned}
$$

(c) Time interval between successive production runs

$$
\begin{aligned}
& =\frac{\text { No. of working days }}{\text { No. of runs }} \\
& =\frac{240}{8} \\
& =30 \text { working days }
\end{aligned}
$$

(d) Total variable cost $=\sqrt{2 D A h\left(\frac{p-d}{p}\right)}$

$$
\begin{aligned}
& =\sqrt{2 \times 1,92,000 \times 1,080 \times 3.60 \times\left(\frac{1,000-800}{1,000}\right)} \\
& =\text { Rs } 17,280
\end{aligned}
$$

27. It is given here that production-lot size ELS $=2,600$ units, $D=30,000$ units/year, $A=$ Rs $135 /$ set-up, $p=$ 200 units/day, $d=100$ units/day and $h=28 \%$ of the unit cost. Now, if the unit cost be Rs C, we have $h=$ $0.28 C$. The economic lot size is obtained as follows:

$$
\operatorname{ELS}=\sqrt{\frac{2 D A}{h}} \sqrt{\frac{p}{p-d}}
$$

Substituting given values in this formula, we have

$$
2,600=\sqrt{\frac{2 \times 30,000 \times 135}{0.28 C}} \sqrt{\frac{200}{200-100}}
$$

Solving for C, we get

$$
\begin{aligned}
C & =\frac{2 \times 30,000 \times 135 \times 2}{0.28 \times 2,600 \times 2,600} \\
& =\text { Rs } 8.56
\end{aligned}
$$

Thus, company B 's cost of producing the item P_{7} is Rs 8.56 per unit.
28. $\quad D=20,000, d=20,000 / 250=80, p=200$ and $s=600, h=0.025 \times 400=10$
(a) \quad ELS $=\sqrt{\frac{2 \times 20,000 \times 600}{10}} \sqrt{\frac{200}{200-80}}$

$$
=2,000 \text { units }
$$

(b) $\mathrm{TRC}=\sqrt{\frac{2 \times 20,000 \times 600 \times 10 \times 120}{200}}$

$$
=\text { Rs } 12,000
$$

(c) $\quad N=\mathrm{D} / \mathrm{ELS} \quad=20,000 / 2,000=10$
(d) $t=2,000 / 200=10$ days
(e) $\begin{aligned} \text { Maximum Stock } & =\frac{2,000}{200}(200-80) \\ & =1,200 \text { units }\end{aligned}$
29. When item is purchased from outside:
$D=2,500$ units/year, $A=$ Rs $12 /$ order, $h=12 \%$ of Rs $32=$ Rs $3.84 /$ unit/year. Thus,

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 2,500 \times 12}{3.84}} \\
& =125 \text { units }
\end{aligned}
$$

Total cost $=$ Cost of items + Holding cost + Ordering cost

$$
\begin{aligned}
& =2,500 \times 32+\frac{125}{2} \times 3.84+\frac{2,500}{125} \times 12 \\
& =80,000+240+240=\text { Rs } 80,480 \text { p.a. }
\end{aligned}
$$

When item is produced internally:
$D=2,500$ units/year, $A=$ Rs $60 /$ set-up, $h=12 \%$ of Rs $30=$ Rs $3.60 /$ unit/year, $p=10,000 / 250=40$ units/ day and $d=10$ units/day. With these,

$$
\begin{aligned}
\text { Economic-lot size } & =\sqrt{\frac{2 \times 2,500 \times 60}{3.60}} \sqrt{\frac{40}{40-10}} \\
& =333.33 \text { units } \\
\text { Total variable cost } & =\sqrt{2 \times 2,500 \times 60 \times 3.60} \sqrt{\frac{40-10}{40}} \\
& =\text { Rs } 900 \\
\text { Total cost } & =\text { Cost of production }+ \text { Total variable cost } \\
& =2,500 \times 30+900=\text { Rs } 75,900
\end{aligned}
$$

Conclusion: The item should be produced internally.
30. (i) $\mathrm{EOQ}=\sqrt{\frac{2 \times 2,500 \times 15}{4}}=137$ units

Optimal number of orders $=\frac{2,500}{137}=18$
$\mathrm{TC}(\mathrm{EOQ})=2,500 \times 30+\frac{2,500}{137} \times 15+\frac{137}{2} \times 4=$ Rs 75,548
(ii) EPLS $=\sqrt{\frac{2 \times 2,500 \times 250}{4}} \sqrt{\frac{4,800}{4,800-2,500}}$

$$
=808 \text { units }
$$

Length of production run $=\frac{808}{4,800}=0.168$ year
$\mathrm{TC}($ ELPS $)=2,500 \times 24+\frac{2,500}{808} \times 250+\frac{808}{4,800} \times \frac{(4,800-2,500)}{2} \times 4$

$$
=\text { Rs } 61,548
$$

(iii) It should manufacture the part internally.
31. According to given data, $D=20 \times 12=240$ units/year, $A=$ Rs $10 /$ set-up, $h=\operatorname{Re} 0.25 \times 12=$ Rs $3 / \mathrm{unit} /$ year and $b=$ Rs $15 /$ unit/year. With these values,

$$
\begin{aligned}
\text { Economic-lot size } & =\sqrt{\frac{2 D A}{h}} \sqrt{\frac{b+h}{b}} \\
& =\sqrt{\frac{2 \times 240 \times 10}{3}} \sqrt{\frac{15+3}{15}} \\
& =44 \text { units approx. }
\end{aligned}
$$

Time between production runs,

$$
\begin{aligned}
T & =\frac{\mathrm{EOQ}}{D} \\
& =\frac{44}{240}=0.1833 \text { years or } 67 \text { days. }
\end{aligned}
$$

32. (a) Unit price for different order quantities.

$$
\begin{aligned}
& \begin{array}{lcl}
\text { Order Size } & \text { Discount } & \text { Unit Price } \\
\mathrm{Q}<500 & - & \text { Rs } 50.0
\end{array} \\
& \begin{array}{l}
1000>\mathrm{Q} \geq 500 \\
\mathrm{Q} \geq 1000
\end{array} \quad 4 \% \\
& \text { Rs } 48.0
\end{aligned} \quad \begin{aligned}
& \text { Rs } 47.5
\end{aligned} \quad \begin{aligned}
& \text { EOQ }=\sqrt{\frac{2 \times 2500 \times 50}{0.20 \times 50}}=158.11 \\
& \mathrm{TC}(158.11)=2500 \times 50+\frac{2500}{158.11} \times 50+\frac{158.11}{2} \times 0.20 \times 50=\text { Rs } 126,581 \\
& \mathrm{TC}(500)=2500 \times 48+\frac{2500}{500} \times 50+\frac{500}{2} \times 0.20 \times 48 \quad=\text { Rs } 122,650 \\
& \mathrm{TC}(1000)=2500 \times 47.5+\frac{2500}{1000} \times 50+\frac{1000}{2} \times 0.20 \times 47.5=\text { Rs } 123,625
\end{aligned}
$$

Best order quantity $=500$ units
(b) (i) $\mathrm{EBQ}=\sqrt{\frac{2 \times 10000 \times 15000}{0.01 \times 15000}} \sqrt{\frac{20000}{20000-10000}}=2,000$ units
(ii) TVC $=\sqrt{2 \times 10000 \times 15000 \times 0.01 \times 15000 \times \frac{10000}{20000}}=$ Rs 150,000
(iii) No. of production runs $=10000 / 2000=5$
(iv) Time required for producing each batch, $t_{p}=Q / P=\frac{2000}{20000}=0.1$ year
(v) Maximum inventory level $=t_{p}(P-D)$

$$
=0.1(20000-10000)=1000 \text { units }
$$

(c) EOQ would be larger in case (ii) because it is obtained by multiplying the EOQ in (i) by $\sqrt{P /(P-D)}$, which is always greater than 1 since $\mathrm{P}>\mathrm{D}$.
(d) Given $\sqrt{\frac{2 A D}{h}}=1000$
(i) $\sqrt{\frac{2 \times 1.5 \times A D}{h}}=1000 \sqrt{1.5}=1224.7 \simeq 1225$ units
(ii) $\sqrt{\frac{2 \times 1.5 \times A D}{1.6 h}}=1000 \sqrt{1.5} / \sqrt{1.6}=968.2 \simeq 968$ units
(e) (i) Let re-order level be x.

$$
1.645=\frac{x-50}{10} \quad \therefore \quad x=16.45+50=66.45 \simeq 67 \text { units }
$$

(ii) $2.33=\frac{x-50}{10} \quad \therefore \quad x=23.3+50=73.3 \simeq 74$ units

Thus, Safety Stock $=74-50=24$ units
(iii) $Z=\frac{75-50}{10}=2.5$ Service Level $=0.5+0.4938=0.9938$ or 99.38%

$$
\text { Area for } \mathrm{Z}=2.5 \text { is } 0.4938
$$

33. (i) With monthly demand $=90$ chairs, annual demand $=12 \times 90=1080 ; A=$ Rs $50, h=$ Rs 80 and $b=$ Rs 20 , we have

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times 1080 \times 50}{80}} \sqrt{\frac{20+80}{20}} \\
& =82.16 \simeq 82 \mathrm{chairs}
\end{aligned}
$$

(ii) Optimal shortage level $=\mathrm{EOQ}\left(\frac{h}{b+h}\right)$

$$
\begin{aligned}
& =82.16\left(\frac{80}{20+80}\right) \\
& =65.73 \simeq 66
\end{aligned}
$$

(iii) Total relevant cost $=\sqrt{2 \times 1080 \times 50 \times 80} \sqrt{\frac{20}{20+80}}$

$$
=\text { Rs } 1314.5
$$

34. (a)(i)

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 D A}{h}} \\
& =\sqrt{\frac{2 \times 8,000 \times 50}{5}} \\
& =400 \text { units }
\end{aligned}
$$

(ii) Total relevant cost associated with the policy of ordering EOQ,

$$
\begin{aligned}
\mathrm{TVC} & =\sqrt{2 D A h} \\
& =\sqrt{2 \times 8,000 \times 50 \times 5} \\
& =\text { Rs } 2,000
\end{aligned}
$$

(b) When back-ordering is permitted, we have
(i) $\quad \mathrm{EOQ}=\sqrt{\frac{2 D A}{h}} \sqrt{\frac{b+h}{b}}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times 8,000 \times 50}{5}} \sqrt{\frac{10+5}{10}} \\
& =490 \text { units (approx.) }
\end{aligned}
$$

(ii) Maximum level of inventory, $\mathrm{M}=\mathrm{EOQ}\left(\frac{b}{b+h}\right)$

$$
\begin{aligned}
& =490\left(\frac{10}{10+5}\right) \\
& =327 \text { units }
\end{aligned}
$$

(iii) Optimum number of shortage units, $S=\mathrm{EOQ}-M$

$$
\begin{aligned}
& =490-327 \\
& =163 \text { units }
\end{aligned}
$$

(iv) Total relevant cost $=\sqrt{2 D A h} \sqrt{\frac{b}{h+b}}$

$$
\begin{aligned}
& =\sqrt{2 \times 8,000 \times 50 \times 5} \sqrt{\frac{10}{5+10}} \\
& =\text { Rs } 1,633 .
\end{aligned}
$$

35. EOQ $=\sqrt{\frac{2 \times 24,000 \times 90}{3}} \sqrt{\frac{2+3}{2}}$

$$
=1897 \text { units }
$$

Re-order level $=24000 \times \frac{1}{24}=1000$ units
36. Given, $D=5,000$ units, $A=$ Rs $250 /$ order, $h=30 \%$ of Rs $100=$ Rs $30 /$ unit/year, and $b=$ Rs $10 / \mathrm{unit} /$ year. We have,
When back-ordering is permitted:
(i) $\mathrm{EOQ}=\sqrt{\frac{2 D A}{h}} \sqrt{\frac{b+h}{b}}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times 5,000 \times 250}{30}} \sqrt{\frac{10+30}{10}} \\
& =577.35 \text { units }
\end{aligned}
$$

(ii) Maximum shortage level,

$$
\begin{aligned}
S & =\sqrt{\frac{2 D A h}{h b+b^{2}}} \\
& =\sqrt{\frac{2 \times 5,000 \times 250 \times 30}{30 \times 10+10 \times 10}} \\
& =433.01 \text { units }
\end{aligned}
$$

Total variable cost

$$
\begin{aligned}
& =\sqrt{2 D A h\left(\frac{b}{b+h}\right)} \\
& =\sqrt{2 \times 5,000 \times 250 \times 30 \times\left(\frac{10}{10+30}\right)} \\
& =\text { Rs } 4,330.13
\end{aligned}
$$

When back-ordering is not permitted:
Total variable cost $=\sqrt{2 D A h}$

$$
\begin{aligned}
& =\sqrt{2 \times 5,000 \times 250 \times 30} \\
& =\text { Rs } 8,660.25
\end{aligned}
$$

(iii) Additional cost when back-ordering is not permitted

$$
\begin{aligned}
& =\text { Rs } 8,660.25-\text { Rs } 4,330.13 \\
& =\text { Rs } 4,330.12
\end{aligned}
$$

37. With Back-Orders
(i) $\mathrm{EOQ}=\sqrt{\frac{2 \times 20,000 \times 250}{10}} \sqrt{\frac{10+30}{30}}$

$$
=1,154.7 \simeq 1,155 \text { units }
$$

(ii) Maximum stock level $=1,155 \times \frac{30}{40} \simeq 866$ units
(iii) Maximum shortage level $=1,155 \times \frac{10}{40} \simeq 289$ units
(iv) Total relevant cost $=\sqrt{\frac{2 \times 20,000 \times 250 \times 10 \times 30}{40}}$

$$
=\text { Rs } 8,660
$$

Without Back-Order
(i)

$$
\mathrm{EOQ}=\sqrt{\frac{2 \times 20,000 \times 250}{10}}
$$

$$
=1,000 \text { units }
$$

(ii) Maximum stock level $=1,000$ units
(iii) Total relevant cost $=\sqrt{2 \times 20,000 \times 250 \times 10}$

$$
=\operatorname{Rs} 10,000
$$

38. (a) $\mathrm{EOQ}=\sqrt{\frac{2 \times 3000 \times 300}{20}}$

$$
=300 \text { units }
$$

(b) Re-order level $=$ Max. demand rate \times Max. lead time

$$
=15 \times 20=300 \text { units }
$$

(c) Safety stock $=$ ROL - Expected DDLT

$$
=300-10 \times 15=150 \text { units }
$$

39.

(i) $\mathrm{EOQ}=\sqrt{\frac{2 \times 36,000 \times 25}{0.20 \times 1}}$

$$
=3,000 \text { units }
$$

(ii) No. of orders $=36,000 / 3,000=12$ per year
(iii) Re-order Level $=$ Expected DDLT + Safety stock

$$
=3000 \times \frac{1}{2}+3000=4,500 \text { units }
$$

Expected DDLT $=d \times L T=(36000 / 12) \times(1 / 2)=1500$ units Safety stock $=36,000 / 12=3,000$ units
(iv) Safety stock $=3,000$ units
40. \quad EOQ $=\sqrt{\frac{2 \times 25 \times 25}{0.40}}$

$$
=56 \text { units }
$$

Re-order level $=16 \times 25=400$ units
41. Here average demand $=50$ units/day and average lead time $=6$ days. Thus, expected demand during lead time $(D D L T)=50 \times 6=300$ units. For consideration of safety stock, we examine DDLT values of 300, 350, 400, and 450 units. Using each of these, we first calculate the expected shortages. The calculations are given in table.

Calculation of Expected Shortage

Option	ROL	SS	DDLT	Shortage Probability	Exp. Value	
1	300	0	300	0	0.68	0
				350	50	0.09
4.5	100	0.07	7.0			
				450	150	0.03

The calculation of shortage cost per annum under each of these conditions is given in table.

Calculation of Shortage Cost

Safety Stock	Shortage	Cost/Unit Short	Order Cycles	Shortage Cost
0	16.0	Rs 50	5	Rs 2,500
50	6.5	50	5	1,625
100	1.5	50	5	375
150	0	50	5	0

Finally, to determine the optimum level of safety stock to be kept, the total cost is shown calculated in table.

Calculation of Total Cost

Safety Stock	Shortage Cost	Carrying Cost	Total Cost
0	4,000	0	4,000
50	1,625	500	2,175
100	375	1,000	1,375
150	0	1,500	1,500

Since the total cost corresponding to a safety stock of 100 units is the least, it represents the optimal level. Accordingly, Reorder level = Expected DDLT + Safety stock

$$
=300+100=400 \text { units. }
$$

42. Given $\mathrm{EOQ}=400$ units, $\mathrm{ROL}=350$ units, $\mathrm{LT}=3$ weeks, average demand $=100$ units/week, standard deviation $=40$ units, we have
Expected DDLT $=$ Average demand \times Lead time

$$
=100 \times 3=300 \text { units }
$$

Standard deviation $\sigma($ DDLT $)=\sigma($ weekly $) \times \sqrt{\mathrm{LT}}$

$$
=40 \sqrt{3}=69.28 \text { units }
$$

To determine the service level corresponding to the given ROL, we shall obtain the area between 350 (ROL) and 300 (expected DDLT) under the normal curve with $\mu=300$ and $\sigma=69.28$. This is shown in figure. We have,

$$
\begin{aligned}
\mathrm{Z} & =\frac{X-\mu}{\sigma} \\
& =\frac{350-300}{69.28} \\
& =0.72
\end{aligned}
$$

From the normal-area table (Table B1), area between μ and $Z=0.72$ equals 0.2642 .
Thus, total area to the left of $X=350$ is $0.5+0.2642=0.7642$. Accordingly, service level corresponding to the given reorder level is 76.42%.
To determine the reorder level which would ensure a service level of 97.7%, we have to determine X under the normal curve with $\mu=300$ and $\sigma=69.28$, to the left of which the area is 0.977 . For this area, the Z-value equals 2.0 . Thus,
or

$$
\begin{aligned}
2 & =\frac{X-300}{69.28} \\
X & =2 \times 69.28+300 \\
& =439 \text { units (Approx.) }
\end{aligned}
$$

Therefore, a reorder level of 439 units would imply a service level of 97.7%.
43. From the given information,
expected annual demand $D=90 \times 365=32,850$ units,
ordering cost $A=$ Rs 30/order, and
holding cost $\quad h=\operatorname{Re} 0.80 /$ unit/year.
From these values, we get

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 D A}{h}} \\
& =\sqrt{\frac{2 \times 32,850 \times 30}{0.80}} \\
& =1,570 \text { units }
\end{aligned}
$$

Thus, reorder quantity $=1,570$ units.
Determination of reorder point: Given,
expected daily demand $\bar{d}=90$ units
standard deviation $\sigma_{d}=10$ units
lead timeLT $=5$ days
Thus, expected demand during lead time $($ DDLT $)=\bar{d} \times$ LT

$$
=90 \times 5=450 \text { units }
$$

Standard deviation of DDLT, $\sigma=\sigma_{\mathrm{d}} \sqrt{L T}$

$$
\begin{aligned}
& =0 \sqrt{5} \\
& =22.36 \text { units }
\end{aligned}
$$

The reorder point is given by X, as shown in the figure, which depicts the distribution of DDLT. The given normal curve has $\mu=450$ units and $\sigma=22.36$ units, and total area to the left of X is 0.80 . To obtain

the value of X, we observe that area between μ and X is
0.30 . Corresponding to this area, the Z-value is seen to be 0.84 (Table B1). Accordingly,

$$
\mathrm{Z}=\frac{X-\mu}{\sigma}
$$

$$
\begin{aligned}
0.84 & =\frac{X-450}{22.36} \\
\text { or } \quad X & =0.84 \times 22.36+450 \\
& =469 \text { units (Approx.) }
\end{aligned}
$$

Thus, reorder point $=469$ units.
44. (a) Given $D=30,000$ units/year, $A=$ Rs $400 /$ order and $h=$ Rs $600 /$ unit/year, we have

$$
\begin{aligned}
E O Q & =\sqrt{\frac{2 \times 30,000 \times 400}{600}} \\
& =200 \text { units }
\end{aligned}
$$

Thus, option (i) is correct.
(b) With $D=10,000$ units, $A=$ Rs $80 /$ set-up, $h=\operatorname{Re} 0.40 /$ unit/year, we have, the economic lot size,

$$
\begin{aligned}
E L S & =\sqrt{\frac{2 \times 10,000 \times 80}{0.40}} \\
& =2,000 \text { units }
\end{aligned}
$$

Therefore, number of runs $=\frac{10,000}{2,000}=5$.
(c) Stock-out cost $=$ Expected stock-out cost + Safety stock carrying cost

Expected stock-out cost $=$ Average stock-outs \times Cost per stock-out

$$
=n p \times 80
$$

For $S S=10$ units,
Total cost $=5 \times 0.5 \times 80+10 \times 1.20=$ Rs 212
For $\quad S S=20$ units,
Total cost $=5 \times 0.3 \times 80+20 \times 1.20=$ Rs 144
For $S S=40$ units,
Total cost $=5 \times 0.1 \times 80+40 \times 1.20=$ Rs 88
For $S S=60$ units,
Total cost $=5 \times 0.05 \times 80+60 \times 1.20=$ Rs 92
Conclusion: Optimal safety stock $=40$ units.
(d) Determination of Optimal Safety Stock

$S S$	$P($ stock-out $)$	$n p$	Stock-out cost	Carrying cost	Total cost
10	0.50	2.50	200	20	220
20	0.40	2.00	160	40	200
30	0.30	1.50	120	60	180
40	0.20	0.80	80	80	160
50	0.10	0.50	40	100	140
60	0.05	0.25	20	120	140

Thus, optimal safety stock level $=50$ or 60 units.
45. (a)

$$
\text { ROL }=\frac{800}{250} \times 15=48 \text { units }
$$

(b) For area between 25 and $X_{1}, Z=1.15$.

Thus, $1.15=\frac{X_{1}-25}{4}$
or

$$
X_{1}=1.15 \times 4+25=29.6 \simeq 30 \text { units }
$$

(ROL) Extra cost due to safety stock

$$
=5 \times 5=\operatorname{Rs} 25
$$

(c) The area between 25 and X_{2} is equal to

$$
\text { 0.25. Thus, } \quad Z=0.775
$$

$\therefore \quad 0.675=\frac{X_{2}-25}{4}$
or $\quad X_{2}=0.675 \times 4+25$

$$
=27.7 \simeq 28 \text { units }
$$

This is the required ROL.
(d) The area between 25 and X_{3} is equal to
0.49. Corresponding to this area, $Z=2.33$.

Thus,

$$
\begin{aligned}
2.33 & =\frac{X_{3}-25}{4} \\
\text { or } \quad X_{3} & =4 \times 2.33+25 \\
& =34.32 \simeq 35 \mathrm{units}
\end{aligned}
$$

The required ROL is, therefore, 35 units.
46. (a) $\mathrm{EOQ}=\sqrt{\frac{2 \times 3000 \times 30}{8}}$

$$
=150 \text { units }
$$

(b) If X be the desired ROL, its value would be such that area included to the right of it (under normal curve with $\mu=120$ and $\sigma=20$) would be 0.02 . Area between μ and X is therefore, 0.48 and the Z-value corresponding to this is 2.05 . Thus,

$$
\begin{array}{rlrl}
2.05 & =\frac{X-120}{20} \\
\therefore & & X & =2 \times 2.05+120=161 \text { units }
\end{array}
$$

Safety stock $=161-120=41$ units
(c) For

$$
X=140, Z=\frac{140-120}{20}=1.0
$$

From the normal area table, area for $Z=1.0$ is 0.3413 .
$\therefore \quad \mathrm{P}($ stockout in an order cycle $)=0.5-0.3413=0.1587$
No. of order cycles in a year $=3000 / 150=20$
Thus, number of times stockouts are expected in a year $=20 \times 0.1587=3.174 \simeq 3$.
47. (a) and (b) We are given here
$\mu($ weekly $)=400$ units, MAD $($ weekly $)=250$ units, Lead time LT $=2$ weeks, and Service level $=95 \%$.
Accordingly,
Standard deviation, σ (weekly) $=1.25 \mathrm{MAD}$

$$
=1.25 \times 250=312.5 \text { units }
$$

From these data, the parameters of the distribution of demand during lead time (DDLT) are:
Expected demand, $\mu=\mu$ (weekly) $\times L T$

$$
=400 \times 2=800 \text { units }
$$

Standard deviation, $\sigma=\sigma$ (weekly) $\sqrt{L T}$

$$
=312.5 \sqrt{2}=442 \text { units }
$$

The reorder point, X, as shown in figure, corresponding to 95 per cent service level may be determined as follows.
We know,

$$
\mathrm{Z}=\frac{X-\mu}{\sigma}
$$

Here area between μ and X is 0.45 , corre sponding to which Z is 1.645 .

With $\mu=800$ and $\sigma=442$, we have

$$
\begin{array}{rlrl}
1.645 & =\frac{X-800}{442} \\
\therefore \quad & X & =1.645 \times 442+800 \\
& & =1,527 \text { units }
\end{array}
$$

Fig. Determination of Recorder Point

Accordingly, reorder point $=1,527$ units, and safety stock $=1,527-800=727$ units.
(c) Annual cost of maintaining safety stock

$$
\begin{aligned}
& =\text { Safety stock } \times \text { Unit holding cost per year } \\
& =727 \times 0.01 \times 52 \\
& =\text { Rs } 378 .
\end{aligned}
$$

48. The given lead time distribution is reformulated and is presented in table where calculation of expected lead time is also shown.

Calculation of Expected Lead Time

Lead Time (weeks)	Frequency	Probability p	Cumulative Probability	X	$p X$
$0-1$	4	0.05	0.05	0.5	0.025
$1-2$	8	0.10	0.15	1.5	0.150
$2-3$	20	0.25	0.40	2.5	0.625
$3-4$	24	0.30	0.70	3.5	1.050
$4-5$	16	0.20	0.90	4.5	0.900
$5-6$	4	0.05	0.95	5.5	0.275
$6-7$	4	0.05	1.00	6.5	0.325
Total	80				3.350

From the last column of the table, the expected lead time is seen to be 3.35 weeks. Accordingly, expected demand during lead time $=3.35 \times 200=670$ units. Further, from the cumulative probability column, it is evident that 90 per cent service level corresponds to five weeks. Thus, to meet the desired service level, reorder level $=5 \times 200=1,000$ units. Accordingly, safety stock $=1,000-670=330$ units.
49. From the given data,

Expected demand during lead time,
Exp. DDLT $=$ Expected daily demand \times Lead time

$$
\begin{aligned}
& =20 \times 9 \\
& =180 \text { units }
\end{aligned}
$$

Also, standard deviation of daily demand,

$$
\begin{aligned}
\sigma_{d} & =1.25 \mathrm{MAD} \\
& =1.25 \times 5=6.25 \text { units }
\end{aligned}
$$

Standard deviation of DDLT $=\sqrt{n} \sigma_{d}$

$$
=\sqrt{9} \times 6.25=18.75 \text { units }
$$

(a) The reorder point corresponding to 50 per cent service level $=180$ units.
(b) Service level corresponding to $S S=0$ would be 50 per cent.
(c) To determine the re-order point as will ensure a 90% service level, we shall determine X to the left of which 90 per cent of the area under the normal curve, with parameters $\mu=180$ and $\sigma=18.75$ lies. The Z value for area $=0.40$ is 1.28 . Thus,
or

$$
\begin{aligned}
1.28 & =\frac{X-180}{18.75} \\
X & =1.28 \times 18.75+180 \\
& =204
\end{aligned}
$$

Thus, ROL $=204$ units would ensure 90% service level.
50. We know, MAD $=0.8 \sigma$ or $40=0.8 \sigma$
$\therefore \quad \sigma=40 / 0.8=50$ units
(i) With a two weeks' supply, number of orders per year $=26$
$\begin{aligned} \therefore \quad \text { Service level } & =1-\mathrm{P} \text { (stockout) } \\ & =1-1 / 26-0.96\end{aligned}$

$$
=1-1 / 26-0.96
$$

Thus, we have to find X (the safety stock) under the normal curve with $\mu=0$ and $\sigma=50$, to the left of which 0.96 of the area lies. Since area between μ and X is 0.46 , we have Z-value corresponding to this as 1.75. Now,

$$
1.75=\frac{X-0}{50}
$$

or $\quad X=50 \times 1.75=88$ units app.
(ii) With a four week's supply, service level would be $1-1 / 13=0.92$ (since there would be 13 order cycles per year). For area $=0.42$ (between μ and X), $Z=1.43$. Thus,

$$
1.43=\frac{X-0}{50}
$$

or $\quad X=1.43 \times 50=72$ units app.
51. Based on given information, the conditional cost matrix is drawn here.

Conditional Cost Matrix (Costs in Rs lac)

Demand (units)	Prob.	Stock (No. of Spares)					
		0	1	2	3	4	5
0		0	2	4	6	8	10
1		10	2	4	6	8	10
2		20	12	4	6	8	10
3		30	22	14	6	8	10
4		40	32	24	16	8	10
5	0.001	50	42	34	26	18	10
Expected cost	2.14	2.90	4.28	6.07	8.01	10.00	

Using the probabilities given, the expected cost for each of the stock levels is calculated. The company should buy no spares, as the expected cost for zero spares is the minimum.
52. The consumption values for various items, obtained as the product of annual consumption and unit prices, are given in descending order, in the following table. In the next column, they are expressed as percentages of the aggregate value. Finally, the percentages are cumulated in the last column.

ABC Classification

$\left.\begin{array}{|llll|}\hline \text { Model } & \text { Value (Rs) } & \text { Value (\%) } & \text { Cumulative Value (\%) } \\ \hline 502 & 42,000 & 47.97 & 47.97 \\ 506 & 22,000 & 25.13 & 73.10\end{array}\right\} \mathrm{A}$

Evidently, class A items are models 502 and 506 , class B items are models 509, 504, and 508; while the remaining may be categorized as class C items.
53. The values of various items are shown in the second column of the following table. These are re-expressed in percentage form and given in the next column. Finally, the percentage values are shown cumulated in the last columns. As indicated, the values are arranged in the descending order of magnitude. From the values given in the last column of the table, the first four items may be categorized as A class items, next three as class B items while the remaining as class C items.

ABC Classification

$\left.\begin{array}{|llll|}\hline \text { Item } & \text { Value }(R s) & \text { Value (\%) } & \text { Cumulative Value (\%) } \\ \hline 11 & 81,650 & 22.95 & 22.95 \\ 2 & 72,000 & 20.24 & 43.19 \\ 5 & 57,000 & 16.02 & 59.21 \\ 1 & 35,000 & 9.84 & 69.05 \\ 12 & 25,420 & 7.15 & 76.19 \\ 6 & 20,000 & 5.62 & 81.81 \\ 3 & 15,000 & 4.22 & 86.03 \\ 4 & 13,200 & 3.71 & 89.74 \\ 7 & 12,000 & 3.37 & 93.11 \\ 10 & 11,600 & 3.26 & 96.37 \\ 8 & 10,500 & 2.95 & 99.33 \\ 9 & 2,400 & 0.67 & 100.00\end{array}\right\}$
54. In most practical situations, where large number of items are involved, A category items usually constitute 5 to 10 per cent of total items and account for 70 to 85 per cent of total cost (of materials); B category items are 10 to 20 per cent in number and value both, while the remaining items fall in the C category. To classify the ten items given in three categories, we calculate their annual usage value in the first instance and rank them in the descending order on the basis of the usage value. This is done in table below.

Determination of Usage Value and Rankings

S.No.	Annual Usage (units)	Unit Value (Rs)	Annual Usage (in Rs)	Ranking
1	200	40.00	8,000	4
2	100	360.00	36,000	1
3	2,000	0.20	400	9
4	400	20.00	8,000	5
5	6,000	0.04	240	10
6	1,200	0.80	960	8
7	120	100.00	12,000	3
8	2,000	0.70	1,400	6
9	1,000	1.00	1,000	7
10	80	400.00	32,000	2

The next step is to accumulate the items in the order of their ranks along with their annual usage values so as to convert the accumulated values into their percentage of grand total. The calculations are given below where it is evident that 20% of the items that constitute 68% of total cost fall in category $A ; 30 \%$ of the items are in category B while the rest are in category C. The B category items account for 28% and the C category for 4% of the total cost.

Classification of Items

CHAPTER 10

1. (a) Arrival rate, $\lambda=12$ customers/hour and Service rate, $\mu=30$ customers/hour
(b) Utilisation parameter, $\rho=\lambda / \mu=12 / 30=0.40$
(c) $P(n=4)=\rho^{n}(1-\rho)=0.4^{4}(1-0.4)=0.01536$
(d) $P(n>4)=\rho^{n+1}=(0.4)^{5}=0.01024$
(e) $L_{q}=\rho^{2} /(1-\rho)=0.4^{2} /(1-0.4)=4 / 15$ customer
(f) $L_{s}=\rho /(1-\rho)=0.4 /(1-0.4)=2 / 3$ customer
(g) $W_{q}=\lambda / \mu(\mu-\lambda)=12 / 30(30-12)=1 / 45$ hour $=4 / 3$ minutes
(h) $W_{s}=1 /(\mu-\lambda)=1 /(30-12)=1 / 18$ hour or $10 / 3$ minutes
(i) Let the new arrival rate be λ^{\prime} which causes W_{q} to be $3 \times 4 / 3=4$ minutes or $1 / 15$ hour.

$$
\therefore \quad \frac{1}{15}=\frac{\lambda^{\prime}}{30\left(30-\lambda^{\prime}\right)}
$$

or

$$
\lambda^{\prime}=900 / 45=20 \text { customers/hour }
$$

2. (a) With $\lambda=3$ letters/hour and $P(n)=e^{-\lambda} \times \frac{\lambda^{n}}{n!}$,
$P($ no more than two letters in an hour $)=P(0)+P(1)+P(2)$

$$
\begin{aligned}
& =e^{-3}+e^{-3} \times 3+e^{-3} \times 3^{2} / 2! \\
& =e^{-3}(1+3+4.5) \\
& =0.0498 \times 8.5=0.4232
\end{aligned}
$$

$P($ at least one letter $)=1-P(0)$

$$
=1-0.0498=0.9502
$$

(b) No. of letters expected to be received in two hours $=3 \times 2=6$.
3. From the given information,
$\lambda=36$ customers/hour, $\mu=60$ customers/hour, and $\rho=\lambda / \mu=36 / 60=0.60$.
(a) Probability of arrival of zero through five customers in a 10 -minute interval:

Here

$$
T=10 \text { minutes }=1 / 6 \text { hours }
$$

\therefore

$$
m=\lambda T=36 \times 1 / 6=6
$$

Now,

$$
P(n)=e^{-m} \times \frac{m^{n}}{n!}
$$

Accordingly,

No. of customers (n)	Probability
0	0.00248
1	0.01487
2	0.04462
3	0.08924
4	0.13385
5	0.16062

(b) Probability (system is idle) $=1-\rho$

$$
=1-0.6=0.4
$$

Thus, the system shall be idle 40% of the time.
(c) Expected free time in an eight-hour period $=8 \times 0.4=3.2 \mathrm{hr}$.
(d) Probability that there shall be exactly n customers in the system, $P_{n}=\rho^{n}(1-\rho)$. For $n=0,1, \ldots, 5$, we have

No. of customers (n)	Probability, P_{n}
0	0.4
1	0.24
2	0.144
3	0.0864
4	0.05184
5	0.031104

(e) Expected length of the system, $L_{s}=\frac{\rho}{1-\rho}$

$$
=\frac{0.6}{1-0.6}=1.5 \text { customers }
$$

(f) Expected length of the queue, $L_{q}=\frac{\rho^{2}}{1-\rho}$

$$
=\frac{0.6^{2}}{1-0.6}=0.9 \text { customers }
$$

4. (a) $\mu=20$ customers/hour

$$
P(\text { idle system })=0.25
$$

$\therefore \quad P$ (busy),$\rho=1-0.25=0.75$
Now, $\quad \lambda=\mu \rho=20 \times 0.75=15$ customers/hour
Thus, inter-arrival time $=60 / 15=4$ minutes
(b) Given, average service time $=15$ minutes/customer, and inter-arrival time $=20$ minutes.

Accordingly,
average arrival rate, $\quad \lambda=3$ customers/hour,
average service rate, $\quad \mu=4$ customers/hour, and
$\rho=3 / 4=0.75$
Average time a customer waits in a queue

$$
\begin{aligned}
W_{q} & =\frac{\rho}{\mu-\lambda} \\
& =\frac{0.75}{4-3}=0.75 \text { hour or } 45 \text { minutes }
\end{aligned}
$$

(c) Given $\lambda=10$ customers/hour and $\mu=10$ customers/hour. Since λ is not less than μ, the system cannot function. The statement is false, therefore.
(d) Here $\rho=0.75$ and $\lambda=60 / 4=15$ customers/hour. Thus, $\mu=\lambda / \rho=15 / 0.75=20$ customers/hour. The average service time, therefore, is 3 minutes.
(e) $\lambda=20$ customers/hour, $\mu=60 \times 60 / 100=36$ customers/hour, average waiting time of a customer in queue.

$$
\begin{aligned}
W_{q} & =\frac{\lambda}{\mu(\mu-\lambda)} \\
& =\frac{20}{36(36-20)}=\frac{5}{144} \text { hour or } 2.08 \text { minutes }
\end{aligned}
$$

5. With $\lambda=10 / 8=1.25$ sets per hour, and $\mu=2$ sets per hour, we have $\rho=1.25 / 2=0.625$.

Now,
$P($ idle $)=1-\rho=1-0.625=0.375$
\therefore Expected idle time per day

$$
\begin{aligned}
& =0.375 \times 8 \\
& =3 \text { hours }
\end{aligned}
$$

Expected number of units in the system, $L_{s}=\frac{0.625}{1-0.625}$

$$
=1.67
$$

6. Here, $\mu=60 / 3=20$ customers/hour, and

$$
\lambda=12 \text { customers/hour }
$$

(i) Utilisation of the teller, $\rho=12 / 20=0.6$ or 60%
(ii) Average number in the system, $\quad L_{s}=\frac{\rho}{1-\rho}$

$$
=\frac{0.6}{1-0.6}=1.5
$$

(iii) Average waiting time in the line, $W_{q}=\frac{\rho}{\mu-\lambda}$

$$
=\frac{0.6}{20-12}=0.075 \text { hour }
$$

(iv) Average waiting time in the system, $W_{s}=\frac{1}{\mu-\lambda}$

$$
=\frac{1}{20-12}=0.125 \text { hour }
$$

7. With $\lambda=2$ and $\mu=3$,
(a) $\rho=\lambda / \mu=2 / 3$ or 0.67
(b) $L_{s}=\frac{\rho}{1-\rho}=\frac{2 / 3}{1-2 / 3}=2$
(c) $W_{s}=\frac{1}{\mu-\lambda}=\frac{1}{3-2}=1$ hour or 60 minutes

$$
W_{q}=\frac{\rho}{\mu-\lambda}=\frac{2}{3(3-2)}=\frac{2}{3} \text { hour or } 40 \text { minutes }
$$

(d) $P(n>3)=\rho^{4}=\left(\frac{2}{3}\right)^{4}=0.1975$
8. Given, average arrival rate, $\lambda=12$ trucks/hour average service rate, $\quad \mu=20$ trucks/hour
(i) Probability that a truck has to wait, $\rho=\frac{\lambda}{\mu}$

$$
=12 / 20=0.6
$$

(ii) The waiting time of a truck that waits,

$$
\begin{aligned}
W & =\frac{1}{\mu-\lambda} \\
& =\frac{1}{20-12}=\frac{1}{8} \text { hour or } 7.5 \text { minutes }
\end{aligned}
$$

(iii) Since 50% of the total trucks belong to the contractor, the expected waiting time of contractor's truck per day of 24 hours

$$
\begin{aligned}
& =\begin{array}{l}
\text { No. of truck } \times \\
\text { arrivals per day }
\end{array} \begin{array}{l}
\text { Contractor's } \\
\text { share }
\end{array} \\
& =12 \times 24 \times \frac{50}{100} \times \frac{12}{20(20-12)} \\
& =288 \times 0.5 \times \frac{12}{20 \times 8}=10.8 \text { hours }
\end{aligned}
$$

9. Here $\lambda=20$ customers/hour and service rate $\mu=12$ customers/hour. Since $\lambda>\mu$, the system is not workable.
10. From the given information, we have mean arrival rate, $\quad \lambda=6$ customers/hour
mean service rate, $\quad \mu=10$ customers/hour
$\therefore \quad \rho=\lambda / \mu=6 / 10=0.6$
(i) Probability that an arriving customer can drive directly to the space in front of the window is given by $P(0)+P(1)+P(2)$. The required probability, therefore, is

$$
\begin{aligned}
P & =(1-\rho)+(1-\rho) \rho+(1-\rho) \rho^{2} \\
& =(1-\rho)\left(1+\rho+\rho^{2}\right) \\
& =(1-0.6)\left(1+0.6+0.6^{2}\right) \\
& =0.4 \times 1.96=0.784
\end{aligned}
$$

(ii) Probability that an arriving customer will have to wait outside the directed space is given by $1-[P(0)$ $+P(1)+P(2)]$. It equals $1-0.784=0.216$.
(iii) Expected waiting time of a customer before getting the service is W_{q}, calculated as:

$$
W_{q}=\frac{\lambda}{\mu(\mu-\lambda)}=\frac{6}{10(10-6)}=\frac{3}{20} \text { hour or } 9 \text { minutes }
$$

11. With $\lambda=3$ customers/hour and $\mu=4$ customers/hour, we have $\rho=\lambda / \mu=3 / 4=0.75$.
(a) $\rho=0.75$, thus he shall be busy 75% of time.
(b) $P(n<3)=P(0)+P(1)+P(2)$

$$
\begin{aligned}
& =(1-\rho)+\rho(1-\rho)+\rho^{2}(1-\rho) \\
& =(1-0.75)+0.75(1-0.75)+0.75^{2}(1-0.75)=0.578125
\end{aligned}
$$

(c) $L_{s}=\frac{\rho}{1-\rho}=\frac{0.75}{1-0.75}=3$ customers
(d) $L_{q}=\frac{\rho^{2}}{1-\rho}=\frac{0.75^{2}}{1-0.75}=2.25$ customers
(e) $W_{q}=\frac{\rho}{\mu-\lambda}=\frac{0.75}{4-3}=0.75$ hour or 45 minutes
(f) $W_{s}=\frac{1}{\mu-\lambda}=\frac{1}{4-3}=1$ hour or 60 minutes
(g) Same as in (f): 60 minutes
(h) $W_{q}(t)=\rho e^{-t / w_{s}}=0.75 e^{-1 / 6}=0.6348$
(i) $W_{s}(t)=e^{-t / W_{s}}=e^{-1 / 6}=0.8465$
12. The following are the main assumptions made:
(i) The arrival of customers follows Poisson probability distribution, with an average arrival rate of λ per hour.
(ii) The service time has exponential distribution, with the service rate being μ per hour.
(iii) A customer can book his/her ticket from any of the counters, so that there are as many queues as the number of customers. Thus, it is assumed that the system consists of identical single service stations. If K, M, and N be the number of customers respectively during the peak, normal, and low periods, we have the arrival rates as:
for peak period, $\quad \lambda=110 / K$
for normal period, $\quad \lambda=60 / M$
for low period, $\quad \lambda=30 / N$
The service rate for each of the periods $=12$ customers/hour
Peak period:
Since customers are willing to wait for a period of 15 minutes or 0.25 hour, we have

$$
0.25=\frac{110 / K}{12\left(12-\frac{110}{K}\right)} \quad\left(\text { since } W_{q}=\frac{\lambda}{\mu(\mu-\lambda)}\right)
$$

$\begin{array}{rlrl}\text { or } & 0.25 \times 12(12 K-110) & =110 \\ \text { or } & 36 K & =110+330=440 \\ & \therefore & K & =440 / 36=12.22\end{array}$
Thus, 13 counters should be opened to ensure that the average waiting time does not exceed 15 minutes.
Normal period:
The customers are willing to wait for 10 minutes or $1 / 6$ hour. Accordingly,

$$
\frac{1}{6}=\frac{60 / M}{12\left(12-\frac{60}{M}\right)}
$$

or $\frac{1}{6} \times 12\left(12-\frac{60}{M}\right)=\frac{60}{M}$
or $\quad 24 M-120=60$
or $\quad M=180 / 24=7.5$
Thus, 8 counters be opened during the normal periods to ensure the required.
Low period:
Customer waiting time permitted for low periods is 5 minutes or $1 / 12$ hour. Thus, during such periods,

$$
\begin{aligned}
& \frac{1}{12} & =\frac{30 / N}{12\left(12-\frac{30}{N}\right)} \\
\text { or } & 144-\frac{360}{N} & =\frac{360}{N} \\
\text { or } & 144 N-360 & =360 \\
\therefore & N & =720 / 144=5
\end{aligned}
$$

A total of 5 counters, therefore, need to be opened in order to ensure that the customers do not wait for more than 5 minutes during low periods.
13. With $\lambda=4$ customers/hour and $\mu=10$ customers/hour, $\rho=\lambda / \mu=4 / 10$ or 0.40 .
(a) P (empty $)=P(0)=1-\rho=1-0.40=0.60$
(b) $P(n \geq 1)=1-P(0)=1-0.60=0.40$
(c) $L_{s}=\frac{\rho}{1-\rho}=\frac{0.4}{1-0.4}=\frac{2}{3}$ customers
(d) $W_{s}=\frac{1}{\mu-\lambda}=\frac{1}{10-4}=\frac{1}{6}$ hour or 10 minutes
14. With $\lambda=6$ customers/hour and $\mu=20$ customers/hour, we have $\rho=\lambda / \mu=6 / 20=0.3$.
(a) A customer has to wait when the system is busy. Thus, P (customer has to wait) $=\rho=0.3$.
(b) P (queue shall be formed) $=1-P(0$ or 1 customer in system $)$ Now, $P(0)=0.7$ and $P(1)=0.3(1-0.3)=0.21$. Thus, the required probability $=1-(0.70+0.21)=$ 0.09 .
(c) Expected waiting time in the queue, $W_{q}=\frac{\lambda}{\mu(\mu-\lambda)}$

$$
=\frac{6}{20(20-6)}=\frac{3}{140} \text { hour or } 1.29 \text { minutes }
$$

Let the new arrival rate to justify a new clerk be λ^{\prime}. Accordingly,
or $\quad 80\left(20-\lambda^{\prime}\right)=60 \lambda^{\prime}$
or $\quad 140 \lambda^{\prime}=1600$
$\therefore \quad \quad \lambda^{\prime}=1600 / 140=11.43$ customers/hour
Thus, a second clerk is justified when the arrival rate increases to at least 11.43 customers/hour.
15. Existing: $\lambda=25, \mu=30$

$$
W_{s}=\frac{1}{\mu-\lambda}=\frac{1}{30-25}=\frac{1}{5} \text { hour }
$$

Total cost per day $=100+\frac{1}{5} \times 25 \times 8 \times 120=$ Rs 4,900
Proposed: $\lambda=25, \mu=40$

$$
W_{s}=\frac{1}{40-25}=\frac{1}{15} \text { hour }
$$

Total cost per day $=100+100+\frac{1}{15} \times 25 \times 8 \times 120=$ Rs 1,800
16. To determine who of the two mechanics should be employed by the workshop, we calculate and compare total cost for each case as follows:
Total (daily) cost $=$ Mechanic's charges + Cost of motor downtime
Cost of motor downtime

$$
\begin{aligned}
& =\text { Expected downtime } \\
& \text { per motor }
\end{aligned} \times \quad \begin{aligned}
& \text { Average arrival } \\
& \text { rate per day }
\end{aligned} \times \quad \begin{aligned}
& \text { Cost of downtime } \\
& \text { per motor day }
\end{aligned}
$$

The calculations are done below:
Existing mechanic:
Arrival rate, $\quad \lambda=5$ motors/day
Service rate, $\quad \mu=6$ motors/day
Expected downtime per motor,
Cost of motor downtime

$$
\begin{aligned}
W_{s} & =\frac{1}{\mu-\lambda}=\frac{1}{6-5}=1 \text { day } \\
& =1 \times 5 \times 100=\text { Rs } 500 \\
& =\text { Rs } 100+\text { Rs } 500=\text { Rs } 600
\end{aligned}
$$

Proposed mechanic:
Arrival rate, $\quad \lambda=5$ motors/day
Service rate, $\quad \mu=8$ motors/day
Expected downtime per motor,

$$
W_{s}=\frac{1}{8-5}=1 / 3 \text { day }
$$

Cost of motor downtime

$$
\begin{aligned}
& =\frac{1}{3} \times 5 \times 100=\operatorname{Rs} 500 / 3=\operatorname{Rs} 167 \\
& =\operatorname{Rs} 200+\operatorname{Rs} 167=\operatorname{Rs} 367
\end{aligned}
$$

Total (daily) cost
Obviously, the qualified motor mechanic should be employed by the workshop.
17. Arrival rate, $\lambda=2$ customers/hour

Service rate, $\mu=3$ customers/hour (I)

$$
\mu=4 \text { customers/hour (II) }
$$

> I

II
$L_{q}=\frac{\rho^{2}}{1-\rho}$
$\frac{(2 / 3)^{2}}{1-2 / 3}=\frac{4}{3}$

$$
\frac{(1 / 2)^{2}}{1-1 / 2}=\frac{1}{2}
$$

$L_{s}=\frac{\rho}{1-\rho}$

$$
\frac{2 / 3}{1-2 / 3}=2
$$

$$
\frac{1 / 2}{1-1 / 2}=1
$$

$W_{q}=\frac{\rho}{\mu-\lambda}$
$\frac{2 / 3}{3-2}=\frac{2}{3}$ hour
$\frac{1 / 2}{4-2}=\frac{1}{4}$ hour
$W_{s}=\frac{1}{\mu-\lambda}$
$\frac{1}{3-2}=1$ hour
$\frac{1}{4-2}=\frac{1}{2}$ hour
$\mathrm{TC}(\mathrm{I})=14+\frac{2}{3} \times 2 \times 30=$ Rs $54 /$ hour
$\mathrm{TC}(\mathrm{II})=20+\frac{1}{4} \times 2 \times 30=$ Rs $35 /$ hour
18. Assuming that the conditions underlying the Poisson-exponential single server model are satisfied, the choice of mechanic can be done by comparing total cost for the two.

Total cost per day $=$ Repairman's charges + Cost of machine downtime
Cost of machine downtime $=W_{s} \times \lambda \times$ Cost per machine day

	Mechanic A	Mechanic B
Charges per day	Rs 140	Rs 250
Arrival rate, λ	2 machines/day	2 machines/day
Service rate, μ	3 machines/day	4 machines/day
$W_{s}=\frac{1}{\mu-\lambda}$	$\frac{1}{3-2}=1$ day	$\frac{1}{4-2}=\frac{1}{2}$ day

Total cost $(A)=$ Rs $140+1 \times 2 \times$ Rs $800=$ Rs 1,740 per day
Total cost $(B)=$ Rs $250+\frac{1}{2} \times 2 \times$ Rs $800=$ Rs 1,050 per day
Hence, mechanic B should be engaged.
19. Annual total cost for facility $=$

Annual capital recovery cost + Annual operating cost + Annual cost of lost equipment time
Annual capital recovery cost $=\frac{\text { Total cost of facility }}{\text { Life (in years) }}$
Annual cost of lost-equipment time
$=$ Expected annual lost time $($ weeks $) \times$ Cost of lost production time per week
Expected annual lost time $($ week $)=$ Expected downtime in the system $\left(W_{s}\right) \times$ Expected number of arrivals per annum
($\lambda \times$ No. of weeks)
Facility F_{1} :
(a) Annual capital recovery cost $=\frac{\text { Rs } 1,20,000}{5}=$ Rs 24,000
(b) Annual operating cost $=$ Rs 40,000
(c) (i) Expected time a down machine spends in the system,

$$
\begin{aligned}
W_{s} & =\frac{1}{\mu-\lambda} \\
& =\frac{1}{40-30}=\frac{1}{10} \text { week }
\end{aligned}
$$

(ii) Expected annual lost time $=\frac{1}{10} \times 30 \times 50=150$ weeks
(iii) Cost of lost production equipment time $=150 \times 6 \times 100$

$$
=\operatorname{Rs} 90,000
$$

\therefore Total cost $=$ Rs $24,000+$ Rs $40,000+$ Rs 90,000

$$
=\text { Rs } 1,54,000 \text { p.a. }
$$

Facility F_{2} :
(a) Annual capital recovery cost $=\frac{\operatorname{Rs} 2,00,000}{5}=\operatorname{Rs} 40,000$
(b) Annual operating cost $=$ Rs 50,000
(c) (i) Expected time a down machine spends in the system,

$$
\begin{aligned}
W_{s} & =\frac{1}{\mu-\lambda} \\
& =\frac{1}{80-30}=\frac{1}{50} \text { week }
\end{aligned}
$$

(ii) Expected annual lost time $=\frac{1}{50} \times 30 \times 50=30$ weeks
(iii) Cost of lost production equipment time $=30 \times 6 \times 100$

$$
=\operatorname{Rs} 18,000
$$

$$
\therefore \text { Total cost }=\text { Rs } 40,000+\text { Rs } 50,000+\text { Rs } 18,000
$$

$$
=\text { Rs } 1,08,000 \text { p.a. }
$$

Thus, facility F_{2} should be preferred to F_{1}.
20. Mechanic A

$$
\begin{aligned}
W_{s} & =\frac{1}{8-6}=\frac{1}{2} \text { hour } \\
T C & =20 \times 8+\frac{1}{2} \times 6 \times 8 \times 40 \\
& =160+960=\operatorname{Rs} 1,120 \text { per day }
\end{aligned}
$$

Mechanic B

$$
\begin{aligned}
W_{s} & =\frac{1}{12-6}=\frac{1}{6} \text { hour } \\
T C & =28 \times 8+\frac{1}{6} \times 6 \times 8 \times 40 \\
& =224+320=\operatorname{Rs} 544 \text { per day }
\end{aligned}
$$

21. (a) From the given information, $\lambda=1$ generator/year, $\mu=6$ generators per year, and $M=4$. The calculation of $P(0)=$ is given here:

i	$M!/(M-i)!$	$(\lambda / \mu)^{i}$	$\frac{M!}{(M-i)!}\left(\frac{\lambda}{\mu}\right)^{i}$
0	1	1	1
1	4	$1 / 6$	$2 / 3$
2	12	$1 / 36$	$1 / 3$
3	24	$1 / 216$	$1 / 9$
4	24	$1 / 1296$	$1 / 54$
	Total	$115 / 54$	

Now, $P(0)=(115 / 54)^{-1}=54 / 115=0.47$
(b) Calculation of different number of defectives is given below:

n	$\left(\frac{\lambda}{\mu}\right)^{n}\left[\frac{M!}{(M-i)!}\right] \times P(0)$	$=$	Probability (n)
1	$(2 / 3) \times(54 / 115)$	$=$	0.31
2	$(1 / 3) \times(54 / 115)$	$=$	0.16
3	$(1 / 9) \times(54 / 115)$	$=$	0.05
4	$(1 / 54) \times(54 / 115)$	$=$	0.01

(c) Average number of generators waiting repairs,

$$
\begin{aligned}
L_{q} & =M-\left(\frac{\lambda+\mu}{\lambda}\right)(1-P(0)) \\
& =4-\frac{1+6}{1}(1-0.47)=0.29
\end{aligned}
$$

(d) Average number of generators out of service,

$$
\begin{aligned}
L_{s} & =M-\frac{\mu}{\lambda}(1-P(0)) \\
& =4-\frac{6}{1}(1-0.47)=0.82
\end{aligned}
$$

(e) Average waiting time in the queue,

$$
\begin{aligned}
W_{q} & =\frac{1}{\mu}\left[\frac{M}{1-P(0)}+\frac{\lambda+\mu}{\lambda}\right] \\
& =\frac{1}{6}\left[\frac{4}{1-0.47}+\frac{1+6}{1}\right] \\
& =0.091 \text { year or } 1.09 \text { months }
\end{aligned}
$$

(f) Average downtime of a generator,

$$
\begin{aligned}
W_{s} & =W_{q}+\frac{1}{\mu} \\
& =0.091+\frac{1}{6} \\
& =0.258 \text { year or } 3.09 \text { months }
\end{aligned}
$$

22. Here $\lambda=1 / 4$ machines/hour, $\mu=4 / 3$ machines/hour and $M=6$.
(a) Calculation of $P(0)$ follows:

i	$M!/(M-i)!$	$\frac{M!}{(M-i)!}\left(\frac{\lambda}{\mu}\right)^{i}$	n	$P(n)=\frac{M!}{(M-i)!}\left(\frac{\lambda}{\mu}\right)^{n} P(0)$
0	1	1.0000	0	0.217
1	6	1.1250	1	0.244
2	30	1.0547	2	0.229
3	120	0.7910	3	0.171
4	360	0.4449	4	0.096
5	720	0.1669	5	0.036
6	720	0.0313	6	0.007
	4.6138	1.000		

$\therefore \quad P(0)=\operatorname{Rec} 4.6138=0.2167$
(b) $W_{q}=\frac{1}{\mu}\left[\frac{M}{1-P(0)}+\frac{\lambda+\mu}{\lambda}\right]=\frac{1}{4 / 3}\left[\frac{6}{1-0.2167}+\frac{1 / 4+4 / 3}{1 / 4}\right]$
$=10.50$ hours.
(c) $L_{s}=M-\frac{\mu}{\lambda}(1-P(0))=6-\frac{4}{3} \times \frac{4}{1}(1-0.2167)$

$$
=1.822 \text { machines }
$$

(d) $L_{q}=M-\left(\frac{\lambda+\mu}{\lambda}\right)(1-P(0))=6-\left(\frac{1 / 4+4 / 3}{1 / 4}\right)(1-0.2167)$

$$
=1.039 \text { machines }
$$

23. Here $K=2, \lambda=15$ customers/hour and $\mu=12$ customers/hour. Accordingly, $\rho=15 / 2 \times 12=0.625$. Now,

$$
\begin{aligned}
P(0) & =\left[\sum_{i=0}^{K-1} \frac{(\lambda / \mu)^{i}}{i!}+\frac{(\lambda / \mu)^{K}}{K!(1-\rho)}\right]^{-1} \\
& =\left[\sum_{i=0}^{1} \frac{(15 / 12)^{i}}{i!}+\frac{(15 / 12)^{2}}{2!(1-0.625)}\right]^{-1} \\
& =0.2308
\end{aligned}
$$

(i) A customer has to wait if there are two or more customers in the system. Also, P (a customer has to wait)

$$
\begin{aligned}
& \text { We have, } \quad \begin{aligned}
&=1-P(0 \text { or } 1 \text { customer in system }) \\
& P(0) \\
&=0.2308 . \text { Now } \\
& \therefore(n)=\frac{(\lambda / \mu)^{n}}{n!} \times P(0) \quad \text { where } n \leq K \\
& \therefore \quad P(1)=\frac{(15 / 12)^{1}}{1!} \times 0.2308 \\
&=0.2885
\end{aligned} \quad
\end{aligned}
$$

Thus, P (a customer has to wait)

$$
\begin{aligned}
& =1-(0.2308+0.2885) \\
& =0.4807
\end{aligned}
$$

(ii) Waiting time in queue,

$$
\begin{aligned}
W_{q} & =\frac{(\lambda / \mu)^{K} \rho}{\lambda(1-\rho)^{2} K!} \times P(0) \\
& =\frac{(15 / 12)^{2} \times 0.625}{15(1-0.625)^{2} \times 2!} \times 0.2308 \\
& =0.05342 \text { hour or } 3.21 \text { minutes }
\end{aligned}
$$

24. (a) Here $K=5, \lambda=40$ customers/hour and $\mu=10$ customers/hour. Accordingly,

$$
\begin{aligned}
\rho & =\frac{\lambda}{K \mu} \\
& =\frac{40}{5 \times 10}=0.80
\end{aligned}
$$

This is the traffic intensity.
(b) Probability that none of the doctors is busy is given by $P(0)$. From Table 10.1 , for $K=5$ and $\rho=$ 0.80 , we find $P(0)=0.0130$.
(c) Probability of 3 patients in the hospital,

$$
\begin{aligned}
P(3) & =P(0) \frac{(\lambda / \mu)^{n}}{n!} \quad \text { for } n \leq K \\
& =0.0130 \frac{(40 / 10)^{3}}{3!} \\
& =0.1386
\end{aligned}
$$

(d) Expected length of queue,

$$
\begin{aligned}
L_{q} & =\frac{(\lambda / \mu)^{K} \rho}{K!(1-\rho)^{2}} \times P(0) \\
& =\frac{(40 / 10)^{5} \times 0.80}{5!(1-0.80)^{2}} \times 0.0130 \\
& =2.219
\end{aligned}
$$

(e) $L_{s}=L_{q}+\frac{\lambda}{\mu}$

$$
\begin{aligned}
& =2.219+\frac{40}{10} \\
& =6.219
\end{aligned}
$$

(f) Probability that there are eight patients in the hospital,

$$
\begin{aligned}
P(8) & =\frac{(40 / 10)^{8}}{5!5^{8-5}} \times 0.0130 \\
& =0.0567
\end{aligned}
$$

Here note that

$$
P(n)=\frac{(\lambda / \mu)^{n}}{K!K^{n-K}} \times P(0) \quad \text { when } n>K
$$

(g) $W_{q}=\frac{L_{q}}{\lambda}$

$$
\begin{aligned}
& =\frac{2.219}{40} \\
& =0.0555 \text { hour or } 3.33 \text { minutes }
\end{aligned}
$$

(h) $W_{s}=W_{q}+\frac{1}{\mu}$

$$
\begin{aligned}
& =0.0555+\frac{1}{10} \\
& =0.1555 \text { hour or } 9.33 \text { minutes }
\end{aligned}
$$

25. For each tool crib, $\lambda=18$ workmen/hour and $\mu=24$ workmen/hour.

Thus,

$$
W_{q}=\frac{\lambda}{\mu(\mu-\lambda)}=\frac{18}{24(24-18)}=\frac{1}{8} \text { hour or } 7.5 \text { minutes }
$$

When tool cribs are combined into one,

$$
\lambda=36 \text { workmen/hour and } \mu=48 \text { workmen/hour. }
$$

$$
W_{q}=\frac{36}{48(48-36)}=\frac{1}{16} \text { hour or } 3.75 \text { minutes }
$$

Evidently, waiting time in queue will reduce to one-half of its present value.
(Note: It is assumed that service rate would double upon combining the tool cribs into one.)
26. (a) For each typist, $\lambda=3$ letters/hour and $\mu=4$ letters/hour.

$$
\text { Thus, } \quad \begin{aligned}
W_{q} & =\frac{\lambda}{\mu(\mu-\lambda)} \\
& =\frac{3}{4(4-3)}=\frac{3}{4} \text { hour or } 45 \text { minutes }
\end{aligned}
$$

(b) When typists are 'pooled', we have
$K=2, \lambda=6$ letters/hour and $\mu=4$ letters/hour. Thus, $\rho=6 / 2 \times 4=0.75$. For $K=2$ and $\rho=0.75$, we can estimate $P(0)$ from Table 10.1 as equal to $(0.1494+0.1364) / 2=0.1429$. Now, we have

$$
\begin{aligned}
W_{q} & =\frac{(\lambda / \mu)^{K} \rho}{K!(1-\rho)^{2} \lambda} \times P(0) \\
& =\frac{(6 / 4)^{2} \times 0.75}{2!(1-0.75)^{2} \times 6} \times 0.1429 \\
& =0.3215 \text { hour or } 19.29 \text { minutes }
\end{aligned}
$$

27. With $K=3, \lambda=2$ customers/hour, $\mu=1.5$ customers/hour, $\rho=\lambda / \mu K=2 /(1.5 \times 3)=0.44$. From Table 10.1, $P(0)$ for $K=3$ and $\rho=0.44$, equals 0.2580 .
(a) Expected time an adjuster would spend with his claimants in a 50 -hour week $=50 \times 0.44=22$ hours
(b) Expected time a claimant spends in the office,

$$
\begin{aligned}
W_{s} & =\frac{\mu(\lambda / \mu)^{K}}{(K-1)!(K \mu-\lambda)^{2}} \times P(0)+\frac{1}{\mu} \\
& =\frac{1.5(2 / 1.5)^{3}}{2!(3 \times 1.5-2)^{2}} \times 0.2580+\frac{1}{1.5} \\
& =0.0734+0.6667=0.74 \text { hour or } 44.4 \text { minutes }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Alternately, } \begin{aligned}
L_{q} & =\frac{(\lambda / \mu)^{K}(\lambda / K \mu)}{K!\left(1-\frac{\lambda}{K \mu}\right)^{2}} \times P(0) \\
& =\frac{(2 / 1.5)^{3}(2 / 3 \times 1.5)}{3!\left(1-\frac{2}{3 \times 1.5}\right)^{2}} \times 0.2580 \\
& =0.14677 \\
\therefore \quad W_{q} & =L_{q} / \lambda=0.14677 / 2=0.0734 \text { hour } \\
\therefore \quad W_{s} & =W_{q}+\frac{1}{\mu}=0.0734+0.6667=0.74 \text { hour }
\end{aligned}
\end{aligned}
$$

28. Here $\lambda=10$ customers/hour, $\mu=6$ customers/hour, and $K=3$. Thus, $\rho=10 / 3 \times 6=0.5556$.

With these parameters,

$$
P(0)=0.17266, P(1)=0.28777 \text { and } P(2)=0.23981
$$

(a) $L_{s}=L_{q}+\frac{\lambda}{\mu}=0.37470+10 / 6=2.04137$

Since

$$
\begin{aligned}
L_{q} & =\frac{(\lambda / \mu)^{K} \rho}{K!(1-\rho)^{2}} \times P(0)=\frac{(10 / 6)^{3} \times 0.5556}{3!(1-0.5556)^{2}} \times 0.17266 \\
& =0.37470
\end{aligned}
$$

(b) $W_{s}=W_{q}+\frac{1}{\mu}=0.03747+\frac{1}{6}=0.20414$ hour
(c) $W_{q}=L_{q} / \lambda=0.37470 / 10=0.03747$ hour
(d) Expected number of barbers idle $=3 \times P(0)+2 \times P(1)+1 \times P(2)$

$$
=3 \times 0.17266+2 \times 0.28777+0.23981=1.333
$$

29. At present we have,

$$
\begin{array}{lrl}
\text { Counter } 1 & & \begin{array}{l}
\text { Counter } 2 \\
\lambda
\end{array}=10 \text { customers/hour } \\
\mu & =15 \text { customers/hour } & \lambda=12 \text { customers/hour } \\
W_{q} & =\frac{\lambda}{\mu(\mu-\lambda)} & \\
& =\frac{15}{15(15-10)} & \\
& =\frac{2}{q}=\frac{12}{15(15-12)} \\
& =\frac{4}{15} \text { hour or } 8 \text { minutemers/hour }
\end{array}
$$

When both counters can be given same service:
Here $K=2, \lambda=10+12=22$ customers/hour and $\mu=15$ customers/hour. Thus, $\rho=22 /(2 \times 15)=0.73$. Now,

$$
W_{q}=\frac{(\lambda / \mu)^{K} \rho}{\lambda(1-\rho)^{2} K!} \times P(0)
$$

From Table 10.1, for $K=2$ and $\rho=0.73$, the value of $P(0)$ can be interpolated as $(0.1628+0.1494) / 2=$ 0.1561 . Accordingly,

$$
\begin{aligned}
W_{q} & =\frac{(22 / 15)^{2} \times 0.73}{22(1-0.73)^{2} \times 2!} \times 0.1561 \\
& =0.0764 \text { hour or } 4.6 \text { minutes }
\end{aligned}
$$

30. (a) For $K=2$
$\lambda=7$ customers/minute
$\mu=4$ customers/minute

$$
\rho=\frac{7}{2 \times 4}=0.88
$$

For $K=3$
$\lambda=7$ customers/minute
$\mu=4$ customers/minute
$\rho=\frac{7}{3 \times 4}=0.58$
Using Table 10.1,

$$
\begin{array}{rlrl}
P(0) & =0.0638 & P(0) & =0.1576 \\
L_{q} & =\frac{7(7 / 4)^{2}(7 / 8)}{2!\left(1-\frac{7}{8}\right)^{2}} \times 0.0638 & L_{q} & =\frac{(7 / 4)^{3}(7 / 12)}{3!\left(1-\frac{7}{!2}\right)^{2}} \\
& =5.47 & & =0.47 \\
L_{s} & =L_{q}+\frac{\lambda}{\mu} & L_{s} & =L_{q}+\frac{\lambda}{\mu} \\
& =5.47+\frac{7}{4} & & =0.47+\frac{7}{4} \\
& =7.22 & & =2.22 \\
W_{q} & =L_{q} / \lambda & W_{q} & =0.47 / 7 \\
& =5.47 / 7 & & =0.07 \text { minute } \\
& =0.78 \text { minute } & & \\
W_{s} & =W_{q}+\frac{1}{\mu} & & W_{s}
\end{array}
$$

(b) Total cost of providing lanes $=$ Cost of ill-will + Cost of lane operation

Cost of ill-will $=$ Expected number of arrivals per minute \times Waiting time in system \times Rate per minute
For two lanes:
Cost of ill-will $=4 \times 1.03 \times 10=41.2$ paise
Cost of lane operation $=2 \times \frac{265}{60}=8.83$ paise
\therefore Total cost (per minute) $=41.2+8.83$

$$
=50 \text { paise approx. }
$$

For three lanes:
Cost of ill-will $=4 \times 0.32 \times 10=12.8$ paise
Cost of lane operation $=3 \times \frac{265}{60}=13.25$ paise
\therefore Total cost (per minute) $=12.8+13.25$

$$
=26 \text { paise approx. }
$$

Conclusion: Provide three lanes.
31. At present
$\lambda=10$ customers/hour, $\mu=8$ customers/hour and $K=2$.
With these inputs, we have

$$
L_{s}=2.05128, L_{q}=0.80128, W_{s}=0.20513 \text { and } W_{q}=0.08013
$$

Total cost of lost time per hour

$$
=\text { No. of arrivals } / \text { hour } \times W_{s} \times \text { Cost per hour }
$$

$$
=10 \times 0.20513 \times 20=\operatorname{Rs} 41.03
$$

Proposed structure
For each crib,

$$
\lambda=5 \text { customers/hour, } \mu=8 \text { customers/hour }
$$

With these inputs, we have

$$
L_{s}=1.66667, L_{q}=1.04167, W_{s}=0.33333 \text { and } W_{q}=0.20833
$$

Total cost per hour

$$
\begin{aligned}
& =\text { Cost of lost time }+ \text { Inventory cost }- \text { Cost saving due to less walking time } \\
& =5 \times 2 \times 0.33333 \times 20+2-5 \times 2 \times 0.1 \times 20=\text { Rs } 48.67
\end{aligned}
$$

Conclusion: It is not advisable to have separate cribs.
32. With $K=4, \lambda=20$ customers/hour, and $\mu=10$ customers/hour, we have

$$
\rho=\frac{\lambda}{K \mu}=\frac{20}{4 \times 10}=0.5
$$

(a) From Table 10.1, we get $P(0)=0.1304$ for $K=4$, and $\rho=0.50$. Other probabilities are given here:

No. of customers, n	$\frac{(\lambda / \mu)^{n}}{n!}$ or $\frac{(\lambda / \mu)^{n}}{K!K^{n-K}}$	$P(0)$	Probability $P(n)$
1	2	0.1304	0.2608
2	2	0.1304	0.2608
3	$4 / 3$	0.1304	0.1739
4	$2 / 3$	0.1304	0.0869
5	$1 / 3$	0.1304	0.0435

(b) and (c)

$$
\begin{aligned}
L_{q} & =\frac{(\lambda / \mu)^{K} \rho}{K!(1-\rho)^{2}} \times P(0) \\
& =\frac{(20 / 10)^{4}(0.50)}{4!(1-0.5)^{2}} \times 0.1304 \\
& =0.1739 \text { customer } \\
L_{s} & =L_{q}+\frac{\lambda}{\mu} \\
& =0.1739+20 / 10 \\
& =2.1739 \text { customers }
\end{aligned}
$$

(d) Average number of customers being served $=K \rho$
(e) and (f) Average waiting time in queue, $W_{q}=L_{q} / \lambda$

$$
\begin{aligned}
& =\frac{0.1739}{20} \times 60 \\
& =0.52 \text { minute }
\end{aligned}
$$

Average waiting time in the system,

$$
\begin{aligned}
W_{s} & =W_{q}+\frac{1}{\mu} \\
& =0.52+\frac{1}{10} \times 60 \\
& =6.52 \text { minutes }
\end{aligned}
$$

33. (a) Here $\lambda=0.5$ customer/minute, $\mu=4$ customers/minute, and $\rho=0.5 / 4=0.125$.
(i) Overall system utilisation, $\rho=0.125$ or 12.5%
(ii) $L_{s}=\frac{\rho}{1-\rho}=\frac{0.125}{1-0.125}=0.1429$
(iii) $L_{q}=\frac{\rho^{2}}{1-\rho}=\frac{0.125^{2}}{1-0.125}=0.0179$
(iv) $W_{s}=\frac{1}{\mu-\lambda}=\frac{1}{4-0.5}=0.2857$ minute
(v) $W_{q}=\frac{\rho}{\mu-\lambda}=\frac{0.125}{4.05}=0.0357$ minute
(vi) $P(0)=1-\rho=0.875$
(vii) $P($ a customer has to wait $)=P($ busy $)=0.125$
(b)

$$
\text { Parameter } \quad \text { Server works }
$$

Two servers
twice as fast

(i)	ρ	0.0625	0.0625
(ii)	L_{s}	0.0667	0.1255
(iii)	L_{q}	0.0042	0.0005
(iv)	W_{s}	0.1333 mts	0.2510 mts
(v)	W_{q}	0.0083 mts	0.0010 mts
(vi)	$P(0)$	0.9375	0.8824
(vii)	P (customer to wait)	0.0625	0.0074
		(This is $1-P(0))$	(This is $1-P(0$ or 1$)$)

It is evident that with one server working twice as fast, customers spend less time in the system on the average but have to wait for longer time to get service and also have higher probability for having to wait for service.
34. With $\lambda=60$ customers/hour, $\mu=40$ customers/hour, $K=2$, we have $\rho=60 /(40 \times 2)=0.75$.
(a) Probability that both clerks are idle,

$$
\begin{aligned}
P(0) & =\left[\sum_{i=0}^{K-1} \frac{(\lambda / \mu)^{i}}{i!}+\frac{(\lambda / \mu)^{K}}{K!(1-\rho)}\right]^{-1} \\
& =\left[\sum_{i=0}^{2-1} \frac{(60 / 40)^{i}}{i!}+\frac{(60 / 40)^{2}}{2!(1-0.75)}\right]^{-1}=0.1429
\end{aligned}
$$

(b) $P(n)=\frac{(\lambda / \mu)^{n}}{n!} \times P(0)$
when $n \leq K$
$P(1)=\frac{(60 / 40)^{1}}{1!} \times 0.1429=0.2143$
(c) $P(n)=\frac{(\lambda / \mu)^{n}}{K!K^{n-K}} \times P(0) \quad$ when $n>K$

$$
P(5)=\frac{(60 / 40)^{5}}{2!2^{5-2}} \times 0.1429=0.0678
$$

(d) $L_{q}=\frac{(\lambda / \mu)^{K} \rho}{K!(1-\rho)^{2}} \times P(0)=\frac{(60 / 40)^{2} \times 0.75}{2!(1-0.75)^{2}} \times 0.1429=1.9286$
(e) $L_{s}=L_{q}+\frac{\lambda}{\mu}=1.9286+\frac{60}{40}=3.4286$
(f) $W_{q}=L_{q} / \lambda=1.9286 / 60$ hour or 1.9286 minutes
(g) $W_{s}=W_{q}+\frac{1}{\mu}=\frac{1.9286}{60}+\frac{1}{40}=0.0571$ hour or 3.4286 minutes.
35. For a single channel:

We have,

$$
W_{s}=\frac{1}{\mu-\lambda}
$$

With $\mu=30$ customers/hour and $\lambda=24$ customers/hour, we have

$$
\begin{aligned}
W_{s} & =\frac{1}{30-24} \\
& =\frac{1}{6} \text { hour or } 10 \text { minutes }
\end{aligned}
$$

For 3 channels:
Here $K=3, \mu=10$ customers/hour, and $\lambda=24$ customer/hour.
From Table 10.1, for $K=3$ and $\rho=0.8$ (where $\rho=24 / 3 \times 10$), we get $P(0)=0.0562$.
Now,

$$
\begin{aligned}
W_{s} & =\frac{(\lambda / \mu)^{K} \rho}{K!(1-\rho)^{2} \lambda} \times P(0)+\frac{1}{\mu} \\
& =\frac{(24 / 10)^{3} \times 0.8}{3!(1-0.8)^{2} \times 24} \times 0.0562+\frac{1}{10} \\
& =0.1079+0.1 \\
& =0.2079 \text { hour or } 12.5 \text { minutes approx. }
\end{aligned}
$$

Conclusion: Single channel is better.
36. Given $\lambda=2$ customers/hour, $\mu=2.5$ customers/hour, cost of providing service $=$ Rs $4 /$ server/hour, and idle-time cost $=$ Rs 100 per hour. We have,
Total cost per hour
$=$ Cost of providing service per hour + Idle-time cost per hour
Cost of providing service per hour
$=$ No. of servers \times Cost of each server
Idle-time cost per hour
$=$ Expected number of customers in system, $L_{s} \times$ Cost per unit per hour
For single server:

$$
\begin{aligned}
L_{s} & =\frac{\lambda}{\mu-\lambda} \\
& =\frac{2}{2.5-2} \\
& =4 \text { customers }
\end{aligned}
$$

Cost of providing service

$$
=1 \times 4=\operatorname{Rs} 4
$$

Idle-time cost per hour

$$
=4 \times 100=\operatorname{Rs} 400
$$

\therefore Total cost $=$ Rs $4+$ Rs 400

$$
=\text { Rs } 404 \text { per hour }
$$

For two servers:
With $K=2, \lambda=2$ customers/hour, $\mu=2.5$ customers/hour, $\rho=\lambda / K \mu$

$$
=2 / 2 \times 2.5)=0.4
$$

From Table 10.1, for $K=2$ and $\rho=0.4$, we have $P(0)=0.4286$.
Now,

$$
\begin{aligned}
L_{s} & =L_{q}+\frac{\lambda}{\mu} \\
& =\frac{(2 / 2.5)^{2} \times 0.4}{2!(1-0.4)^{2}} \times 0.4286+0.8 \\
& =0.9524 \text { customer }
\end{aligned}
$$

Total cost per hour

$$
\begin{aligned}
& =2 \times 4+0.9524 \times 100 \\
& =\text { Rs } 103.24 \text { per hour }
\end{aligned}
$$

For three servers:
With $K=3, \rho=2 / 3 \times 2.5=0.27$. From Table 10.1 , for $K=3$ and $\rho=0.27, P(0)$, by interpolation, is $(0.4564+0.4292) / 2=0.4428$.

Now,

$$
\begin{aligned}
L_{s} & =\frac{(2 / 2.5)^{3} \times 0.27}{3!(1-0.27)^{2}} \times 0.4428+0.8 \\
& =0.81914 \text { customer }
\end{aligned}
$$

Total cost per hour

$$
\begin{aligned}
& =3 \times 4+0.81914 \times 100 \\
& =\text { Rs } 93.91 \text { per hour }
\end{aligned}
$$

For four servers:
With $K=4, \rho=2 / 4 \times 2.5=0.2$. We have, $\rho=0.4491$ (Table 10.1).
Accordingly,

$$
\begin{aligned}
L_{s} & =\frac{(2 / 2.5)^{4} \times 0.2}{4!(1-0.2)^{2}} \times 0.4491+0.8 \\
& =0.8024 \text { customer }
\end{aligned}
$$

Total cost per hour

$$
=4 \times 4+0.8024 \times 100
$$

$$
=\text { Rs } 96.24 \text { per hour }
$$

Since the total cost has started rising, we do not consider the cases of greater number of servers. From the above calculations, it is evident that the number of servers to provide for minimum cost is three.

CHAPTER 11

1.

Determination of Optimal Replacement Interval

Year t	Maintenance Cost $M C$	Cumulative $M C$	Resale Value S	$C-S$	Total Cost	Average Cost
1	2,000	2,000	4,000	3,000	5,000	$5,000,00$
2	2,100	4,100	3,000	4,000	8,100	$4,050.00$
3	2,300	6,400	2,200	4,800	11,200	$3,733.33$
4	2,600	9,000	1,600	5,400	14,400	$3,600.00$
5	3,000	12,000	1,400	5,600	17,600	$\mathbf{3 , 5 2 0 . 0 0}$
6	3,500	15,500	700	6,300	21,800	$3,633.00$
7	4,100	19,600	700	6,300	25,900	$3,700.00$
8	4,600	24,200	700	6,300	30,500	$3,812.50$

Since the average cost is least, equal to Rs 3,520 , corresponding to $t=5$, replacement should be done every five years.
2. From the calculations given in table, it is found that the average cost is the minimum corresponding to year 6 . Accordingly, the equipment should be replaced every six years.

Determination of Optimal Replacement Interval

Year	Running Cost (R)	Resale Value (S)	Cumulative, R	$C-S$	Total Cost	Average Cost
1	600	3,500	600	1,700	2,300	$2,300.00$
2	850	2,700	1,450	2,500	3,950	$1,975.00$
3	1,000	1,800	2,450	3,400	5,850	$1,950.00$
4	1,250	1,000	3,700	4,200	7,900	$1,975.00$
5	1,400	600	425	6,100	4,350	1,875
7	2,000		4,775	11,175	$\mathbf{1 , 8 6 2}$	13,350

3. Based on the given data, calculations are shown in table to determine the age at which replacement of the machine be done. The minimum average cost corresponds to year 4. The optimal age of replacement of the machine in question is, therefore, four years.

Determination of Optimal Replacement Interval

Year	Operating Cost, OC	Resale Value (S)	Cumulative OC	$C-S$	Total Cost	Average Cost
1	1,000	4,000	1,000	4,000	5,000	$5,000.00$
2	1,500	3,500	2,500	4,500	7,000	$3,500.00$
3	2,000	3,000	4,500	5,000	9,500	$3,166.67$
4	2,500	2,500	7,000	5,500	12,500	$\mathbf{3 , 1 2 5 . 0 0}$
5	3,000	2,000	10,000	6,000	16,000	$3,200.00$
6	3,500	1,500	13,500	6,500	20,000	$3,333.33$
7	4,000	1,000	17,500	7,000	24,500	$3,500.00$

4.

Year	Maintenance Cost	Cumulative Maintenance Cost	Cost-Salvage Value	Total Cost	Average Cost
1	200	200	12,000	12,200	12,200
2	500	700	12,000	12,700	6,350
3	800	1,500	12,000	13,500	4,500
4	1,200	2,700	12,000	14,700	3,675
5	1,800	4,500	12,000	16,500	3,300
6	2,500	7,000	12,000	19,000	$3,167^{*}$
7	3,200	10,200	12,000	22,200	3,171
8	4,000	14,200	12,000	26,200	3,275

Optimal Replacement interval : 6 years
5.

Determination of Optimal Replacement Period

Year	Maintenance Cost	Cumulative Maintenance Cost	Cost-Salvage Value	Total Cost	Average Cost
1	100	100	6,000	6,100	$6,100.00$
2	250	350	6,000	6,350	$3,175.00$
3	400	750	6,000	6,750	$2,250.00$
4	600	1,350	6,000	7,350	$1,837.50$
5	900	2,250	6,000	8,250	$1,650.00$
6	1,250	3,500	6,000	9,500	$\mathbf{1 , 5 8 3 . 3 3}$
7	1,800	5,300	6,000	11,300	$1,614.29$
8	2,500	7,800	6,000	13,800	$1,725.00$

The average cost of using this machine is lowest in the sixth year. Accordingly, the machine should be replaced at the end of the sixth year.
6. Using the given expressions, the maintenance costs and resale values are as shown in the second and the third columns respectively of the table. From the calculations given in the table, the optimal replacement period is seen to be one year since the average cost is steadily rising.

Determination of Optimal Replacement Interval

Year	Maintenance Cost, $M C$	Resale Value (S)	Cumulative $M C$	$C-S$	Total Cost	Average Cost
1	310	3,500	310	500	810	$\mathbf{8 1 0 . 0 0}$
2	440	3,000	750	1,000	1,750	875.00
3	590	2,500	1,340	1,500	2,840	946.67
4	760	2,000	2,100	2,000	4,100	$1,025.00$
5	950	1,500	3,050	2,500	5,550	$1,110.00$
6	1,160	1,000	4,210	3,000	7,210	$1,201.67$
7	1,390	500	5,600	3,500	9,100	$1,300.00$

7. The calculation of total cost and average cost to determine optimal policy for replacement of the truck is given in table. The cost and resale values are given in thousands of rupees. The minimum average cost is Rs $1,06,000$ each for five and six years. Thus, the truck may be replaced either at the end of five or six years.

Determination of Optimal Replacement Interval

Year	Maintenance Cost, MC	Resale Value (S)	Cumulative MC	$C-S$	Total Cost	Average Cost
1	36	200	36	100	136	136.00
2	48	150	84	150	234	117.00
3	60	100	144	200	344	114.67
4	72	80	216	220	436	109.00
5	84	70	300	230	530	106.00
6	96	60	396	240	636	106.00
7	108	50	504	250	754	107.71
8	120	40	624	260	884	110.50

8. Type A truck: For type A truck, calculations are given in the table.

Determination of Optimal Replacement Interval

Year	Maintenance Cost, $M C$	Cumulative $M C$	Cost of Truck	Total Cost	Average Cost
1	200	200	9,000	9,200	9,200
2	2,200	2,400	9,000	11,400	5,700
3	4,200	6,600	9,000	15,600	$\mathbf{5 , 2 0 0}$
4	6,200	12,800	9,000	21,800	5,450
5	8,200	21,000	9,000	30,000	6,000
6	10,200	31,200	9,000	40,200	6,700

Optimal replacement interval: 3 years. Average cost $=$ Rs 5,200.
Type B truck: For type B truck, similar calculations are given in table. For this, optimal interval for replacement $=5$ years, and the average cost $=$ Rs 4,000 .

Determination of Optimal Interval

Year	Maintenance Cost, $M C$	Cumulative $M C$	$C-S$	Total Cost	Average Cost
1	400	400	10,000	10,400	$10,400.00$
2	1,200	1,600	10,000	11,600	$5,800.00$
3	2,000	3,600	10,000	13,600	$4,533.33$
4	2,800	6,400	10,000	16,400	$4,100.00$
5	3,600	10,000	10,000	20,000	$4,000.00$
6	4,400	14,400	10,000	24,400	$4,066.67$
7	5,200	19,600	10,000	29,600	$4,228.57$
8	6,000	25,600	10,000	35,600	$4,450.00$

The type A truck should be replaced by type B truck because B 's average cost (minimum) is lower that the average cost (minimum) of type A. Yearly cost of running and maintaining type A, which is one-year old is:

$$
\begin{array}{lll}
\text { Second year } & \text { Rs } 2,200+0=\text { Rs } 2,200 \\
\text { Third year } & : & \text { Rs } 4,200+0=\text { Rs } 4,200
\end{array}
$$

Since the cost of running type A truck for another year is less than the average cost for type B (= Rs 4,000), it should be used for another year and then replaced.
9. (i)

Determination of Optimal Replacement Period

Years	Maint. Cost	Resale Price	Cum. Maint Cost	Dep.	Total Cost	Average Cost
1	2,600	7,000	2,600	5,000	7,600	7,600
2	3,000	4,500	5,600	7,500	13,100	6,550
3	3,400	3,250	9,000	9,750	5,917	
4	4,000	2,600	2,400	13,000	9,600	5,750
5	4,700	2,400	23,300	9,600	22,400	5,600
6	5,600	2,400	29,900	9,600	32,900	$5,460 *$
7	6,600				59,500	5,643

From the average cost column, it is evident that the optimal replacement interval is 5 years.
(ii) Since the minimum average cost of machine N is lower than that of machine, it is advisable to replace.

To determine the time of replacement,
Cost of running and maintaining M in 3 rd year $=3,400+1,250$

$$
=4,650
$$

in 4 th year $=4,000+650$

$$
=4,650
$$

$$
\text { in } 5 \text { th year }=4,700+200
$$

$$
=4,900
$$

The machine M should be used for further 2 years and then be replaced.
10. Here average cost for each type of machine has to be calculated. Given below are (a) maintenance cost totals, (b) depreciation totals, (c) total cost and (d) average costs.

	Maintenance cost totals Year of sale				
	1	2	3	4	5
	192	436	744	1,128	1,624
		244	552	936	1,432
$\bigcirc 2$			308	692	1,188
ฮี				384	880
>4					496

Depreciation totals				
1	2	3	4	5
640	1,120	1,560	1,920	2,200
	840	1,280	1,640	1,920
		720	1,080	1,360
3			600	880
4				480

	Total costs					
	1	2	3	4	5	
0	8	1,556	2,304	3,048	3,824	
1		1,084	1,832	2,576	3,352	
2			1,028	1,772	2,548	
3				984	1,760	
4					976	

	Average costs				
	1	2	3	4	5
0	832	778	768	762	765
1		1,084	916	859	838
2			1,028	886	849
3				984	880
4					976

From the average cost values, it is clear that the optimal policy is to buy a machine now and replace after four years. The cost involved with the policy is Rs 762 per year, which is the least.
11.

Determination of Optimal Replacement Interval

Year t	Cost C_{t}	Salvage Value, S_{t}	Operating Cost, O_{t}	$C_{t}-S_{t}$	Cum. O_{t}	Total Cost	Average Cost
1	200	100	60	100	60	160	160.0
2	210	50	80	160	140	300	150.0
3	220	30	100	190	240	430	$\mathbf{1 4 3 . 3}$
4	240	20	120	220	360	580	145.0
5	260	15	150	245	510	755	151.0
6	290	10	180	280	690	970	161.7
7	320	0	230	320	920	1,240	177.1

Since the average cost is the minimum for $t=3$, replace the machine every three years.
12. Small trucks:

The relevant data for each small truck are given in table. Also, cost calculations are given in this table. It is evident that optimal time to replace these trucks is five years.

Determination of Optimal Replacement Interval

Year	Running Cost, $R C$	Cumulative $R C$	Resale Value, S	$C-S$	Total Cost	Average Cost
1	10,000	10,000	30,000	30,000	40,000	$40,000.00$
2	12,000	22,000	15,000	45,000	67,000	$33,500.00$
3	14,000	36,000	7,500	52,500	88,500	$29,500.00$
4	18,000	54,000	3,750	56,250	$1,10,250$	$27,562.50$
5	23,000	77,000	2,000	58,000	$1,35,000$	$\mathbf{2 7 , 0 0 0 . 0 0}$
6	28,000	$1,05,000$	2,000	58,000	$1,63,000$	$27,166.67$
7	34,000	$1,39,000$	2,000	58,000	$1,97,000$	$28,142.86$
8	40,000	$1,79,000$	2,000	58,000	$2,37,000$	$29,625.00$

Large trucks:
From the data available about the large trucks, we first calculate the minimum average cost to determine the optimal replacement of such a truck as well as its substitutability in place of the old one. The calculations are given in the following table.

Determination of Optimal Replacement Interval

Year	Running Cost, $R C$	Cumulative $R C$	Resale Value S	$C-S$	Total Cost	Average Cost
1	12,000	12,000	40,000	40,000	52,000	$52,000.00$
2	15,000	27,000	20,000	60,000	87,000	$43,500.00$
3	18,000	45,000	10,000	70,000	$1,15,000$	$38,333.33$
4	24,000	69,000	5,000	75,000	$1,44,000$	$36,000.00$
5	31,000	$1,00,000$	3,000	77,000	$1,77,000$	$\mathbf{3 5 , 4 0 0 . 0 0}$
6	40,000	$1,40,000$	3,000	77,000	$2,17,000$	$36,166.67$
7	50,000	$1,90,000$	3,000	77,000	$2,67,000$	$38,142.86$
8	60,000	$2,50,000$	3,000	77,000	$3,27,000$	$40,875.00$

Now, since two new trucks are equivalent to three old trucks, (Min) average cost of three old trucks $=3 \times$ $27,000=$ Rs $81,000(\mathrm{Min})$ average cost of two new trucks $=2 \times 35,400=$ Rs 70,800 .

Clearly, then the old trucks be replaced by new ones. On the timing of replacement, we proceed to compare the costs as follows:
As long as the cost of running old fleet is lower than Rs 70,800 , it would be prudent to run the old one. Thus, we have

Trucks	
One year old	
Two years old	
Two years from now:	$=21,500$
$14,000+7,500$	$=43,500$
$2(18,000+3,750)$	$=65,000$
Total	

Replacement one year from now:

$12,000+15,000$	$=27,000$
$2(14,000+7,500)$	$=43,000$
Three years from now: Total $\left.\begin{array}{rl}70,000 \\ 18,000+3,750 & \\ 2(23,000)+1,750) & =49,500 \\ \text { Total } & \\ \hline\end{array}\right)=$71,250	

From the cost calculations, it is clear that the old truck be run for another two years before being replaced.
13.

Determination of Optimal Replacement Period

Year	Maintenance Cost	Cumulative Maintenance Cost	Depreciation	Total Cost	Average Cost
1	2,000	2,000	6,000	8,000	8,000
2	2,400	7,200	9,000	13,400	6,700
3	2,800	10,800	10,500	17,700	5,900
4	3,600	15,400	11,200	22,000	5,500
5	4,600	21,200	11,600	27,000	$5,400^{*}$
6	5,800	11,600	32,800	5,467	

Optimal replacement interval $=5$ years.
(i) Determination of Optimal Replacement Period

Year	Maintenance Cost	Cumulative $M C$	Cost-resale Value	Total Cost	Average Cost
1	400	400	7,500	7,900	7900
2	900	1,300	7,500	8,800	4400
3	1,400	2,700	7,500	10,200	3400
4	1,900	4,600	7,500	12,100	3025
5	2,400	7,000	7,500	14,500	2900^{*}
6	2,900	9,900	7,500	17,400	2900^{*}
7	3,400	13,300	7,500	20,800	2971

Optimal interval: 5 or 6 years.
(ii) When future costs are discounted:

Determination of Optimal Replacement Interval

Year	Maintenance Cost, M_{t}	PVF	PV of M_{t}	Cost plus Cumulative M_{t}	Cum. PVF	Annualised Cost
1	400	1.0000	400.0	7900.0	1.0000	7,900
2	900	0.9091	818.2	8718.2	1.9091	4,567
3	1,400	0.8264	$1,157.0$	9875.2	2.7355	3,610
4	1,900	0.7513	$1,427.5$	11302.7	3.4868	3,242
5	2,400	0.6830	$1,639.2$	12941.9	4.1698	3,104
6	2,900	0.6209	$1,800.7$	14742.6	4.7907	3,077
7	3,400	0.5645	$1,919.2$	16661.8	5.3552	3,111
8	3,900	0.5132	$2,001.3$	18662.8	5.8684	3,180

Optimal replacement interval $=6$ years.
15. For M_{1} :

Determination of Optimal Replacement Interval

Year	Maintenance Cost, MC	PV Factor	PV of MC	Cum. PV of $M C+$ Cost	Cum. PV Factor	
1	800	1.0000	800.0	$5,800.0$	1.0000	$5,800.0$
2	800	0.9091	727.3	$6,527.3$	1.9091	$3,419.0$
3	800	0.8264	661.1	$7,188.4$	2.7355	$2,627.8$
4	800	0.7513	601.0	$7,789.4$	3.4868	$2,234.0$
5	800	0.6830	546.4	$8,335.8$	4.1698	$1,999.1$
6	1,000	0.6209	620.9	$8,956.7$	4.7907	$1,869.6$
7	1,200	0.5645	677.4	$9,634.1$	5.3552	$1,799.0$
8	1,400	0.5132	718.5	$10,352.6$	3.8684	$1,764.1$
9	1,600	0.4665	746.4	$11,099.0$	6.3349	$\mathbf{1 , 7 5 2 . 0}$
11	1,800	0.4241	743.4	$11,862.4$	6.7590	$1,755.1$
12	2,000	0.3855	771.0	$12,633.4$	7.1445	$1,768.3$

For M_{2} :
Determination of Optimal Replacement Interval

Year	Maintenance Cost, MC	PV Factor	MV of MC	Cum. PV of MC + Cost	Cum. PV Factor	Average
1	1,200	1.0000	$1,200.0$	$3,700.0$	1.0000	$3,700.0$
2	1,200	0.9091	$1,090.9$	$4,790.9$	1.9091	$2,509.5$
3	1,200	0.8264	991.7	$5,782.6$	2.7355	$2,113.9$
4	1,200	0.7513	901.6	$6,684.2$	3.4868	$1,917.0$
5	1,200	0.6830	819.6	$7,503.8$	4,1698	$1,799.5$
6	1,200	0.6209	745.1	$8,248.8$	4,7907	$1,721.8$
7	1,400	0.5645	790.3	$9,039.1$	5,3552	1687.9
8	1,600	0.5132	821.1	$9,860.3$	5.8684	$\mathbf{1 , 6 8 0 . 2}$
9	1,800	0.4665	839.7	$10,700.0$	6.3349	$1,689.1$
10	2,000	0.4241	848.2	$11,548.2$	6.7590	$1,708.6$
11	2,200	0.3855	848.1	$12,396.3$	7.1445	$1,735.1$
12	2,400	0.3505	841.2	$13,237.5$	7.4950	$1,766.2$

(i) Optimal replacement period of M_{1} : nine years; of M_{2} : eight years.
(ii) Machine M_{2} is better.
16. We first calculate the expected life of bulbs as follows:

Life (X)	Probability (p)	$p X$
1	0.10	0.10
2	0.30	0.60
3	0.45	1.35
4	0.10	0.40
5	0.05	0.25
		Expected value $=2.70$

Thus, expected life of bulbs $=2.70$ weeks.
Now,
Expected cost of replacement per week

$$
\begin{aligned}
& =\frac{\text { No. of bulbs }}{\text { Expected life of bulbs }} \times \text { Cost per replacement } \\
& =\frac{2,000}{2.70} \times 2 \\
& =\text { Rs } 1,481.5
\end{aligned}
$$

17. Individual replacement policy:

Step 1: Obtain expected life of bulbs. This is shown below:

Life (months)	Mid-value (X)	Probability (p)	$p X$
$0-1$	0.5	0.10	0.050
$1-2$	1.5	0.15	0.225
$2-3$	2.5	0.25	0.625
$3-4$	3.5	0.30	1.050
$4-5$	4.5	0.20	0.900
			Expected value $=2.850$

Step 2: Calculate the cost per month.
With the expected life of the bulbs equal to 2.85 months, the average number of bulbs to replace every month, if replacements are to be made only as soon bulbs fail

$$
\begin{aligned}
& =\frac{\text { No. of bulbs }}{\text { Expected life of bulbs }} \\
& =\frac{500 \times 6}{2.85}=1,053
\end{aligned}
$$

Thus, total cost per month $=1,053 \times 3=$ Rs 3,159
Periodic replacement policy:
Step 1: To evaluate group replacement policy, we first calculate the expected number of failures to be replaced every month, for next of the five months.

$$
\begin{aligned}
N_{0} & =3,000 \\
N_{1} & =N_{0} \times p_{1} \\
& =3,000 \times 0.10
\end{aligned}
$$

$$
=300
$$

$$
\begin{array}{rlrl}
N_{2} & =N_{0} \times p_{2}+N_{1} \times p_{1} & \\
& =3,000 \times 0.15+300 \times 0.10 & & \\
N_{3} & =N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & \\
& =3,000 \times 0.25+300 \times 0.15+480 \times 0.10 & \\
N_{4} & =N_{0} \times p_{4}+N_{1} \times p_{3}+N_{2} \times p_{2}+N_{3} \times p_{1} & \\
& =3,000 \times 0.30+300 \times 0.25+480 \times 0.15+843 \times 0.10 & \\
N_{5} & =N_{0} \times p_{5}+N_{1} \times p_{4}+N_{2} \times p_{3}+N_{3} \times p_{2}+N_{4} \times p_{1} & \\
& =3,000 \times 0.20+300 \times 0.30+480 \times 0.25+843 \times 0.15+1,131 \times 0.10 & & =1,050
\end{array}
$$

Step 2: Calculate the cost per month associated with alternative policies. This is given below.

Determination of Optimal GR Policy

GR every	Replacements		Cost of Replacements			Average
	Individual	Group	Individual	Group	Total	Cost
1 month	300	3,000	900	3,000	3,900	3,900
2 months	780	3,000	2,340	3,000	5,340	2,670
3 months	1,623	3,000	4,869	3,000	7,869	$\mathbf{2 , 6 2 3}$
4 months	2,754	3,000	8,262	3,000	11,262	2,816
5 months	3,804	3,000	11,412	3,000	14,412	2,882

From these calculations, it may be concluded that:
(i) The optimal group replacement interval is three months, with an average monthly cost of Rs 2,623.
(ii) The group and individual replacements policy is better than the policy of only individual replacements as it involves a lower cost.
18. As a first step, we obtain expected number of individual replacements during various months.

$$
\begin{array}{rrr}
N_{0}=200 & =20 & \begin{array}{r}
\text { Cumulative } \\
N_{1}= \\
N_{0} \times p_{1}=200 \times 0.1
\end{array} \\
N_{2}=N_{0} \times p_{2}+N_{1} p_{1} & & \\
=200 \times 0.2+20 \times 0.1 & =42 & =62 \\
N_{3}= & N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & \\
= & 200 \times 0.2+20 \times 0.2+42 \times 0.1 & \\
N_{4}= & N_{0} \times p_{4}+N_{1} \times p_{3}+N_{2} \times p_{2}+N_{3} \times p_{1} & 110.2 \\
= & 200 \times 0.3+20 \times 0.2+42 \times 0.2+48.2 \times 0.1 & \\
N_{5}= & N_{0} \times p_{5}+N_{1} \times p_{4}+N_{2} \times p_{3}+N_{3} \times p_{2}+N_{4} \times p_{1} & 187.42 \\
= & 200 \times 0.2=20 \times 0.3+42 \times 0.2+48.2 \times 0.2+77.22 \times 0.1 & =71.76 \\
N_{6}= & N_{1} \times p_{5}+N_{2} \times p_{4}+N_{3} \times p_{3}+N_{4} \times p_{2}+N_{5} \times p_{1} & 259.18 \\
= & 20 \times 0.2+42 \times 0.3+48.2 \times 0.2+77.22 \times 0.2+71.76 \times 0.1=48.86 & 308.04 \\
N_{7}= & N_{2} \times p_{5}+N_{3} \times p_{4}+N_{4} \times p_{3}+N_{5} \times p_{2}+N_{6} \times p_{1} & \\
= & 42.4 \times 0.2+48.2 \times 0.3+77.22 \times 0.2+71.76 \times 0.2 & =57.54 \\
& +48.86 \times 0.1 & 365.58 \\
N_{8}= & N_{3} \times p_{5}+N_{4} \times p_{4}+N_{5} \times p_{3}+N_{6} \times p_{2}+N_{7} \times p_{1} & \\
= & 48.2 \times 0.2+77.22 \times 0.3+71.76 \times 0.2+48.86 \times 0.2+57.54 & \\
& \times 0.1 & =62.68 \\
\hline
\end{array}
$$

The cost, in respect of various alternative policies, is shown calculated here. From the table, it is clear that optimal policy is to replace every three months and the average cost is Rs $4,605.33$ p.m.

Determination of Optimal Replacement Interval

Group Replacement (Months)	No. of Individual Replacements	Cost of Replacements			Average Cost
		Group	Individual	Total	
1	20	5,000	1,600.0	6,600.0	6,600.00
2	62	5,000	4,960.0	9,960.0	4,980.00
3	110.2	5,000	8,816.0	13,816.0	4,605.33
4	187.42	5,000	14,993.6	19,993.6	4,998.40
5	259.18	5,000	20,734.4	25,734.4	5,146.88
6	308.04	5,000	24,643.2	29,643.2	4,940.53
7	365.58	5,000	29,246.4	34,246.4	4,892.34
8	428.27	5,000	34,261.5	39,261.5	4,907.69

19. (a) For policy of complete individual replacements, we first calculate expected life of the components.

Life (months)	Mid-value (X)	Probability (p)	$p X$
$0-1$	0.5	0.12	0.060
$1-2$	1.5	0.16	0.240
$2-3$	2.5	0.22	0.550
$3-4$	3.5	0.25	0.875
$4-5$	4.5	0.15	0.675
$5-6$	5.5	0.10	0.550
			Expected life $=2.950$

Number of replacements expected per month

$$
\begin{aligned}
& =\frac{\text { No. of components }}{\text { Expected life of components }} \\
& =\frac{100}{2.95} \\
& =33.9
\end{aligned}
$$

Cost per month $=33.9 \times 4=$ Rs 135.6
For periodic replacement for the entire group, we first estimate the number of replacements needed each month. This is done here.

$$
\begin{array}{rlrl}
N_{0} & =100 & \\
N_{1}= & N_{0} \times p_{1} & \\
& =100 \times 0.12 & =12.00 \\
N_{2} & =N_{0} \times p_{2}+N_{1} \times p_{1} & =17.44 \\
& =100 \times 0.16+12 \times 0.12 & \\
N_{3} & =N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & =26.00 \\
& =100 \times 0.22+12 \times 0.16+17.44 \times 0.12 & \\
N_{4}= & N_{0} \times p_{4}+N_{1} \times p_{3}+N_{2} \times p_{2}+N_{3} \times p_{1} & =33.56 \\
& =100 \times 0.25+12 \times 0.22+17.44 \times 0.16+26.0 \times 0.12 & \\
N_{5}= & N_{0} \times p_{5}+N_{1} \times p_{4}+N_{2} \times p_{3}+N_{3} \times p_{2}+N_{4} \times p_{1} & \\
= & 100 \times 0.15+12 \times 0.25+17.44 \times 0.22+26.0 \times 0.16+33.56 \times 0.12 & =30.00 \\
N_{6} & =N_{0} \times p_{6}+N_{1} \times p_{5}+N_{2} \times p_{4}+N_{3} \times p_{3}+N_{4} \times p_{2}+N_{5} \times p_{1} & \\
= & 100 \times 0.10+12 \times 0.15+17.44 \times 0.25+26.0 \times 0.22+33.56 \times 0.16 & & \\
& +30.00 \times 0.12 & & =30.85
\end{array}
$$

Now we can calculate the cost involved with various alternative policies of group replacement. It is shown in table below.

Determination of Optimal Replacement Policy

GR; Months	Replacements		Cost of Replacements			Average Cost
	Individual	Group	Individual	Group	Total	
1	12.00	100	48.00	150	198.00	198.00
2	29.44	100	117.76	150	267.76	133.88
3	55.44	100	221.76	150	371.76	$\mathbf{1 2 3 . 9 2}$
4	89.00	100	356.00	150	506.00	126.50
5	119.00	100	476.00	150	626.00	125.20
6	149.85	100	599.40	150	749.40	124.90

From the above table, it is evident that the optimal period of group replacements is three months since this policy involves the least average cost. Also, this policy is superior to the policy of individual replacements only.
(b) The calculations are repeated and shown below, when the cost of replacement is Rs 2 instead of Rs 1.50 , for group replacement policies.

Determination of Optimal Replacement Policy

GR; Months	Replacements		Cost of Replacements			Average Cost
	Individual	Group	Individual	Group	Total	
1	12.00	100	48.00	200	248.00	248.00
2	29.44	100	117.76	200	317.76	158.88
3	55.44	100	221.76	200	421.76	140.59
4	89.00	100	356.00	200	556.00	139.00
5	119.00	100	476.00	200	676.00	135.20
6	149.85	100	599.40	200	799.40	$\mathbf{1 3 3 . 2 0}$

Evidently, even when the cost of replacement is Rs 12 in case of group replacement, the policy of group replacement is better than the policy of individual replacements. However, from the calculation, it is clear that the optimal interval between group replacements is now six months.
20. (a) The average life of bulbs is calculated here:

Life (in months)	Proportion of bulbs failing, p	$p X$
X	0.08	0.08
1	0.12	0.24
2	0.20	0.60
3	0.30	1.20
4	0.20	1.00
5	0.10	0.60
6		Expected value $=3.72$

Thus, expected life of bulbs $=3.72$ months.
(b) Expected cost of the policy of individual replacements:
$=$ Expected number of replacements per month \times Cost of individual replacement
Further, expected number of replacements per month

$$
\begin{aligned}
& =\frac{\text { No. of bulbs }}{\text { Expected life of bulbs }} \\
\text { Expected cost } & =\frac{1,000}{3.72} \times 5=\text { Rs } 1,344.09 \text { per month }
\end{aligned}
$$

Group replacement policy:
The expected number of replacements in each of the three months is first calculated. This is shown below:

$$
\begin{array}{rlr}
N_{0} & =1,000 & \\
N_{1} & =N_{0} \times p_{1} & \\
& =1,000 \times 0.08 & \\
N_{2} & =N_{0} \times p_{2}+N_{1} \times p_{1} & \\
& =1,000 \times 0.12+80 \times 0.08 & \\
N_{3} & =N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & \\
& =1,000 \times 0.20+80 \times 0.12+126.4 \times 0.08 & =219.712
\end{array}
$$

The cost of various policies is calculated as given below.
Calculation of Average Cost

Replacement: Every	Individual Replacements	Group Replacements	Cost		Total	Average
			IR	GR		
One month	80	1,000	400	2,000	2,400	2,400
Two months	206.4	1,000	1,032	2,000	3,032	1,516
Three months	426.112	1,000	2,130.56	2,000	4,130.56	1,377

It is clear from the table that each of the average cost values is greatest than Rs 1,344.09 calculated earlier. Accordingly, the policy of individual replacements is superior to each of the group replacement policies considered.
21. For individual replacements only policy:

Calculation of Expected Life

Life (months)	X	p	$p X$
$0-1$	0.5	0.10	0.05
$1-2$	1.5	0.20	0.30
$2-3$	2.5	0.20	0.50
$3-4$	3.5	0.30	1.05
$4-5$	4.5	0.20	0.90
Expected value $=2.80$			

Expected number of failures per month $=2,000 / 2.80=714.29$
Expected cost of replacements per month $=714.29 \times 7=$ Rs 5,000
For group and individual replacements policy:

Calculation of Expected No. of Failures

Month	No. of Failures	
1	$2,000 \times 0.10$	$=200$
2	$2,000 \times 0.20+200 \times 0.10$	$=420$
3	$2,000 \times 0.20+200 \times 0.20+420 \times 0.10$	$=482$
4	$2,000 \times 0.30+200 \times 0.20+420 \times 0.20+482 \times 0.10$	$=772.2$
5	$2,000 \times 0.20+200 \times 0.30+420 \times 0.20+482 \times 0.20+772.2 \times 0.10$	$=717.6$

Cumulative replacements in various months are: Month 1: 200; Month 2: 620; Month 3: 1102; Month 4: 1874.2 and Month 5: 2591.8.

Calculation of Expected Cost

Group Replacement Every	No. of Replacements		Cost of Replacements		Total Cost	Average Cost
	Group	Ind.	Group	Ind.		
1 Month	2,000	200	6,000	1,400	7,400	7,400
2 Months	2,000	620	6,000	4,340	10,340	5,170
3 Months	2,000	1,102	6,000	7,714	13,714	4,571
4 Months	2,000	1874.20	6,000	13,119	19,119	4,780
5 Months	2,000	$2,591.8$	6,000	18,143	24,143	4,829

Optimal interval between group replacements $=3$ months
Cost (expected) per month $=$ Rs 4,571
Group replacement policy is better than individual replacements only policy.
22. First, we calculate expected breakdown interval:

Month (X)	Probability (p)	$p X$
1	0.10	0.10
2	0.05	0.10
3	0.10	0.30
4	0.15	0.60
5	0.20	1.00
6	0.25	1.50
7	0.10	0.70
8	0.05	0.40
	Expected value	4.70

(a) Expected downtime cost per month

$$
\begin{aligned}
& =\frac{\text { No. of machines }}{\text { Expected time until breakdown }} \times \text { Cost of repairing a breakdown } \\
& =\frac{40}{4.7} \times 1,000 \\
& =\text { Rs } 8,510
\end{aligned}
$$

(b) The expected number of breakdowns every month are shown calculated below:

$$
\begin{array}{rlr}
N_{0}= & 40 & \\
N_{1}= & N_{0} \times p_{1} & =4.00 \\
& =40 \times 0.10 & =2.40 \\
N_{2}= & N_{0} \times p_{2}+N_{1} \times p_{1} & \\
= & 40 \times 0.05+4 \times 0.10 & =4.44 \\
N_{3}= & N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & =6.96 \\
= & 40 \times 0.10+4 \times 0.05+2.4 \times 0.10 & \\
N_{4}= & N_{0} \times p_{4}+N_{1} \times p_{3}+N_{2} \times p_{2}+N_{3} \times p_{1} & =9.76 \\
= & 40 \times 0.15+4 \times 0.10+2.4 \times 0.05+4.44 \times 0.10 & \\
N_{5}= & N_{0} \times p_{5}+N_{1} \times p_{4}+N_{2} \times p_{3}+N_{3} \times p_{2}+N_{4} \times p_{1} & \\
= & 40 \times 0.20+4 \times 0.15+2.4 \times 0.10+4.44 \times 0.05+6.964 \times 0.10 & \\
N_{6}= & N_{0} \times p_{6}+N_{1} \times p_{5}+N_{2} \times p_{4}+N_{3} \times p_{3}+N_{4} \times p_{2}+N_{5}+p_{1} & \\
= & 40 \times 0.25+4 \times 0.20+2.4 \times 0.15+4.44 \times 0.10+6.964 \times 0.10+9.76 \times 0.05=12.93 \\
N_{7}= & N_{0} \times p_{7}+N_{1} \times p_{6}+N_{2} \times p_{5}+N_{3} \times p_{4}+N_{4} \times p_{3}+N_{5} \times p_{2}+N_{6} \times p_{1} & \\
= & 40 \times 0.10+4 \times 0.25+2.4 \times 0.20+4.44 \times 0.15+6.964 \times 0.10+9.76 \times 0.05 & =8.62 \\
& +12.93 \times 0.10 & \\
N_{8}= & N_{0} \times p_{8}+N_{1} \times p_{7}+N_{2} \times p_{6}+N_{3} \times p_{5}+N_{4} \times p_{4}+N_{5} \times p_{3}+N_{6} \times p_{2}+N_{7} \times p_{1} \\
= & 40 \times 0.05+4 \times 0.10+2.4 \times 0.25+4.44 \times 0.20+6.964 \times 0.15+9.76 \times 0.10 & \\
& +12.93 \times 0.05+9.32 \times 0.10 & =7.42
\end{array}
$$

Next, the cost associated with each of the alternative policies of servicing time may be calculated to determine the optimal policy as shown in the table.

Determination of Optimal Servicing Policy

GS: Months	Servicing		Cost of Servicing			Average Cost
	Individual	Group	Individual	Group	Total	
1	4.00	40	4,000	12,000	16,000	16,000
2	6.40	40	6,400	12,000	18,400	9,200
3	10.84	40	10,840	12,000	22,840	7,613
4	17.80	40	17,800	12,000	29,800	7,450
5	27.56	40	27,560	12,000	39,560	7,912
6	40.49	40	40,490	12,000	52,490	8,748
7	49.11	40	49,114	12,000	61,114	8,730
8	56.53	40	56,531	12,000	68,531	8,566

From the table, it is clear that the minimum average cost, Rs 7,450 , corresponds to four-monthly policy. Accordingly, the optimal interval between group servicing of machines is four months.
23. From the given data, we have the life distribution of the component and the expected life as shown here:

Life (months)	Mid-value (X)	Probability (p)	$p X$
$0-1$	0.5	0.05	0.025
$1-2$	1.5	0.20	0.300
$2-3$	2.5	0.20	0.500
$3-4$	3.5	0.25	0.875
$4-5$	4.5	0.15	0.675
$5-6$	5.5	0.15	0.825
		Expected value $=3.200$	

Now,
Average number of replacements per month $=\frac{\text { No. of components }}{\text { Expected life of components }}$

$$
=\frac{1,600}{3.2}=500
$$

For the policy of individual replacements, the total cost per month,
$\mathrm{TC}=($ Replacement cost + Disruption cost $) \times$ Average number of replacements per month

$$
=(1+9) \times 500=\text { Rs } 5,000
$$

Group replacement policy:
For this, we first calculate the expected number of replacements month-after-month as given below:

$$
\begin{array}{rlrl}
N_{0} & =1,600 & \\
N_{1} & =N_{0} \times p_{1} & \\
& =1,600 \times 0.05 & =80 \\
N_{2} & =N_{0} \times p_{2}+N_{1} \times p_{1} & =324 \\
& =1,600 \times 0.20+80 \times 0.05 & =352 \\
N_{3} & =N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & \\
& =1,600 \times 0.20+80 \times 0.20+324 \times 0.05 & =498 \\
N_{4} & =N_{0} \times p_{4}+N_{1} \times p_{3}+N_{2} \times p_{2}+N_{3} \times p_{1} & \\
& =1,600 \times 0.25+80 \times 0.20+324 \times 0.20+352 \times 0.05 & =420 \\
N_{5} & =N_{0} \times p_{5}+N_{1} \times p_{4}+N_{2} \times p_{3}+N_{3} \times p_{2}+N_{4} \times p_{1} & \\
& =1,600 \times 0.15+80 \times 0.25+324 \times 0.20+352 \times 0.20+498 \times 0.05 & \\
N_{6} & =N_{0} \times p_{6}+N_{1} \times p_{5}+N_{2} \times p_{4}+N_{3} \times p_{3}+N_{4} \times p_{2}+N_{5} \times p_{1} & \\
& =1,600 \times 0.15+80 \times 0.15+324 \times 0.25+352 \times 0.20+498 \times 0.20+420 \times 0.05=524
\end{array}
$$

The cost involved with different policies of group replacement is shown calculated here.
Calculation of Total and Average Cost

Group Replacements Every:	Replacements		Cost of Replacements			Average Cost
	Individual	Group	Individual	Group	Total	
One month	80	1,600	800	11,200	12,000	12,000
Two months	404	1,600	4,040	11,200	15,240	7,620
Three months	756	1,600	7,560	11,200	18,760	6,253
Four months	1,254	1,600	12,540	11,200	23,740	5,935
Five months	1,674	1,600	16,740	11,200	27,940	5,588
Six months	2,198	1,600	21,980	11,200	33,180	5,530

Since the cost involved with individual replacement policy is lower than each of the alternative policies of group replacement considered, it is not desirable to switch over from the existing policy.
24. (a) To calculate the cost for this policy, we first obtain average life of the bulbs as follows:

Life (Quarters)	X	Probability p	$p X$
$0-1$	0.5	0.1	0.05
$1-2$	1.5	0.3	0.45
$2-3$	2.5	0.6	1.50
		Expected value $=2.00$	

Expected cost per quarter $=\frac{\text { No. of bulbs }}{\text { Expected life of bulbs }} \times$ Cost per bulb

$$
\begin{aligned}
& =\frac{50,000}{2} \times 6.4 \\
& =\text { Rs } 1,60,000
\end{aligned}
$$

(b) For this policy, we first obtain the expected number of replacements every quarter, as given below:

$$
\begin{array}{ll}
N_{0}=50,000 & =5,000 \\
N_{1}=N_{0} \times p_{1}=50,000 \times 0.1 & =15,500 \\
N_{2}=N_{0} \times p_{2}+N_{1} \times p_{1}=50,000 \times 0.3+5,000 \times 0.1 & =33,050 \\
N_{3}=N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1}=50,000 \times 0.6+5,000 \times 0.3+15,500 \times 0.1 & =10
\end{array}
$$

Now, we calculate the cost for the three alternative policies.

Determination of Optimal Replacement Policy

Replacements Every:	No. of Replacements		Cost of Replacements			Average Cost
	Group	Individual	Group	Individual	Total	
One Quarter	50,000	5,000	$1,20,000$	32,000	$1,52,000$	$1,52,000$
Two Quarters	50,000	20,500	$1,20,000$	$1,31,200$	$2,51,200$	$\mathbf{1 , 2 5 , 6 0 0}$
Three Quarters	50,000	53,550	$1,20,000$	$3,42,720$	$4,62,720$	$1,54,240$

From the table, it is evident that the optimal policy is to replace all the bulbs every two quarters.
(c) The difference in cost is likely to be due to relatively large effort required in individual replacements, on a per replacement basis.
25. Various steps involved are given here:

Step I: Obtain probability distribution of component lives:

End of week	No. of components servicing	No. of components failed		Prob. of failure
	till week-end	during week		
1	455	45	45	0.09
2	375	125	80	0.16
3	250	250	125	0.25
4	75	425	175	0.35
5	15	485	60	0.12
6	0	500	15	0.03

Step 2: Determine the number of individual replacements every week:

Cumulative

$$
\begin{array}{rlrl}
N_{0} & =500 & & \\
N_{1} & =N_{0} \times p_{1} & & \\
& =500 \times 0.09 & & \\
N_{2} & =N_{0} \times p_{2}+N_{1} \times p_{1} & & \\
& =500 \times 0.16+45 \times 0.09 & & \\
N_{3} & =N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & & \\
& =500 \times 0.25+45 \times 0.16+84.05 \times 0.09 & & \\
N_{4} & =N_{0} \times p_{4}+N_{1} \times p_{3}+N_{2} p_{2}+N_{3} \times p_{1} & & \\
& =500 \times 0.35+45 \times 0.25+84.05 \times 0.16+139.76 \times 0.09 & & \\
N_{5} & =N_{0} \times p_{5}+N_{1} \times p_{4}+N_{2} \times p_{3}+N_{3} \times p_{2}+N_{4} \times p_{1} & & \\
\end{array}
$$

$$
\begin{array}{rlrl}
= & 500 \times 0.12+45 \times 0.35+84.05 \times 0.25+139.76 \times 0.16 & \\
& +212.28 \times 0.09 & & \\
N_{6}= & N_{0} \times p_{6}+N_{1} \times p_{5}+N_{2} \times p_{4}+N_{3} \times p_{3}+N_{4} \times p_{2}+N_{5} \times p_{1} & & \\
= & 500 \times 0.03+45 \times 0.12+84.05 \times 0.35+139.76 \times 0.25+212.28 & \\
& \times 0.16+138.23 \times 0.09 & =131.16
\end{array}
$$

Step 3: Obtain cost of individual replacement policy:

Life (weeks)	X	Probability p	$p X$
$0-1$	0.5	0.09	0.045
$1-2$	1.5	0.16	0.240
$2-3$	2.5	0.25	0.625
$3-4$	3.5	0.35	1.25
$4-5$	4.5	0.12	0.540
$5-6$	5.5	0.03	0.165
Expected life $=2.840$			

Average number of replacements per week

$$
\begin{aligned}
& =\frac{\text { No. of components }}{\text { Average life }} \\
& =\frac{500}{2.840}=176.06
\end{aligned}
$$

\therefore Cost of replacements per week $=176.06 \times 20$

$$
=\text { Rs } 3,521.20
$$

Step 4: Obtain the cost of group replacement policy:
Determination of Optimal Replacement Interval

Replacement Interval (weeks)	Individual Replacements to date (IR)	Cost of IR	Cost of $G R$	Total Cost	Average Cost
1	45.00	900.0	$3,500.0$		
2	129.05	$2,581.0$	$3,500.0$	$4,400.0$	$6,081.0$
3	268.81	$5,376.2$	$3,500.0$	$8,876.2$	$3,040.5$
4	481.09	$9,621.8$	$3,500.0$	$13,121.8$	$2,958.7$
5	719.32	$15,386.4$	$3,500.0$	$15,886.4$	$3,280.5$
6	750.48	$3,500.0$	$18,509.6$	$3,177.3$	

The average cost per week (for optimal policy) is lower in respect of group replacement policy in comparison with that for individual replacement policy. Hence, the former is better. Optimal period between group replacements is equal to three weeks.
26. Using the given information, we first calculate the expected life of the item in question, as given below:

Life (months)	X	Probability p	$p X$
$0-1$	0.5	0.1	0.05
$1-2$	1.5	0.1	0.15
$2-3$	2.5	0.2	0.50
$3-4$	3.5	0.3	1.05
$4-5$	4.5	0.3	1.35
Expected value $=3.10$			

Thus, expected life of the item $=3.1$ months.

Now, average number of failures per month $=\frac{2,000}{3.1}$

$$
=645 \text { approx. }
$$

\therefore Cost (per month) of replacing the unit only on failure $=645 \times 800=$ Rs $5,16,000$.
For periodic replacement policies, we first compute the expected number of replacements per month. This is done below:

$$
\begin{aligned}
N_{0} & =2000 & \\
N_{1} & =N_{0} \times p_{1} & \\
& =2000 \times 0.1 & =200 \\
N_{2} & =N_{0} \times p_{2}+N_{1} \times p_{1} & =220 \\
& =2000 \times 0.1+200 \times 0.1 & \\
N_{3} & =N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & \\
& =2000 \times 0.2+200 \times 0.1+200 \times 0.1 & \\
N_{4} & =N_{0} \times p_{4}+N_{1} \times p_{3}+N_{2} \times p_{2}+N_{3} \times p_{1} & \\
& =2000 \times 0.3+200 \times 0.2+220 \times 0.1+442 \times 0.1 & \\
N_{5} & =N_{0} \times p_{5}+N_{1} \times p_{4}+N_{2} \times p_{3}+N_{3} \times p_{2}+N_{4} \times p_{1} & \\
& =2000 \times 0.3+200 \times 0.3+220 \times 0.2+442 \times 0.1+706 \times 0.1 & \simeq 819
\end{aligned}
$$

The cost for various alternative policies is shown calculated here:
Calculation of Cost: Alternative Policies

Replacement Every:	Individual Replacements	Cost of Replacements			Average Costs
		Individual	Group	Total	
One month	200	$1,60,000$	$13,00,000$	$14,60,000$	$14,60,000$
Two months	420	$3,36,000$	$13,00,000$	$16,36,000$	$8,18,000$
Three months	862	$6,89,600$	$13,00,000$	$19,89,600$	$6,63,200$
Four months	1,568	$12,54,400$	$13,00,000$	$25,54,400$	$\mathbf{6 , 3 8 , 6 0 0}$
Five months	2,387	$19,09,600$	$13,00,000$	$32,09,000$	$6,41,920$

In these, the optimal policy is to replace the group every four months, since it involves the lowest average cost of Rs $6,38,600$. However, since the cost of the policy of replacement of items as and when they fail is lower than this, it is prudent to follow that policy only. Group replacement policy should not be adopted.
27. Here, total number of items $=1,000$. From the given information, the life distribution may be obtained as given below. Also shown is the calculation of the expected life of the item.

Life (Weeks)	Mid-value (X)	Prob. of failure (p)	$p X$
$0-1$	0.5	$10 / 100=0.10$	0.050
$1-2$	1.5	$15 / 100=0.15$	0.225
$2-3$	2.5	$35 / 100=0.35$	0.875
$3-4$	3.5	$25 / 100=0.25$	0.875
$4-5$	4.5	$15 / 100=0.15$	0.675
		Expected value $=2.700$	

For 'failure replacements' policy:
Expected number of replacements per week

$$
\begin{aligned}
& =\frac{\text { No. of items }}{\text { Expected life }} \\
& =\frac{1,000}{2.7} \simeq 370
\end{aligned}
$$

Expected cost per week $=370 \times 300=$ Rs $1,11,000$
Common preventive replacement policy:

For this policy, we first calculate the expected number of replacements required in each of the five weeks. The calculations are given below:

$$
\begin{array}{rlrl}
N_{0} & =1000 & & \\
N_{1} & =N_{0} \times p_{1} & & \\
& =1000 \times 0.10 & & \\
N_{2} & =N_{0} \times p_{2}+N_{1} \times p_{1} & & \\
& =100 \times 0.15+100 \times 0.10 & & \\
N_{3} & =N_{0} \times p_{3}+N_{1} \times p_{2}+N_{2} \times p_{1} & =381 \\
& =1000 \times 0.35+100 \times 0.15+160 \times 0.10 & \\
N_{4} & =N_{0} \times p_{4}+N_{1} \times p_{3}+N_{2} \times p_{2}+N_{3} \times p_{1} & \\
& =1000 \times 0.25+100 \times 0.35+160 \times 0.15+381 \times 0.10 & & \\
N_{5} & =N_{0} \times p_{5}+N_{1} \times p_{4}+N_{2} \times p_{3}+N_{3} \times p_{2}+N_{4} \times p_{1} & \\
& =1000 \times 0.15+100 \times 0.25+160 \times 0.35+381 \times 0.15+347 \times 0.10 & & =323
\end{array}
$$

The cost associated with various alternative policies is shown below:
Determination of Optimal Replacement Policy

GR: Weeks	Replacements		Cost of Replacements			Average Cost
	Individual	Group	Individual	Group	Total	
1	100	1,000	30,000	$1,00,000$	$1,30,000$	$1,30,000$
2	260	1,000	78,000	$1,00,000$	$1,78,000$	89,000
3	641	1,000	$1,92,300$	$1,00,000$	$2,92,300$	97,430
4	988	1,000	$2,96,400$	$1,00,000$	$3,96,400$	99,100
5	1,311	1,000	$3,93,300$	$1,00,000$	$4,93,300$	98,660

The least cost policy as is evident from the table, is to replace all items every two weeks. The average cost is Rs 89,000 per week.
The group replacement policy is superior to the individual failure replacement policy due to lower cost involved.
28. (a) Number of new rentals required in each of the next four years:

$$
\begin{aligned}
& \begin{array}{l}
N_{0}: 160 \\
N_{1}: 160 \times 0.25 \\
N_{2}: 160 \times 0.40+40 \times 0.25 \\
N_{3}: 160 \times 0.25+40 \times 0.40+74 \times 0.25 \\
N_{4}: 160 \times 0.10+40 \times 0.25+74 \times 0.40+75 \times 0 \\
\text { Average length of hire period }=1 \times 0.25+2 \times 0.40+3 \\
\text { Average number of rentals per year }=\frac{160}{2.2}=72.7 \simeq 73
\end{array}
\end{aligned}
$$

$$
N_{1}: 160 \times 0.25 \quad=40
$$

$$
N_{2}: 160 \times 0.40+40 \times 0.25
$$

$$
N_{3}: 160 \times 0.25+40 \times 0.40+74 \times 0.25=75
$$

$$
N_{4}: 160 \times 0.10+40 \times 0.25+74 \times 0.40+75 \times 0.25 \quad=74
$$

Average length of hire period $=1 \times 0.25+2 \times 0.40+3 \times 0.25+4 \times 0.10=2.2$ years
(b) New average length of the hire period

$$
=0.1 \times 1+0.2 \times 2+0.4 \times 3+0.15 \times 4+0.15 \times 5=3.05 \text { years }
$$

Average number of new rentals per year $=\frac{160}{3.05}$

$$
=52.5
$$

Thus, saving in administrative cost is $(72.7-52.5) \times 40=20.2 \times 40=$ Rs 808 . This is the upper limit on the costs for advertising compaign.
29. Here, group servicing policy is in operation, with a time interval of seven months between successive group servicings. To see whether it is optimal, we first estimate the number of repairs needed in different months, along with group servicing at fixed intervals. The calculations are given below:

$$
\begin{array}{rlrl}
N_{0}= & 100 & & \\
N_{5}= & N_{0} \times p_{5}=100 \times 0.10 & =10 \\
N_{6}= & N_{0} \times p_{6}+N_{5} \times p_{5}=100 \times 0.3+10 \times 0.1 & =31 \\
N_{7}= & N_{0} \times p_{7}+N_{5} \times p_{6}+N_{6} \times p_{5}=100 \times 0.4+10 \times 0.3+31 \times 0.1 & =46.1 \\
N_{8}= & N_{0} \times p_{8}+N_{5} \times p_{7}+N_{6} \times p_{6}+N_{7} \times p_{5}=100 \times 0.10+10 \times 0.4+31 & & \\
& \times 0.3+46.1 \times 0.1 & & \\
N_{9}= & N_{0} \times p_{9}+N_{5} \times p_{8}+N_{6} \times p_{7}+N_{7} \times p_{6}+N_{8} \times p_{5}=100 \times 0.10+10 \times 0.1 \\
& +31 \times 0.4+46.1 \times 0.3+27.9 \times 0.1 & =40
\end{array}
$$

Determination of Optimal Servicing Policy

Group Service Months	Repairs/Servicing		Cost of Servicing			Average Cost
	Individual	Group	Individual	Group	Total	
5	10	100	4,000	20,000	24,000	$\mathbf{4 , 8 0 0}$
6	41	100	16,400	20,000	36,400	6,067
7	87.1	100	34,840	20,000	54,840	7,834
8	115	100	46,000	20,000	66,000	8,250
9	155	100	62,000	20,000	82,000	9,111

From the above table it is evident that the minimum average cost, Rs 4,800 p.m., results when group servicing is done every five months. This is the optimal policy, and not the current one.
30. (a) Let k be the number of employees recruited each year. If 1,000 employees be recruited each year for the last 39 years, there would be λ_{x} now in service at each age, x. Hence, the total number in service will be

$$
\sum_{x=21}^{59} \lambda_{x}=7,277
$$

By proportion, if k employees are recruited each year, the total number in the system will be 7,277 (k/ 1,000). Since a total of 700 employees are required, the number of employees to be recruited each year,

$$
k=\frac{1,000 \times 700}{7,277}=96
$$

(b) Suppose that promotion from clerk to officer takes place at age x_{1}. We always have in the system (96/ $1,000) \lambda_{x}$ employees of age x. The number of clerks in the system is thus $0.096 \Sigma \lambda_{x}$ where summation extends from $x=21$ to $x=x_{1}-1$. We required 400 clerks.
Hence, the condition on x_{1} is
or

$$
\begin{aligned}
0.096 \sum_{x=21}^{x_{1}-1} \lambda_{x} & =400 \\
\sum_{x=21}^{x_{1}-1} \lambda_{x} & =\frac{400}{0.096}=4,167
\end{aligned}
$$

From the λ_{k} column of the life table, we find that $x_{1}=31$.
Similarly, if promotion from officer to manager takes place at age x_{2}, we obtain the condition

$$
\sum_{x=31}^{x_{2}-1} \lambda_{x}=\frac{250}{0.096}=2,604
$$

From the λ_{x} column of the life table, we observe that $x_{2}=52$.
Thus, clerk to officer promotion should take place at the age of 31 and from officer to manager at the age of 52 years.

CHAPTER 12

1.

2

3.

4. Activity Imm. Predecessor(s) : - $\quad-\quad \mathrm{K}$ M K, L N, O L, O R
5.

The critical activities of the project are A, E, H, I and K, while the project duration is 40 days. The earliest occurrence times (start and finish) for various activities are given on the top side of their respective arrows while the latest occurrence times (start and finish) are given on the bottom side.
6.

Calculation of Floats

Activity	Node	$E S$	$E F$	$L S$	$L F$	Floats		
						Total	Free	Independent
A	$1-2$	0	23	0	23	0	0	0
B	$1-3$	0	8	31	39	31	31	0
C	$1-4$	0	20	18	38	18	0	0
D	$2-5$	23	39	23	39	0	0	0
E	$2-9$	23	47	43	67	20	20	20
F	$5-7$	39	57	39	57	0	0	0
G	$4-6$	20	39	38	57	18	0	0
H	$8-9$	39	43	63	67	24	24	0
I	$7-9$	57	67	57	67	0	0	0

7. (i) The identification of redundant relationships is given in table below. Activities are listed both row and column-wise in the first instance. Each row is considered and the predecessors given for the activity in question are marked by an ' X '. After this, each of the predecessors of every activity is considered individually and its own predecessors are marked by circles. Finally, the spots with circled cross-marks are indicative of the redundancy as shown thereafter.

Redundancy in Precedence Relationships

Accordingly, the precedence relationships in the given project may be stated as follows:

Activity	Immediate Predecessors	Activity	Immediate Predecessors
a	-	k	i
b	-	l	k
c	-	m	e, j
d	c	n	m
e	d	o	h
f	b	p	l, n, o
g	d	q	g, p
h	d	r	f, q
i	d	r	r
j	a	t	s

(ii) The arrow diagram in given in the figure.

(iii) The total float for various activities is given here:

Activity	$E S$	$L S$	$T S$
a	0	4	4
b	0	29	29
c	0	0	0
d	3	3	0
e	4	4	0
f	3	32	29
g	4	24	20
h	4	5	1
i	4	21	17
j	2	6	4
k	9	26	17
l	10	27	17
m	10	10	0
n	20	20	0
o	12	13	1
p	28	28	0
q	29	29	0
r	33	33	0
s	36	36	0
t	38	38	0

8.(a)

Index: E: Earliest time of event
L : Latest time of event
Network Diagram

The critical part of the network as shown in the figure is 1-3-4-5-6-8-9-10-11. Thus, activities B, C, F, H, I, J of the project are critical. The project duration is 42 weeks.

It is given that at the end of week 10 , activities A, B and E are completed while other have not begun. Thus, the $E S$ for the activities C and D is revised to 10 .
The revised schedule is displayed here:

Index: E: Earliest time of event
L : Latest time of event
Revised Network Diagram
(i) As is evident from the revised network diagram, if no managerial action is taken at all, the project will be delayed by 2 weeks and shall be completed in 44 weeks.
(ii) In order to get the project completed by the end of 42 weeks, the activities on the critical path (revised) 3-4-5-6-8-9-10-11 should be crashed by 2 weeks.
9.

G	15	19	15	19	0	0	0
H	19	23	19	23	0	0	0
I	19	22	20	23	1	1	0
J	23	26	23	26	0	0	0
K	10	20	16	26	6	6	0
L	26	32	26	32	0	0	0
M	32	33	32	33	0	0	0

10. (i) Network is shown below.

From the network diagram, it is clear that the project duration is 20 days.
(ii) The earliest and the latest scheduling times may be used to calculate total floats for various activities. We have, Total float = Latest start - Earliest start. The values are shown in table.

Calculation of Total Float

Activity	Nodes	Earliest		Latest		Total Float
		Start	Finish	Start	Finish	
A	1-2	0	4	3	7	3
B	1-3	0	7	0	7	0
C	1-4	0	6	8	14	8
DM1	2-3	4	4	7	7	3
D	3-4	7	12	9	14	2
E	3-5	7	14	7	14	0
DM2	4-5	12	12	14	14	2
F	5-7	14	20	14	20	0
G	5-6	14	19	15	20	1
DM3	6-7	19	19	20	20	1

Note: $D M 1, D M 2$, and $D M 3$ denote dummy activities.
(iii) The network is reproduced below, shown on time scale. It is drawn on the assumption that each activity starts at the earliest.

Time-scaled Network
11.

	Part (a)			Part (b)					
Activity	ES	EF	$L S$	LF	Activity	$E S$	$E F$	LS	LF
$1-2$	0	7	0	7	$1-2$	0	7	0	7
$1-3$	0	3	1	4	$1-3$	0	3	7	10
$2-5$	7	12	7	12	$2-4$	7	12	7	12
$3-4$	3	5	4	6	$3-5$	3	5	10	12
$4-5$	5	5	12	12	$4-5$	12	12	12	12
$4-7$	5	13	6	14	$4-6$	12	18	12	18
$5-6$	12	18	12	18	$5-7$	12	20	12	20
$6-8$	18	24	18	24	$6-8$	18	24	18	24
$7-8$	13	23	14	24	$7-8$	20	30	20	30

Project duration increases from 24 to 30.
12. (a)

Path	Normal Length	Crash Length
$1-3-5$	10	8
$1-2-3-5$	11	8
$1-2-5$	10	6
$1-2-4-5$	8	5
$1-4-5$	5	3

(b) Normal duration $=11$ days, Crash duration $=8$ days.
(c) Crashing the Projects:

Crashing cost per day of the activities of the project is:

	A	B	C	D	E	F	G	H
Rs	70	60	80	50	80	40	80	50

Crashing the Project

Crashing	Critical Path(s)	Decision	Cost
I	$1-2-3-5$	$2-3$	50
II	$1-3-5$		
	$1-2-3-5$	$2-5$ and $3-5$	120
III	$1-2-5$		
	$1-3-5$	$1-2$ and $1-3$	130
	$1-2-3-5$		

Minimum duration $=8$ days. Associated cost $=$ Normal cost + Crashing cost

$$
=\text { Rs } 1,300+\operatorname{Rs}(50+120+130)=\text { Rs } 1,600
$$

13.

From the given data, we have

Activity	Cost of Reduction/Week
$1-2$	150
$2-3$	-
$2-4$	50
$2-5$	-
$3-4$	40
$4-6$	25
$5-6$	

Crashing Table

Crashing	Critical Path (s)	Decision	Cost
I	$1-2-3-4-6$	$3-4$	30
II	$1-2-3-4-6$	$3-4$	30
III	$\left\{\begin{array}{l}1-2-3-4-6 \\ 1-2-4-6\end{array}\right.$	$4-6$	40
IV	$\begin{cases}1-2-3-4-6 \\ 1-2-4-6 \\ 1-2-5-6\end{cases}$	$\left\{\begin{array}{l}3-4 \\ 2-4 \\ 5-6 \\ 1-2-3-4-6 \\ 1-2-5-6\end{array}\right.$	$1-2$
V			105

The cost table follows.

Cost Table

Duration	Normal Cost	Crashing Cost	Indirect Cost	Total Cost
13	945	0	1,300	2,245
12	945	30	1,200	2,175
11	945	60	1,100	2,105
10	945	100	1,000	2,045
9	945	205	900	2,050
8	945	355	800	2,100

Calculation of Float

Activity	$:$	$1-2$	$2-3$	$2-4$	$2-5$	$3-4$	$4-6$	$5-6$
ES	\vdots	0	3	3	3	6	10	7
LS	\vdots	0	3	5	6	6	10	10
Total Float	$:$	0	0	2	3	0	0	3

14. Network:

Path	Normal	Shortest
$1-2-3-7-8$	13	10
$1-2-4-7-8$	16	11
$1-2-5-6-7-8$	18^{*}	$12 *$
$1-5-6-7-8$	12	9

Normal duration $=18$
Shortest duration $=12$

Cost Slope							
Activity	A(1-2)	$B(1-5)$	C(2-3)	$D(2-5)$	E(2-5)	$F(3-7)$	G(4-7)
Slope	2000	-	2000	5000	2500	-	2000
Activity	H(5-6)	$I(6-7)$	$J(7-8)$				
Slope	1500	-	2500				

Crashing Table

Crashing	Critical Path(s)	Decision	Cost
I	$1-2-5-6-7-8$	$5-6$	1500
II	$1-2-5-6-7-8$	$5-6$	1500
III	$\left\{\begin{array}{l}1-2-4-7-8 \\ 1-2-5-6-7-8\end{array}\right.$	$1-2$	2000
IV	$\begin{cases}1-2-4-7-8 \\ 1-2-5-6-7-8\end{cases}$	$7-8$	2500
V	$\left\{\begin{array}{l}1-2-4-7-8 \\ 1-2-5-6-7-8\end{array}\right.$	$4-7$ and 2-5	4500
VI	$\left\{\begin{array}{l}1-2-4-7-8 \\ 1-2-5-6-7-8\end{array}\right.$	$4-7$ and 2-5	

The cost table is given here.
Cost Table

Duration	Normal Cost	Crashing Cost	Indirect Cost	Total Cost
18	85,000	0	72,000	$1,57,000$
17	85,000	1,500	68,000	$1,54,500$
16	85,000	3,000	64,000	$1,52,000$
15	85,000	5,000	60,000	$1,50,000$
14	85,000	7,500	56,000	$1,48,500$
13	85,000	12,000	52,000	$1,49,000$
12	85,000	16,500	48,000	$1,49,500$

15. (i) The project network is shown in the figure below.

Project Network
Various paths and their lengths using normal (N) and crash (S) times are given here:

Path	N	S
$1-2-4-6-7$	24	15
$1-2-3-4-6-7$	25^{*}	18^{*}
$1-2-3-5-6-7$	23	16
$1-2-5-6-7$	24	15

Thus, normal duration of the project is 25 days and shortest duration is 18 days.
(iii) Crashing of the project requires us to calculate the cost of reduction per day for various activities.

This is given below.
Calculation of Cost Slopes

Activity	Duration (Days)		$\operatorname{Cost}($ Rs $)$		Cost of Reduction per Day (Rs)
	Normal	Crash	Crash	Normal	
A(1-2)	7	5	900	500	200
$B(2-4)$	4	2	600	400	100
$C(2-3)$	5	5	500	500	-
$D(2-5)$	6	4	1,000	800	100
$E(4-6)$	7	4	1,000	700	100
$F(5-6)$	5	2	1,400	800	200
$G(6-7)$	6	4	1,600	800	400

Now we attempt to reduce duration of the project to 21 days.

I Crashing: Critical path: 1-2-3-4-6-7. Activity 4-6 on this path has the least cost slope. Reducing 4-6 by one day increases the cost by Rs 100. After this, the revised length of various paths is:

$1-2-4-6-7$	23
$1-2-3-4-6-7$	24
$1-2-3-5-6-7$	23
$1-2-5-6-7$	24

II Crashing: To reduce the two critical paths simultaneously by one day each, we have two options with equal cost of Rs 200: either 1-2 or 4-6 and 2-5. Reducing 1-2 by a day causes the cost to rise by Rs 200 and reduction of the length of each path by 1 day. Now the project duration is 23 days.
III Crashing: Crash the activity 1-2 by one day more. This increases cost by another Rs 200 and reduces the length of each path and project duration by a day.
IV Crashing: Since 1-2 cannot be crashed any further, reduces $4-6$ and $2-5$ by a day each. The cost increases by Rs 200 and project duration reduces to the desired 21 days. At this stage, the lengths of various paths are:

$$
\begin{array}{ll}
1-2-4-6-7: 20, & 1-2-3-4-6-7: 21 . \\
1-2-3-5-6-7: 21, \text { and } & 1-2-5-6-7: 21 .
\end{array}
$$

Now additional cost for reducing project duration $=100+200+200+200=$ Rs 700 .
Normal cost of completing the project in 25 days $=$ Rs 4,500 .
\therefore Percentage increase in cost $=\frac{700}{4,500} \times 100=15.5$.
16. As a first step, we draw the project network and determine the normal and shortest duration of the project. The network is drawn here.

Network
The different paths and their lengths using normal (N) and crash (S) times are given as follows:

Path	N	S
$1-2-4-5$	17	10^{*}
$1-3-4-5$	20^{*}	10^{*}
$1-3-5$	18	9

Thus, normal duration of the project is 20 weeks and the shortest duration 10 weeks. Now, for crashing we first have to obtain cost slope for every activity as follows:

$$
\text { Cost slope }=\frac{\text { Crash cost }- \text { Normal cost }}{\text { Normal duration }- \text { Crash duration }}
$$

The calculations are given in the following table.

Calculation of Cost Slopes

Activity	Time (in weeks)			Cost (in Rs)	
	Normal	Crash		Cost Slope $($ Rs/week $)$	
$A(1-2)$	6	4		Normal	Crash

The crashing is shown here.

Crashing the Project

Crashing	Critical Path (s)	Decision	Cost	Duration
I	$1-3-4-5$	$4-5$	250	19
II	$1-3-4-5$	$4-5$	250	18
III	$1-3-4-5,1-3-5$	$4-5,3-5$	750	17
IV	$1-3-4-5,1-3-5$	$4-5,3-5$	750	16
V	$1-3-4-5,1-3-5$	$3-4,3-5$	1,500	15
VI	$1-3-4-5,1-3-5$	$3-4,3-5$	1,500	14
VII	$1-3-4-5,1-3-5$	$3-4,3-5$	1,500	13
VIII	all	$2-4,3-4,3-5$	2,500	12
IX	all	$1-2,3-4,3-5$	3,500	11
X	all	$1-2,1-3$	5,000	10

The length of various paths after each crashing is given here:

Path	Normal										
	length	I	$I I$	$I I I$	$I V$	V	$V I$	VII	VIII	$I X$	X
$1-2-4-5$	17	16	15	14	13	13	13	13	12	11	10
$1-3-4-5$	20	19	18	17	16	15	14	13	12	11	10
$1-3-5$	18	18	18	17	16	15	14	13	12	11	10

The varying project durations and the cost associated therewith are shown in the following table.

Determination of Total Cost

Duration (Weeks)	Normal Cost	Crashing Cost	Overhead	Penalty	Total Cost
20	36,000	0	20,000	16,000	72,000
19	36,000	250	19,000	14,000	69,250
18	36,000	500	18,000	12,000	66,500
17	36,000	1,250	17,000	10,000	64,250
16	36,000	2,000	16,000	8,000	62,000
15	36,000	3,500	15,000	6,000	60,500
14	36,000	5,000	14,000	4,000	59,000
13	36,000	6,500	13,000	2,000	57,500
12	36,000	9,000	12,000	0	57,000
11	36,000	12,500	11,000	0	59,500
10	36,000	17,500	10,000	0	63,500

From the table, it is evident that the optimal project duration is 12 weeks. All activities are critical after this crashing.
17.

Thus, normal duration of the project is 24 days while the minimum duration is 17 days.

Crashing	Critical Path(s)	Decision	Cost
I	1-4-6-8	1-4	100
II	1-4-6-8	1-4	100
III	$\left\{\begin{array}{l}1-4-6-8 \\ 1-2-3-7-8\end{array}\right.$	1-4, 1-2	300
IV	$\left\{\begin{array}{l}1-4-6-8 \\ 1-2-3-7-8\end{array}\right.$	4-6, 1-2	600
V	$\left\{\begin{array}{l}1-4-6-8 \\ 1-2-3-7-8\end{array}\right.$	4-6, 7-8	700
VI	$\left\{\begin{array}{l}1-4-6-8 \\ 1-2-3-7-8\end{array}\right.$	4-6, 3-7	1,200
VII	$\left\{\begin{array}{l}1-4-6-8 \\ 1-2-3-7-8 \\ 1-2-5-7-8\end{array}\right.$	$4-6$ $3-7$ $4-6$	1,450

Lengths of Paths after Crashings

Path	Crashing								
	0	1	2	3	4	5	6	7	
$1-2-5-7-8$	21	21	21	20	19	18	18	17	
$1-2-3-7-8$	22	22	22	21	20	19	18	17	
$1-3-7-8$	16	16	16	16	16	15	14	13	
$1-4-6-8$	24	23	22	21	20	19	18	17	

Time/Cost Table

Duration (Days)	Normal Cost	Crashing Cost	Overhead	Penalty	Total Cost
24	18,400	0	12,000	6,000	36,400
23	18,400	100	11,500	4,000	33,900
22	18,400	200	11,000	2,000	31,600
21	18,400	500	10,500	0	29,400
20	18,400	1,100	10,000	0	29,500
19	18,400	1,800	9,500	0	29,700
18	18,400	3,000	9,000	0	30,400
17	18,400	4,450	8,500	0	31,350

From the table,
(a) Normal duration: 24 days, Cost: Rs 36,400
(b) Minimum duration: 17 days, Cost: Rs. 31,350
(c) Minimum Cost: Rs 29,400 , Time: 21 days
18. Network:

Normal duration $=32$ days
Shortest duration $=25$ days

Activity	1-2	1-3	2-4	2-5		3-5	3-6			5-7	6-7
Cost slope	50	50	50	67		83	67			50	75
	Path	Length after successive Crashings									
	1-2-4-7	28	28	27	27	27	27	26	25		
	1-2-5-7	31	31	30	29	28	27	26	25		
	1-3-5-7	29	28	27	26	25	25	25	25		
	1-3-6-7	32	31	30	29	28	27	26	25		

Crashing Table

Crashing	Critical Path(s)	Decision	Cost
I	1-3-6-7	1-3	50
II	$\left\{\begin{array}{l}1-2-5-7\end{array}\right.$	1-2, 1-3	100
	1-3-6-7		
III	$\left\{\begin{array}{l}1-2-5-7\end{array}\right.$	5-7, 3-6	117
	1-3-6-7		
IV	$\left\{\begin{array}{l}1-2-5-7\end{array}\right.$	5-7, 3-6	117
	1-3-6-7		
V	$\{1-2-5-7$	2-5, 3-6	134
	1-3-6-7		
VI	$\int^{1-2-4-7}$	2-4, 2-5, and 6-7	192
	$\left\{\begin{array}{l}1-2-5-7\end{array}\right.$		
	(1-3-6-7		
VII	$\int 1-2-4-7$	2-4, 2-5, and 6-7	192
	$\{1-2-5-7$		
	1-3-6-7		

Cost Table

Duration	Normal Cost	Crashing Cost	Total Cost
32	10,400	0	10,400
31	10,400	50	10,450
30	10,400	150	10,550
29	10,400	267	10,667
28	10,400	384	10,784
27	10,400	518	10,918
26	10,400	710	11,110
25	10,400	902	11,302

To complete the project in 25 days, the cost involved is Rs 11,302 and the activities which need to crash are: 1-2: 1 day; 1-3: 2 days; 2-4: 2 days; 2-5: 3 days; 3-5: none; 3-6: 3 days; 4-7: none; 5-7: 2 days; and 6-7: 2 days.
The project cannot be completed in 22 days. When the duration is 25 days, all paths are seen to be critical, and therefore, need to be crashed. But, evidently, not all of them can be reduced any further. Hence, no further crashing can be possible.

Calculation of Cost of Reduction

Activity	Time		Cost		Cost of Reduction per day
	Normal	Crash	Normal	Crash	
A	6	5	300	400	100
B	8	6	400	600	100
C	7	5	400	600	100
D	12	4	1,000	1,400	50
E	8	8	800	800	-
F	7	6	400	500	100
G	5	3	1,000	1,400	200
H	8	5	500	700	200/3

		Length after Crashing					
Path	N	(S)	I	$I I$	$I I I$	$I V$	V
$1-2-4-6-7$	26	(21)	25	24	23	22	21
$1-3-4-6-7$	25	(13)	25	24	23	22	21
$1-3-5-7$	23	(17)	23	23	23	22	21

Crashing	Critical Path(s)	Decision	Cost
I	1-2-4-6-7	1-2	100
II	1-2-4-6-7	2-4	150
	1-3-6-7	3-6	
III	1-2-4-6-7	2-4	150
	1-3-6-7	3-6	
IV	$\int 1-2-4-6-7$	6-7, 5-7 (Rs 267)	
	$\left\{\begin{array}{l}1-3-6-7\end{array}\right.$	1-3, 6-7 and	250
	1-3-5-7	Reverse 3-6 (Rs 250)	
V	$\int 1-2-4-6-7$	1-3, 6-7	
	$\{$ 1-3-6-7	and Reverse	250
	1-3-5-7	3-6	

Time and Cost Table

Duration	Normal Cost	Crashing Cost	Total Cost
26	4,800	0	4,800
25	4,800	100	4,900
24	4,800	250	50,50
23	4,800	400	5,200
22	4,800	650	5,450
21	4,800	900	5,700

Activities to crash: $A: 1$ day; $B: 2$ days; $C: 2$ days and $G: 2$ days
Minimum crashing cost to complete project in 21 days $=$ Rs 900
20.

Critical Path : ACGIL
Duration : 21 days

Activity	t	$E S$	$E F$	$L S$	$L F$
A	3	0	3	0	3
B	2	3	5	10	12
C	4	3	7	3	7
D	6	3	9	7	13
E	3	5	8	12	15
F	2	8	10	15	17
G	6	7	13	7	13
H	4	9	13	13	17
I	4	13	17	13	17
J	2	9	11	17	19
K	2	11	13	19	21
L	4	17	21	17	21

21. For the given information, the network is shown below. Also indicated alongside are activity durations and worker requirements.

The network is redrawn on a time scale on the assumption that each activity is scheduled at its earliest start. This is shown in the figure below. Requirement of labour over time is also given below.

Days	:	1,2	$3-6$	7	8	9	$10-12$	13	$14-20$
Workers needed $:$	31	32	36	28	34	24	15	16	

The large variations in the demand of labour can be reduced by means of:

Step 1 :	shift $4-7$ by 8 days.
Step 2:	shift $6-7$ by 2 days.
Step 3 :	shift $2-5$ by 2 days.
Step $4:$	shift $1-2$ by 2 days.

The resulting schedule is shown below.

The labour requirement is given below:

| Days $:$ | 1,2 | $3-8$ | $9-11$ | $12-13$ | $14-15$ | $16-20$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Workers needed : | 25 | 24 | 25 | 24 | 25 | 24 |

From these, a requirement of 25 workers is worked out. Else, if overtime may be permissible, 24 workers should be sufficient.
22. As a first step, we represent the given relationships through an arrow diagram.

From the figure, it is evident that the project duration is 14 weeks, which is what is needed. This network is redrawn on a time scale. It is drawn on the assumption that every activity is started at the earliest. In the lower part of the diagram, the crew required on each day of the project is shown.

In an attempt to even out the crew requirement in various weeks, we may reschedule the activities. The dotted lines in the diagram indicate the float available on various activities. This is done below:

Step 1: Shift activity C by 7 weeks.
Step 2: Shift activity F by 2 weeks.
Step 1 would cause crew requirement reduced by 2 in weeks 5,6 and 7 , and increase in weeks 12,13 and 14. Similarly, step 2 would result in a shift of 3 crew members from weeks 8 and 9 to weeks 10 and 11. The crew requirements are indicated below. It is clear that after both the steps, the crew demand would be set equal to 6 for the entire span of 14 weeks.

Week	$:$	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Crew requirement :															
Original	6	6	6	6	8	8	8	9	9	3	3	4	4	4	
Step 1	6	6	6	6	6	6	6	9	9	3	3	6	6	6	
Step 2	6	6	6	6	6	6	6	6	6	6	6	6	6	6	

23. The project network is shown below.

The various paths along with their lengths are given here:

$1-3-7-8$	$20 ;$	$1-4-6-7-8$	$40 ;$
$1-3-6-7-8$	$38 ;$	$1-4-6-8$	$34 ;$
$1-3-6-8$	$32 ;$	$1-5-6-7-8$	$32 ;$ and
$1-2-6-7-8$	$30 ;$	$1-5-6-8$	26
$1-2-6-8$	$24 ;$		

(a) Activity J is critical one while K is non-critical. Shifting resources will reduce the project duration by 2 weeks (the longest non-critical path being of 38 -week duration). Hence, a net saving of Rs 1,000 would result.
(b) H is a critical activity. A reduction of 3 weeks would cause the project duration equal to 38 weeks. Hence, no change in cost would take place as the additional cost and cost-saving would match.
(c) Activity G is non-critical. Therefore, the proposal is unacceptable as no time saving would result.
(d) Reduction of 3 weeks in the time of activity L would reduce the duration of the project by 2 weeks while increase in K 's time would not affect the project duration. Thus, a saving of Rs 1,000 will result from the proposal.
24.

On the basis of the earliest and latest scheduling times shown in the network, the scheduling chart is drawn here. Manpower requirement on a day-to-day basis is indicated on the lower part of the chart.

25. (i) The project network is shown below.

Network
(ii) From the network, we observe that the critical path is 1-3-7-9 and the project duration is 15 months.
(iii) The network given is redrawn on a time scale as follows. For the network, various paths and their lengths are:

Path	Length
$1-3-7-9$	15 months
$1-3-6-8-9$	14 months
$1-2-5-8-9$	10 months
$1-4-7-9$	9 months

Network (Time-scaled)
It is given that the special equipment (SE) is required on activities 1-3, 3-6, 2-5, 5-8, and 8-9. Activities on paths 1-4-7-9 and 1-3-7-9 will continue as per schedule. The SE is required from the third month onwards on activities 3-6 and 2-5. Since a float of four months is available on path 1-2-5-8, we shift 2-5 by five months so that activity 3-6 may be completed within that time.

As a result of shifting 2-5 by five months, it would start in eighth month and completed by end of eleventh month. The following activity, $5-8$, would be scheduled in the twelfth month. Finally, the SE would be employed on activity $8-9$ that would begin in thirteenth month.

It is evident from above that the project would not be delayed by this rescheduling of activities.
26.

From the scheduling times, we determine:
Apply crane in this order (i) 4-6; days 4-10 No delay
(ii) 3-6; days 10-12 Delay 2 days beyond LS
(iii) 5-17; days 13-18 or 14-19 No delay
(iv) $2-8$; days to start: $18,19,20$ No delay

Result: Delay in project competition $=2$ days
27. The network for the given project is shown in the following figure.

With unlimited resources, the project can be done in 18 days. However, when the resources are limited, as is the case here, the project may take longer than this. Thus, we will allocate the given resources to see how long the project will take to complete. This is done below.

When 8 workers are employed:

Halt $1 T=0$

EAS	$:$	$1-2^{*}$	$1-3^{*}$
ES	$:$	0	0
LS	$:$	5	0
OAS $:$	$1-3$	$1-2$	0

Schedule : 1-3 for 4 days. No. of workers: 3
1-2 for 5 days. No. of workers: 4

Halt $2 T=4$

| EAS $:$ | $1-4^{*}$ | $2-4$ | $2-6$ | $3-4$ | $3-5$ |
| :--- | :--- | :---: | ---: | ---: | ---: | ---: |
| ES $:$ | 4 | 5 | 5 | 5 | 5 |
| LS $:$ | 10 | | | | |
| OAS $:$ | $1-4$ | | | | |

Schedule : 1-4 for 3 days. No. of workers: 2
Halt $3 T=5$

EAS	$:$	$2-4$	$2-6$	$3-4$	$3-5^{*}$
ES	$:$	5	5	5	5
LS	$:$	11	10	9	4
OAS	$:$	$3-5$	$3-4$	$2-6$	$2-4$

Schedule : 3-5 for 4 days. No. of workers: 5
Halt $4 T=7$

EAS	$:$	$2-4$	$2-6^{*}$	$3-4$	$5-6$
ES	$:$	9	7	9	9
LS	$:$		10		
OAS	$:$	$2-6$			

Schedule : 2-6 for 8 days. No. of workers: 3
Halt $5 T=9$

EAS	$:$	$2-4$	$3-4$	$5-6^{*}$
ES	$:$	15	9	9
LS	$:$		9	8
OAS	$:$	$5-6$	$3-4$	

Schedule : 5-6 for 10 days. No. of workers: 5
Halt $6 T=19$

EAS	$:$	$2-4$	$3-4^{*}$
ES	$:$	19	19
LS	$:$	11	9
OAS	$:$	$3-4$	$2-4$

Schedule : 3-4 for 4 days. No. of workers: 5
Halt $7 T=23$
EAS : 2-4*
Schedule : 2-4 for 2 days. No. of workers: 6
Halt $8 T=25$
EAS : 4-6*
Schedule : 4-6 for 5 days. No. of workers: 3
Thus, project will complete in 30 days, as shown in part (a) of the following figure.
When 9 workers are employed:
Halt $1 T=0$

EAS	$:$	$1-2^{*}$	$1-3^{*}$	$1-4^{*}$
ES	$:$	0	0	0
LS	$:$	5	0	10
OAS	$:$	$1-3$	$1-2$	$1-4$

Schedule : 1-3 for 4 days. No. of workers: 3
1-2 for 4 days. No. of workers: 4
1-4 for 4 days. No. of workers: 2
Halt $2 T=4$

EAS	$:$	$2-4$	$2-6$	$3-4$	$3-5^{*}$
ES	$:$	5	4	4	4
LS	$:$		10	9	4
OAS	$:$	$3-5$	$2-4$	$2-6$	

Schedule : 3-5 for 4 days. No. of workers: 5
Halt $3 T=5$

EAS $:$	$2-4$	$2-6^{*}$	$3-4$	$5-6$
ES	$:$	8	5	8
LS	\vdots		10	
OAS $:$	$2-6$			

Schedule : 2-6 for 8 days. No. of workers: 3
Halt $4 T=8$

EAS	$:$	$2-4$	$3-4$	$5-6^{*}$
ES	$:$	8	8	8
LS	$:$	11	9	8
OAS	$:$	$5-6$	$3-4$	$2-4$

Schedule : 5-6 for 10 days. No. of workers: 5
Halt $5 T=18$

EAS	$:$	$2-4$	$3-4^{*}$
ES	$:$	18	18
LS	$:$	11	9
OAS	$:$	$3-4$	$2-4$

Schedule : 3-4 for 4 days. No. of workers: 5
Halt $6 T=22$
EAS : 2-4*
Schedule : 2-4 for 2 days. No. of workers: 6
Halt 7 T $=24$
EAS : 4-6*
Schedule : 4-6 for 5 days. No. of workers: 3
As shown in part (b) of the figure, the project would complete in 29 days, when 9 workers are employed.
When 10 workers are employed:
Halt $1 T=0$

EAS $:$	$1-2^{*}$	$1-3^{*}$	$1-4^{*}$
ES	$:$	0	0
LS	$:$	5	0
OAS $:$	$1-3$	$1-2$	0
S			

Schedule : 1-3 for 4 days. No. of workers: 3
1-2 for 5 days. No. of workers: 4
1-4 for 3 days. No. of workers: 2
Halt $2 T=4$

EAS	$:$	$2-4$	$2-6$	$3-4$	$3-5^{*}$
ES	$:$	4	4	4	4
LS	$:$	11	10	9	4
OAS	$:$	$3-5$	$3-4$	$2-6$	$2-4$

Schedule : 3-5 for 4 days. No. of workers: 5
Halt $3 T=5$

EAS	$:$	$2-4$	$2-6$	$3-4^{*}$	$5-6$
ES	$:$	9	5	5	8
LS	$:$		10	9	
OAS $:$	$3-4$	$2-6$			

Schedule : 3-4 for 4 days. No. of workers: 5
Halt $4 T=8$

EAS	$:$	$2-4$	$2-6$	$5-6^{*}$
ES	$:$	9	8	8
LS	$:$		10	8
OAS $:$	$5-6$	$2-6$		

Schedule : 5-6 for 10 days. No. of workers: 5
Halt $5 T=9$

EAS	$:$	$2-4$	$2-6^{*}$
ES	$:$	18	9
LS	$:$		10
OAS	$:$	$2-6$	

Schedule : 2-6 for 8 days. No. of workers: 3
Halt $6 T=18$
EAS : 2-4

Schedule : 2-4 for 2 days. No. of workers: 6
Halt 7 T = 20
EAS : 4-6
Schedule : 4-6 for 5 days. No. of workers: 3
The loading chart, part (c) in the figure, shows the scheduling. From this, it is clear that the project would be completed in 25 days when 10 workers are employed. We can now work out the total cost of completing the project as follows:

No. of workers	Duration	Labour cost	Overhead	Total cost
8	30	1,920	1,500	3,420
9	29	2,088	1,450	3,538
10	25	2,000	1,250	3,250

Thus, (a) the optimal number of workers to be employed is 10 , and (b) the project duration is 25 days.

28. The project network is shown in the figure. Also given are the earliest and the latest scheduling times of the activities.

In accordance with principles stated earlier, the scheduling of activities follows:
Halt $1 T=0$

EAS	$:$	$1-2^{*}$	$1-3^{*}$	$1-4$	$2-5$	$2-6$	$3-5$
ES	$:$	0	0	0			
LS	$:$	0	8	9			
OAS $:$	$1-3$	$1-3$	$1-4$				

Schedule : 1-2 for 5 days, and 1-3 for 2 days.
Resources : 30 workers and M_{1} for 1-2, 20 workers and M_{2} for 1-3.
Halt $2 T=2$

EAS	$:$	$1-4$	$2-5$	$2-6$	$3-5^{*}$
ES	$:$	5	5	5	2
LS	$:$	9	5	12	10
OAS	$:$	$3-5$			

Schedule : 3-5 for 3 days. Resources: 20 workers and M_{3}.
Halt $3 T=5$

EAS	$:$	$1-4$	$2-5^{*}$	$2-6^{*}$	$5-6$
ES	$:$	5	5	5	
LS	$:$	9	5	12	
OAS	$:$	$2-5$	$1-4$	$2-6$	

Schedule : 2-5 for 8 days. Resources: 20 workers and M_{1}.
2-6 for 6 days. Resources: 20 workers and M_{2}.
Halt $4 T=11$

EAS	$:$	$1-4$	$5-6^{*}$	$6-7$
ES	$:$	13	11	
LS	$:$	9	13	
OAS	$:$	$5-6$		

Schedule : 5-6 for 2 days. Resources: 20 workers and M_{2}.
Halt $5 T=13$

EAS	$:$	$1-4^{*}$	$6-7 *$	$4-7$
ES	$:$	13	13	
LS	$:$	9	15	
OAS	$:$	$1-4$	$6-7$	

Schedule : 1-4 for 5 days. Resources: 30 workers, M_{1} and M_{3}. 6-7 for 3 days. Resources: 20 workers and M_{2}.
Halt $6 T=18$
EAS : 4-7
Schedule : 4-7 for 4 days, Resources: 40 workers, M_{2} and M_{3}.
The loading chart is given below. It is clear that the project duration is 22 days.

29. (i) The expected duration and variance for each of the activities are:

Activity	$:$	A	B	C	D	E	F	G	H
t_{e}	$:$	5	14	9	15	8	9	4	5
σ^{2}	$:$	$\frac{25}{9}$	$\frac{64}{9}$	$\frac{1}{9}$	$\frac{25}{9}$	$\frac{4}{9}$	0	$\frac{4}{9}$	0

Path	Length
$1-2-4-5-6$	29
$1-2-5-6$	18
$1-2-3-5-6$	28
$1-3-5-6$	28

(ii) Critical Path: 1-2-4-5-6 Activities: A, D, G, H

Expected duration: 29 weeks
Project variance: $\frac{25}{9}+\frac{25}{9}+\frac{4}{9}+0=6$
Standard Deviation $=\sqrt{6}=2.45$ weeks
(iii) The required probability is given by area under the normal curve to the left of $X=30$, when $\mu=29$ and $\sigma=2.45$.

$$
Z=\frac{30-29}{2.45}=0.41 \quad \text { Area }=0.1591
$$

\therefore Required area $=0.5+0.1591=0.6591$
30. (a) We have,

$$
\begin{aligned}
\text { Expected time } & =\frac{a+4 m+b}{6} \\
15 & =\frac{9.5+4 m+b}{6}
\end{aligned}
$$

Thus,
or

$$
\begin{equation*}
4 m+b=80.5 \tag{i}
\end{equation*}
$$

Also,

$$
\left(\frac{b-a}{6}\right)^{2}=6.25
$$

$$
\begin{equation*}
\left(\frac{b-9.5}{6}\right)^{2}=6.25 \tag{ii}
\end{equation*}
$$

or $\quad b=6 \times 2.25+9.5=24.5$
From equations (i) and (ii),

$$
m=14 \text { and } b=24.5
$$

(b) Using the given data,

$$
\begin{aligned}
\mu & =12+3+8+7+5+6=41 \text { weeks } \\
\sigma^{2} & =(2 / 3)^{2}+(1 / 3)^{2}+2^{2}+(5 / 3)^{2}+(4 / 3)^{2}=82 / 9 \text { or } 9.111 \\
\therefore \quad \sigma & =\sqrt{9.111}=3.018 \text { weeks }
\end{aligned}
$$

(i) $Z=\frac{45-41}{3.018}=1.33$

Area to the left of $Z=1.33$ is $0.5+0.4075=0.9075$. This is the required probability.
(ii) For Area $(0.5-0.1)=0.40$, the Z -value is 1.28 . Thus,

$$
1.28=\frac{X-41}{3.018}
$$

$\therefore \quad X=1.28 \times 3.018+41=44.86$ weeks or 44 weeks and 6 days
31. The expected time and variance for each activity is first calculated as:

$$
t_{e}=\frac{o+4 m+p}{6} \quad \text { and } \quad \sigma^{2}=\left(\frac{p-o}{6}\right)^{2}
$$

These are given here:

Activity	$:$	$1-2$	$1-3$	$1-4$	$2-3$	$2-5$	$3-4$	$3-6$	$4-6$	$5-6$
t_{e}	$:$	4	6	13	5	16	26	6	16	10
σ^{2}	$:$	$4 / 9$	0	9	1	$64 / 9$	25	1	9	4

(i) The network is shown below and critical path is obtained by using expected times. Also given are the earliest and latest event times for nodes.

Network
The critical path is 1-2-3-4-6.
(ii) The expected duration of the project is 51 days. The critical activities being 1-2, 2-3, 3-4, and 4-6, the variance $=4 / 9+1+25+9=35.44$. Thus, standard deviation $=\sqrt{35.44}=5.95$ days.
(iii) (iv) (v) These probabilities can be calculated by finding the respective areas marked in the diagram.

Calculation of Areas

In part (a),

$$
Z=\frac{60-51}{5.95}=1.51
$$

Area for

$$
Z=1.51 \text { is } 0.4345
$$

$$
\therefore \text { Required area }=0.5-0.4345
$$

$$
=0.0655
$$

For part (b),

$$
\begin{aligned}
& Z_{1}=\frac{45-51}{5.95}=-1.01 \\
& Z_{2}=\frac{54-51}{5.95}=0.50
\end{aligned}
$$

Area for
$\mathrm{Z}=1.01$ is 0.3438

Area for

$$
Z=0.50 \text { is } 0.1915
$$

\therefore Required area $=0.5353$

$$
\text { For part (c), } \begin{aligned}
Z=\frac{30-51}{5.95}=-3.53 \quad \text { Area for } \quad \mathrm{Z} & =3.53 \text { is } 0.4998 \\
\therefore \text { Required area } & =0.5-0.4998 \\
& =0.0002
\end{aligned}
$$

32. (a)

(b) Calculation of Mean and Variance for Activities

Activity	Expected Time	Variance	Activity	Expected Time	Variance
A	$13 / 3$	1	K	$28 / 3$	$16 / 9$
B	2	$1 / 9$	L	$13 / 3$	$4 / 9$
C	$31 / 6$	$25 / 36$	M	$25 / 6$	$1 / 4$
D	$13 / 6$	$1 / 36$	N	$19 / 6$	$1 / 4$
E	$13 / 3$	$4 / 9$	O	$37 / 6$	$25 / 36$
F	$37 / 6$	$25 / 36$	P	$13 / 6$	$1 / 36$
G	$38 / 3$	4	Q	$11 / 2$	$49 / 36$
H	$19 / 6$	$1 / 4$	R	4	$4 / 9$
I	$13 / 6$	$1 / 36$	S	$22 / 3$	$16 / 9$
J	$49 / 6$	$49 / 36$	T	3	$1 / 9$

Critical activities are: $A, C, D, F, G, H, K, N, O, Q, R, T$
(c) \therefore Expected duration of the project $=\frac{13}{3}+\frac{31}{6}+\frac{13}{6}+\frac{37}{6}+\frac{38}{3}+\frac{19}{6}+\frac{28}{3}+\frac{19}{6}+\frac{37}{6}+\frac{11}{2}+4+3$
$=64 \frac{5}{6}$ or 64.8333
(d) Variance, $\sigma^{2}=1+\frac{25}{36}+\frac{1}{36}+\frac{25}{36}+4+\frac{1}{4}+\frac{16}{9}+\frac{1}{4}+\frac{25}{36}+\frac{49}{36}+\frac{4}{9}+\frac{1}{9}=11 \frac{11}{36}$ or 11.3056

$$
\therefore \sigma=\sqrt{11.3056}=3.3624
$$

Thus, expected duration of the project is 64.8333 weeks with a standard deviation of 3.3624 weeks.
(e) For $X=52$,

$$
Z=\frac{52-64.8333}{3.3624}=-3.82
$$

Area of the left of $Z=-3.82$ is $0.5-0.4999=0.0001$. This is the probability that the project will be completed in 52 weeks.
(f) Probability that the project will be completed in 65 weeks is given by area to the left of $X=65$.

$$
\begin{array}{ll}
& Z=\frac{65-64.8333}{3.3624}=0.05 \text { Area }=0.0199 \\
\therefore & P(X<65)=0.5+0.0199=0.5199
\end{array}
$$

(g) Probability of not completing the project within 70 weeks is given by the area to the right of $X=70$.

$$
\begin{array}{ll}
& Z=\frac{70-64.8333}{3.3624}=1.54 \text { Area }=0.4382 \\
\therefore & P(X>70)=0.5-0.4382=0.0618
\end{array}
$$

33. (a) Here $a=10$ minutes, $b=60$ minutes and $m=20$ minutes. Accordingly,
(i) Expected duration $=\frac{10+4 \times 20+60}{6}=25$ minutes
(ii) Variance $=\left[\frac{60-10}{6}\right]^{2}=69.44$ minutes 2
(iii) Scheduling the project would need 25 minutes for this activity.
(b)

(i)

Activity	Duration	$E S$	$E F$	$L S$	$L F$	Total Float	Free Float
$1-2$	4	0	4	0	4	0	0
$1-3$	7	0	7	4	11	4	0
$1-4$	10	0	10	2	12	2	2
$2-3$	3	4	7	8	11	4	0
$2-4$	8	4	12	4	12	0	0
$2-5$	11	4	15	10	21	6	6
$2-6$	18	4	22	9	27	5	5
$3-5$	10	7	17	11	21	4	4
$3-6$	16	7	23	11	27	4	4
$4-5$	9	12	21	12	21	0	0
$5-6$	6	21	27	21	27	0	0
$5-7$	11	21	32	24	35	3	3
$6-7$	8	27	35	27	35	0	0

(ii) The critical path is 1-2-4-5-6-7 with the project duration of 35 days.
(iii) Activity 2-6 is not a critical activity. Hence, speeding it up would have no bearing on the project duration. On the other hand, the activity $4-5$ lies on the critical path. This being a critical activity, speeding it up by 2 days would reduce the critical path length, and hence the project duration, by an equal amount.
(c) Expected duration of the project, $\mu=35$ days

Variance along the critical path, $\sigma^{2}=81$ days 2 (given)
$\therefore \sigma=\sqrt{81}=9$ days.

The probability of completing the project within 33 days is given by the area under the normal curve (with $\mu=35$ and $\sigma=9$) to the left of $X=33$. Thus,

$$
\begin{aligned}
Z=\frac{X-\mu}{\sigma} & =\frac{33-35}{9} \\
& =-0.22
\end{aligned}
$$

From the normal area table, area corresponding to $Z=0.22$ is 0.0871 . Accordingly, the required probability is $0.5-0.0871=0.4129$.
For probability of completing the project in 44 days,

$$
\begin{array}{r}
Z=\frac{44-35}{9}=1.00 \quad \text { Area }=0.3413 \\
P(X \leq 44)=0.5+0.3413=0.8413
\end{array}
$$

Activity	a	m	b	$t e$	σ^{2}	$E S$	$E F$	$L S$	$L F$	Total stock	
A	$1-2$	2	2	2	2	0	0	2	$15 / 6$	$27 / 6$	$15 / 6$
B	$1-3$	1	3	7	$20 / 6$	1	0	$20 / 6$	0	$20 / 6$	0
C	$2-4$	4	7	8	$40 / 6$	$4 / 9$	2	$52 / 6$	$27 / 6$	$67 / 6$	$15 / 6$
D	$2-5$	3	5	7	5	$4 / 9$	2	7	$37 / 6$	$67 / 6$	$25 / 6$
E	$3-6$	2	6	9	$35 / 6$	$49 / 36$	$20 / 6$	$55 / 6$	$32 / 6$	$67 / 6$	2
F	$3-8$	5	9	11	$52 / 6$	1	$20 / 6$	$72 / 6$	$20 / 6$	12	0
G	$5-7$	3	6	8	$35 / 6$	$25 / 36$	$52 / 6$	$87 / 6$	$67 / 6$	17	$15 / 6$
H	$6-7$	2	6	9	$35 / 6$	$49 / 36$	$55 / 6$	$90 / 6$	$67 / 6$	17	2
I	$5-10$	3	5	8	$31 / 6$	$25 / 36$	$52 / 6$	$83 / 6$	$117 / 6$	$148 / 6$	$65 / 6$
J	$7-9$	1	3	4	$17 / 6$	$9 / 36$	15	$107 / 6$	17	$119 / 6$	2
K	$8-9$	4	8	11	$47 / 6$	$49 / 36$	12	$119 / 6$	12	$119 / 6$	0
L	$9-10$	2	5	7	$29 / 6$	$25 / 36$	$119 / 6$	$148 / 6$	$119 / 6$	$148 / 6$	0

Critical path : 1-3-8-9-10 (B-F-K-L)
Expected completion time $=148 / 6=24.67$ days

Variance $=146 / 36 \quad \therefore \sigma=\sqrt{146 / 36}=2.014$ days
If X number of days give a 99% probability of completion, we have

$$
2.33=\frac{X-24.67}{2.014}
$$

Thus,

$$
\begin{aligned}
X & =2.33 \times 2.014+24.67 \\
& =29.36 \simeq 30 \text { days }
\end{aligned}
$$

35. (a) Here $\mu=21$ months, $\sigma=2$ months.
(i) $P(X>22)$ is given by area under the normal curve to the right of $X=22$.

$$
Z=\frac{22-21}{2}=0.5
$$

For $Z=0.5$, the area is 0.1915 . Accordingly, area to the right $=0.5-0.1915=0.3085$.
(ii) The probability of the project being completed in the 24th month is given by the area included between $X=23$ and $X=24$.
For $X=23$,

$$
Z=\frac{23-21}{2}=1.00
$$

Area

For $X=24$,

$$
Z=\frac{24-21}{2}=1.50
$$

$$
0.4332
$$

Thus, required area $=0.4332-0.3413=0.0919$
(b) (i) The expected time and standard deviation of each of the activities of the project are given here:

Activity	te	σ	Activity	te	σ
A	8	2	G	6	$4 / 3$
B	6	$2 / 3$	H	11	$1 / 3$
C	12	$7 / 3$	I	6	$2 / 3$
D	6	0	J	10	0
E	7	$2 / 3$	K	14	$4 / 3$
F	9	$3 / 2$	L	3	$2 / 3$

(ii) Critical path 1-2-6-7-8 ($A E K L$)

Expected duration: $8+7+14+3=32$ weeks
Variance, $\sigma^{2}=2^{2}+(2 / 3)^{2}+(4 / 3)^{2}+(2 / 3)^{2}=20 / 3$ weeks 2
\therefore Standard deviation, $\sigma=\sqrt{20 / 3}=2.582$ weeks
(iii) The area under the normal curve, with $\mu=32$ and $\sigma=2.582$, to the left of $X=38$ gives the desired probability. Here,

$$
Z=\frac{38-32}{2.582}=2.32 \quad \frac{\text { Area }}{0.4898}(\text { From Table })
$$

\therefore Total area to the left of $X=0.5+0.4898=0.9898$
(iv) For 90 per cent probability, area between mean and X is 40% or 0.40 . Corresponding to this, the Z value is 1.28 . Thus,

$$
\begin{aligned}
1.28 & =\frac{X-32}{2.582} \\
\text { or } \quad X & =1.28 \times 2.582+32 \\
& =35.3 \text { weeks or } 35 \text { weeks } 2 \text { days. }
\end{aligned}
$$

36. (i) The PERT network is drawn in the following figure.

PERT Network

The critical path is 1-2-4-7-9-10, involving activities A, C, F, H, and K. It is obtained using expected times as shown calculated in table. The table also gives variances for the activities, the earliest and latest scheduling times based on expected durations, and the expected float associated.

Expected Durations, Variances, and Floats

Activity	a	b	m	Expected Time	σ^{2}	Earliest		Latest		Total Float
						Start	Finish	Start	Finish	
A	2	4	3	3	1/9	0	3	0	3	0
B	8	8	8	8	0	0	8	1	9	1
C	7	11	9	9	4/9	3	12	3	12	0
D	6	6	6	6	0	8	14	9	15	1
E	9	11	10	10	1/9	12	22	18	28	6
F	10	18	14	14	16/9	12	26	12	26	0
G	11	11	11	11	0	14	25	15	26	1
H	6	14	10	10	16/9	26	36	26	36	0
I	4	6	5	5	1/9	22	27	28	33	6
J	3	5	4	4	1/9	27	31	33	37	6
K	1	1	1	1	0	36	37	36	37	0

(ii) This project has expected completion time equal to 37 weeks with a standard deviation $=\sqrt{(1 / 9+4 / 9+16 / 9+16 / 9+0)}=2.028$ weeks. In order to calculate the probability that a maximum penalty of Rs 15,000 would be payable, we need to compute the chances that the project would be completed within 40 weeks (Since $(40-37) \times 5,000=15,000)$. For this, we have

$$
Z=\frac{40-37}{2.028}=1.48
$$

From the Normal Area Table, the area for $Z=1.48$ is obtained as 0.4306 . Thus, the required probability $=0.5+0.4306=0.9306$.

Calculation of Expected Times and Variances

Activity	a	m	b	Expected Time	Variance	
A	3	6	15	7	4	
B	2	5	14	6	4	
C	6	12	30	14	16	C
D	2	5	8	5	1	
E	5	11	17	11	4	C
F	3	6	15	7	4	
G	3	9	27	11	16	
H	1	4	7	4	1	C
I	4	19	28	18	16	
J	1	2	9	3	$16 / 9$	C
K	2	4	12	5	$25 / 9$	

The network diagram is shown on next page. The critical path is obtained as 1-3-5-6-7, comprising activities C, E, H, J. Also given are the earliest and the latest event times, E and L, in the diagram. They are all calculated using expected times.
The project has an expected completion time of 32 days and variance $=16+4+1+16 / 9=22.778$. The standard deviation $=\sqrt{22.778}=4.77$ days.

Network Diagram

To calculate the probability that the project will be completed within two days later than expected, we find area under normal curve to the left of $X=34$. Thus,

$$
Z=\frac{34-32}{4.77}=0.42
$$

For $Z=0.42$, the area is given as 0.1628 . Thus, the total area to left of $X=34$ is $0.5+0.1628=0.6628$, which is the desired probability.

Calculation of Expected Duration and Variances

Activity	Duration				Expected Duration	Variance
	a	m	25	17.83	3.36	C
$1-2$	14	17	21	17.83	1.36	C
$2-3$	14	18	18	15.17	0.69	
$2-4$	13	15	28	20.00	4.00	
$2-8$	16	19	-	-	-	
$3-4$	-	-	27	19.00	4.00	C
$3-5$	15	18	21	17.00	1.78	
$4-6$	13	17	-	-	-	C
$5-7$	-	-	20	17.67	1.00	
$5-9$	14	18	-	-	-	
$6-7$	-	-	-	-		
$6-8$	-	-	-	22.83	17.36	C
$7-9$	16	20	41	16.67	1.78	
$8-9$	14	16	22	16		

The PERT network is shown below and critical path is found there from using expected times for various activities.

Network Diagram

The various paths and their lengths are:

Path	Length	Path	Length
1-2-3-5-7-9	77.49	$1-2-8-9$	54.50
$1-2-3-5-9$	72.33	$1-2-4-6-8-9$	66.67
$1-2-3-4-6-7-9$	75.49	$1-2-4-6-7-9$	72.83
$1-2-3-4-6-8-9$	69.33		

Thus, critical path is 1-2-3-5-7-9 with project duration expected to be 77.49 days. The summation variances of critical activities gives 26.08. Thus,
Expected project duration, $\mu=77.49$, and standard deviation, $\sigma=\sqrt{26.08}=5.12$ days.
We now determine within how many days should the project be completed so as to break-even was a 95% probability. We have, $Z(0.95)=1.65$. Thus,

$$
1.65=\frac{X-\mu}{\sigma}=\frac{X-77.49}{5.12}
$$

or

$$
X=1.65 \times 5.12+77.49=85.9 \text { or } 86 \text { days }
$$

The fixed cost of the project being Rs $8,00,000$ and the variable cost being Rs 9,000 per day, the amount to bid is calculated below:

Bid amount $=$ Rs $8,00,000+$ Rs $9,000 \times 86$

$$
=\operatorname{Rs} 15,74,000
$$

39. (a) With $\mu=24$ and $\sigma=\sqrt{9}=3$, the probability of completing the project in 20 months is given by the area under normal curve as shown in figure.

$$
\text { Now, } \quad \begin{aligned}
Z & =\frac{X-\mu}{\sigma} \\
& =\frac{20-24}{3}=1.33
\end{aligned}
$$

The area corresponding to $Z=1.33$ is 0.4082 . Thus, the required probability $=0.5-0.4082=$ 0.0918 .

Further, let the required time in which the work be completed with 0.90 probability be X. Since the area between μ and X is 0.40 , the Z-value corresponding to this area is 1.28 . Accordingly,

$$
1.28=\frac{X-\mu}{\sigma}
$$

or

$$
\begin{aligned}
X & =1.28 \times 3+24 \\
& =27.84 \text { months or } 2 \text { years } 3 \text { months and } 25 \text { days }
\end{aligned}
$$

(b) The require probability is given by the area under the normal curve (with $\mu=36$ and $\sigma=6$) between $X=30$ and $X=42$. This is as shown in figure. We have, now

$$
\begin{aligned}
& Z_{1}=\frac{30-36}{6}=-1.00 \\
& Z_{2}=\frac{42-36}{6}=1.00
\end{aligned}
$$

Area corresponding to $Z=1.00$ is 0.3413 . Thus, the re-
quired area $=0.3413+0.3413=0.6826$.
(c) With $\mu=42$ and $\sigma=\sqrt{36}=6$, we have

$$
Z_{1}=\frac{36-42}{6}=-1.00 \text { and } Z_{2}=\frac{48-42}{6}=1.00 .
$$

Since area included in the range $\mu \pm 1 \sigma$ is about 68%, option (ii) is the correct answer.
(d) Statement (ii) is correct.
(e) If a and b be the optimistic and pessimistic times respectively, we have

$$
\frac{19}{3}=\frac{a+b+4 \times 6}{6} \text { and } \frac{b-a}{6}=1 .
$$

Solving these two equations, we get $a=4$ and $b=10$.
(f) Substituting the known values in the expressions to calculate expected time and standard deviation, and then solving for a and b, we get $a=7$ and $b=31$. Hence, option (ii) is correct.
40. (a) The network is shown below. The expected project duration is 50 days and the critical activities are

A, E, I and L.
Network
(b) The revised network is shown in the following figure. It may be mentioned that after fire (with 23 days gone), 37 days remain and the following tasks are to be done.

Tasks	Immediate predecessors	Duration
C	-	10
F	-	6 (remaining)
G	C	12
H	C	14
I	-	13
J	G, H	12
K	H	10
L	H, I	14
M	H, I, F	15 (revised)

(c) For the revised project, we have

Critical activity	Duration	Standard deviation	Variance
C	10	0.33	0.1089
H	14	1.33	1.7689
M	15	0.33	$\underline{0.1089}$
	$\underline{39}$		$\underline{1.9867}$

Standard deviation $=\sqrt{1.9867}=1.4095$

Revised Network

Now, we have to find the probability of completing the total project in 60 days, which implies completing the revised project in 37 days. We have,

$$
\begin{aligned}
Z=\frac{37-39}{1.4095}=-1.42 . \text { Area for } Z & =1.42 \text { is } 0.4222 . \\
\therefore \text { Required area } & =0.5-0.4222 \\
& =0.0778
\end{aligned}
$$

CHAPTER 13

1.

Conditional Pay-off Matrix

Estimated	Type of Shampoo		
Sales (Units)	Egg	Clinic	Deluxe
15,000	30	40	55
10,000	10	15	20
5,000	10	5	3
Minimum	10^{*}	5	3
Maximum	30	40	55^{*}
Average	$50 / 3$	20	783^{*}

Conditional Regret Matrix

Estimated	Type of Shampoo		
Sales (Units)	Egg	Clinic	Deluxe
15,000	25	15	0
10,000	10	5	0
5,000	0	5	7
Maximum	25	15	$7 *$

From the maxima, minima, and average values derived, we have

Criterion	Decision	Pay-off
Maximin	Egg shampoo	Rs 10 m
Maximax	Deluxe shampoo	Rs 55 m
Laplace	Deluxe shampoo	Rs $78 / 3=26 \mathrm{~m}$
Regret	Deluxe ahampoo	Rs 7 m (Regret)

2.

Conditional Profit (in '000 Rs)

Product	Product Line		
Acceptance	Full	Partial	Minimal
Good	80	70	50
Fair	50	45	40
Poor	-25	-10	0
Maximum	80^{*}	70	50
Minimum	-25	-10	0^{*}
Average	35^{*}	35^{*}	30

Conditional Regret (in '000 Rs)

Product	Product Line		
	Full	Partial	Minimal
Good	0	10	30
Fair	0	5	10
Poor	25	10	0
Maximum	25	10^{*}	30

Decision Rule	Decision	Pay-off/Regret
Maximax	Full	80
Maximin	Minimal	0
Laplace	Full or Partial	35
Minimax Regret	Partial	10

3. The conditional pay-off matrix is reproduced in the table. Given alongwith in parantheses are the regret values.

Event	Prob.	Courses of Action By Land	Obtain option	No action
Large reserves	0.2	$40(0)$	$28(12)$	$0(40)$
Minor reserves	0.5	$10(0)$	$1(9)$	$0(10)$
No oil	0.3	$-25(25)$	$2(2)$	$0(0)$
Average		8.33	9.00^{*}	0
Minimum	-25	-2	0^{*}	
Maximum	40^{*}	28	0	
Max. Regret		25	12^{*}	40
Expected Payoff		5.5^{*}	5.5^{*}	0

Decision Rule
Laplace
Maximin
Maximax
Minimax Regret
Expected Payoff

Decision
Payoff/Regret
Laplace
Obtain option
9
Maximin
No action
0
Minimax Regret
Buy land
40

Expected Payoff
Obtain option
12
Buy land/Obtain option 5.5
4. The pay-off matrix and the regret matrix based thereon are given below:

Pay-off and Regret Matrices

Event	Pay-off for Action		Regret for Action			
	A_{1}	A_{2}	A_{3}	A_{1}	A_{2}	A_{3}
E_{1}	250	100	200	0	150	50
E_{2}	250	125	300	50	175	0
E_{3}	250	625	450	375	0	175
Average	250	283.3	316.7	Max. 375	175	175
Minimum	250	100	200			

From this information, we have

Criterion	Decision
Laplace	$A_{3}:$ as average pay-off is highest
Maximin	$A_{1}:$ as highest of the minimum values is 250
Hurwicz	$A_{2}:$ as it is the highest-value alternative with $\alpha=0.5$
	$A_{1}: 250 \times 0.5+250 \times 0.5=250$
	$A_{2}: 625 \times 0.5+100 \times 0.5=362.5$
	$A_{3}: 450 \times 0.5+200 \times 0.5=325$

Minimum regret
(Minimax) $\quad A_{2}$ or A_{3} : as they both have the least maximum regret values.
5.

Pay-off Matrix

State of Nature	Course of Action				
	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
S_{1}	26	22	13	22	18
S_{2}	26	22	34	30	20
S_{3}	18	22	18	18	20
S_{4}	22	22	18	18	18
$\left(R_{1}\right)$ Max.	26	22	34	30	20
$\left(R_{2}\right)$ Min.	18	22	13	18	18
$\left(R_{3}\right)$ Average	23	22	20.75	19	

(a) When payoffs are in terms of profit:

Criterion
(i) Maximax $\left(R_{1}\right)$
(ii) Maximin $\left(R_{2}\right)$

Decision
Pay-off
(iii) Laplace $\left(R_{3}\right)$
a_{2}
a_{1}
34
22
23
(b) When the payoffs represent costs:

(i)	Minimin $\left(R_{2}\right)$	a_{3}	13
(ii)	Minimax $\left(R_{1}\right)$	a_{5}	20
(iii)	Laplace $\left(R_{3}\right)$	a_{5}	19

6. Expected payoffs:

$$
\begin{aligned}
& a_{1}: 0.6 \times 0+0.1 \times 2+0.2 \times 5 \times 0.1(-4)=0.8 \\
& a_{2}: 0.6 \times 3+0.1 \times 2+0.2(-1)+0.1(-3)=1.5 \\
& a_{3}: 0.6(-3)+0.1 \times 2+0.2 \times 3+0.1 \times 1=-0.9
\end{aligned}
$$

Expected Regrets:

$$
\begin{aligned}
& a_{1}: 0.6 \times 3+0.1 \times 0+0.2 \times 0+0.1 \times 5=2.3 \\
& a_{2}: 0.6 \times 0+0.1 \times 0+0.2 \times 6+0.1 \times 4=1.6 \\
& a_{3}: 0.6 \times 6+0.1 \times 0+0.2 \times 2+0.1 \times 0=4.0
\end{aligned}
$$

Best alternative under both the criteria is a_{2}.
7. It is assumed for solving this problem that all the demand levels are equally likely.
(a) Demand
0
1
2
3
4
5
Do not buy

$$
1
$$

$$
2
$$

$$
3
$$

$$
\begin{aligned}
& 4 \\
& 5
\end{aligned}
$$

Expected value

Buy
(5000)
(2800)
(600)
1600
3800
6000
500

\square

0
0
0
0
0
0
0

Decision: Buy
(b)

Conditional Payoff (Rs)

Demand	No. of machines to buy					
	0	1	2	3	4	5
0	0	$(1,000)$	$(2,000)$	$(3,000)$	$(4,000)$	$(5,000)$
1	0	1,200	200	(800)	$(1,800)$	$(2,800)$
2	0	1,200	2,400	1,400	400	(600)
3	0	1,200	2,400	3,600	2,600	1,600
4	0	1,200	2,400	3,600	4,800	3,800
5	0	1,200	2,400	3,600	4,800	6,000
Expected Value	0	833.3	1,300	1,400	$1,133.3$	500

Decision: Buy 3 machines
8. The conditional opportunity loss values are shown in table. For each row of the pay-off matrix, the various values are subtracted from the largest value to obtain corresponding values in the opportunity loss table. The expected opportunity loss values for various strategies are also shown calculated. It is evident that Type I souvenir should be bought.

Conditional Opportunity Loss Table

Event	Probability	Course of Actiion		
		Type I	Type II	Type III
Team A wins	0.6	0	400	900
Team B wins	0.4	850	400	0
Expected loss		340	400	540

9.

Conditional Pay-off Matrix

Demand	Prob.	Production (Units)		
		2000	3000	6000
2000	$8 / 36$	90,000	55,000	$(50,000)$
3000	$16 / 36$	90,000	135,000	30,000
6000	$12 / 36$	90,000	135,000	$2,70,000$
Expected Value		90,000	117,222	92,222

Optimal Policy: Produce 3,000 Units.
10. (a) The given frequencies are converted into probabilities by dividing each of them by 200 -the total frequency. The expected demand, given by $\Sigma p X$, is equal to 205 loaves, is shown calculated in table here.

Calculation of Expected Demand

Daily Demand (X)	Probability (p)	$p X$
0	0.05	0
100	0.30	30
200	0.30	60
300	0.25	75
400	0.10	40
	Total	205

(b) From the given data, it is evident that

Profit on the sale of a loaf $=$ Rs $10-5=$ Rs 5
Loss on an unsold loaf $=$ Rs $5-2=$ Rs 3
With these values, the pay-off matrix is shown in table below.

Conditional Pay-off Matrix

Demand	Crob					
		0	100	200	300	400
0		0	(300)	(600)	(900)	$(1,200)$
100		0	500	200	(100)	(400)
200		0	500	1,000	700	400
300	0.25	0	500	1,000	1,500	1,200
400	0.10	0	500	1,000	1,500	2,000
	Expected pay-off	0	475	8,600	660	440

(c) The expected profit arising from each level of production is given in last row of the table. The optimal policy is to produce 200 loaves.
11.

Conditional Pay-off Matrix

Doses per week	Prob.	No. of Doses			
		20	25	40	60
20	0.10	800	700	400	0
25	0.30	800	1,000	700	300
40	0.50	800	1,000	1,600	1,200
60	0.10	800	1,000	1,600	2,400
	Expected value	800	970	1,210	930

Conditional Regret Matrix

Doses					
Per week	Prob.	No. of Doses			
		20	25	40	60
20	0.10	0	100	400	800
25	0.30	200	0	300	700
40	0.50	800	600	0	400
60	0.10	1,600	1,400	800	0
	Expected value	620	450	210	490

Optimum number of doses to buy $=40$
Expected value of perfect information $=$ Rs 210.
12. From the given information,

Profit on sale of a case $=$ Rs $50-$ Rs $20=$ Rs 30
Loss on an unsold case $=$ Rs $20-0=$ Rs 20
On the basis of this information, the pay-off matrix is drawn for various strategies.

Conditional Pay-off Matrix

Sales (cases)	Frequency	Prob.	Stock (cases)			
			10	11	12	13
10	15	0.15	300	280	260	240
11	20	0.20	300	330	310	290
12	40	0.40	300	330	360	340
13	25	0.25	300	330	360	390
	Expected Value		300	322.5	335	327.5

The probability for each level of sales is calculated by dividing the given frequency by total frequency $(=100)$. The expected pay-offs for all strategies are shown calculated in the last row. Since the expected pay-off is maximum for 12 , the optimal policy is to stock 12 cases.
13.

Calculation of Expected Pay-off

Demand	Prob.	Small	Large
10,000	0.25	$-1,00,000$	$-3,00,000$
20,000	0.25	$1,00,000$	0
50,000	0.25	$3,00,000$	$1,00,000$
$1,00,000$	0.25	$3,00,000$	$6,00,000$
	Expected Value $=$	$1,50,000$	$1,00,000$

Since the EMV for a small-sized factory is higher, the manufacturer should build a small factory.
Here, EPPI $=0.25(-1,00,000)+0.25 \times 1,00,000+0.25 \times 3,00,000+0.25 \times 6,00,000$

$$
=\text { Rs } 2,25,000
$$

$\therefore \quad$ EVPI $=2,25,000-1,50,000=$ Rs 75,000
EVPI is the maximum price a decision-maker is willing to pay for a perfect forecast of the events (demand in this example).
14. Expected return from bank $=0.06$

Expected return from business $=0.12 p+(-0.02)(1-p)$

$$
=0.14 p-0.02
$$

The investments are equally attractive when

$$
0.14 p-0.02=0.06
$$

or

$$
p=0.08 / 0.14=4 / 7
$$

which is the required probability.
15. Expected return from Reliable Company's bonds $=0.08$

Expected return from business $=\frac{12,000}{1,00,000} p+\left(\frac{-2,000}{1,00,000}\right)(1-p)$

$$
=0.14 p-0.02
$$

To be neutral between the two, we have

$$
0.14 p-0.02=0.08
$$

or $\quad p=0.10 / 0.14$ or $5 / 7$.
Thus, $p=5 / 7$ would make the two alternatives equally attractive. This probability value can serve as the benchmark for investment decision. If it is felt that the chances of favourable condition of economy are less than $5 / 7$, then bonds be purchased while if the chances are reckoned to be more than this value, the proposal of investing in equipment should be accepted.
16. Calculation of Expected Pay-off

Demand (Units)	Prob.	Production Level	
		Limited	Full
5000	0.30	$42,00,000$	$50,00,000$
4000	0.40	$32,00,000$	$30,00,000$
3000	0.30	$22,00,000$	$10,00,000$
	Expected Value	$32,00,000$	$30,00,000$

Optimal decision: Go for limited production.
17. (a) $25 \alpha-50=35 \alpha-90$ implies $\alpha=40 / 10=4$.

Thus, for $\alpha=4, P_{A 1}=P_{A 2}$.
(b) For $\alpha=10, P_{A 1}=25 \times 10-50=200$, and $P_{A 2}=35 \times 10-90=260$.

Thus, for $\alpha=10, P_{42}$ is better
(c) For $\alpha=15, P_{A 1}=25 \times 15-50=325$ and $P_{A 2}=35 \times 15-90=435$.

Regret for $P_{A 1}=435-325=110$
For $\alpha=4, P_{A 1}$ and $P_{A 2}$ are equally attractive and neither has regret.
18. EMV for hot snack stall $=0.6 \times 5,000+0.4 \times 1,000=$ Rs 3,400

EMV for ice cream stall $=0.6 \times 1,000+0.4 \times 6,500=$ Rs 3,200
Thus, hot snack stall is preferable.
19.

Calculation of Expected Cost
(Cost in Rs lakhs)

No. of Breakdowns	Prob.	No. of Spare Components				
		0	1	2	3	4
0	0.80	0	5	10	15	20
1	0.08	40	0	5	10	15
2	0.06	80	40	0	5	10
3	0.04	120	80	40	0	5
4	0.02	160	120	80	40	0
	Expected Value	16.0	8.4	11.6	13.9	18.0

Optimal number of spares to order $=1$.
20. The conditional total-cost matrix is given in the following table. Also, the expected cost for each of the alternatives is given. From the expected cost values, it is clear that three units should be stocked every week.

Conditional-cost Matrix

Sales (Units)	Prob.	Course of Action: Stock (Units)						
		0	1	2	3	4	5	6
0	0.10	0	30	60	90	120	150	180
1	0.10	70	30	60	90	120	150	180
2	0.20	140	100	60	90	120	150	180
3	0.25	210	170	130	90	120	150	180
4	0.15	280	240	200	160	120	150	180
5	0.15	350	310	270	230	190	150	180
6	0.05	420	380	340	300	260	220	180
	Expected cost:	203	170	144	132	137.5	153.5	180

Calculation of EVPI: Here expected cost of perfect information,
ECPI $=0.10 \times 0+0.10 \times 30+0.20 \times 60+0.25 \times 90+0.15 \times 120+0.15 \times 150+0.05 \times 180=87$
EVPI $=$ Expected cost for optimal decision - ECPI

$$
=132-87=\operatorname{Rs} 45
$$

21. Let x be the level of demand that would make the two alternatives equally attractive. We have,

$$
24,00,000+8 x=24 x
$$

or

$$
x=1,50,000
$$

For demand $>1,50,000$ units, set up own facilities.
22. The expected profit for each of the alternatives is shown calculated below:

Alternative 1: Invest in project 1 of this month only
Expected profit $=0.5 \times 20,000+0.5(-10,000)=$ Rs 5,000
Alternative 2: Invest in project 2 only
Expected profit $=0.5 \times 15,000+0.5(-5,000)=$ Rs 5,000
Alternative 3: Invest in projects 1 and 2 together.

Outcome	Prob.	Pay-off	Expected profit (Rs)
(a) Project 1 succeeds			
Project 2 succeeds	$0.5 \times 0.5=0.25$	35,000	8,750
(b) Project 1 succeeds			
	Project 2 fails	$0.5 \times 0.5=0.25$	15,000
(c) Project 1 fails*	0.50	$(10,000)$	3,750
		Total	$(5,000)$

*If project 1 fails, enough cash would not be available to launch project 2.
Conclusion: To maximise its profits, the company should adopt alternative 3 and, thus, invest in projects 1 and 2 together.

Conditional Pay-off Matrix

(Cost in '000 Rs)

No. of spares Required	Prob.	No. of Spares to order				
		0	1	2	3	4
0	0.93	0	10	20	30	40
1	0.04	200	10	20	30	40
2	0.01	400	210	20	30	40
3	0.01	600	410	220	30	40
4	0.01	800	610	420	230	40
	Expected Value	26	22	26	32	40

\therefore Optimal number of spares to order $=1$
24. (a) From the given information, we have

Unit contribution $\quad=$ Rs $130-(80+5)=$ Rs 45
Unit loss when surplus is sold $\quad=$ Rs $85-50=$ Rs 35
Unit penalty for unsatisfied demand $=$ Rs 20/outfit
Contribution calculations may be done as follows:
When 1,100 units are purchased:

Demand	Contribution
1,100	$1,100 \times 45$
1,200	$1,100 \times 45-100 \times 20=$ Rs 47,500
1,300	$1,100 \times 45-200 \times 20=$ Rs 45,500
1,400	$1,100 \times 45-300 \times 20=$ Rs 43,500

When 1,200 units are purchased:

Demand	Contribution
1,100	$1,100 \times 45-100 \times 35=$ Rs 46,000
1,200	$1,200 \times 45$
1,300	$1,200 \times 45-100 \times 20=$ Rs 54,000
1,400	$1,200 \times 45-200 \times 20=$ Rs 50,000

Similarly, other calculations may be done. The pay-offs (in ' 000 Rs) are shown in table. It may be mentioned that the ordering and receiving cost of Rs 800 is constant throughout. As such, it has not been considered in making calculations.

Determination of Optimal Order Quantity

Demand	Prob.	Order Quantity			
		1,100	1,200	1,300	1,400
1,100	0.3	49.5	46.0	42.5	39.0
1,200	0.4	47.5	54.0	50.5	47.0
1,300	0.2	45.5	52.0	58.5	55.0
1,400	0.1	43.5	50.0	56.5	63.0
Expected contribution	47.3	50.8	50.3	47.8	

Using the given probabilities, expected contribution for each of the order quantities is also shown calculated in the table. On the basis of the values obtained, the optimal order quantity is 1,200 units.
(b) The model used here differs from the classical economic order quantity (EOQ) model on a fundamental level in that whereas it deals with uncertain demand, the $E O Q$ model deals with demand that is known and certain. Thus, while this model does not have much mathematical sophistication, it does have the capability of handling uncertainty. Further, the model used here considers and analyses stockouts, the classical $E O Q$ model in its original format does not permit the out-of-stock situations. The EOQ model is basically used in the manufacturing environment where an item is constantly used and replenished periodically.
25. From the given information,

Profit per pack sold $=$ Rs $20, \quad \therefore$ Profit per case $=20 \times 50=$ Rs 1,000
Loss per pack unsold $=$ Rs $10, \quad \therefore$ Loss per case $=10 \times 50=$ Rs 500
The profit function is:

$$
\begin{aligned}
P & =1,000 s & & \text { for } s \leq d \\
& =1,000 d-500(s-d) & & \text { for } s>d
\end{aligned}
$$

Accordingly, the conditional pay-off matrix is as shown in table below.

Conditional Pay-off Matrix

Demand (Cases)	Prob.	No. of Cases Ordered				
		5	10	15	20	25
5	0.20	5,000	2,500	0	-2,500	-5,000
10	0.20	5,000	10,000	7,500	5,000	2,500
15	0.30	5,000	10,000	15,000	12,500	10,000
20	0.20	5,000	10,000	15,000	20,000	17,500
25	0.10	5,000	10,000	15,000	20,000	25,000
Expected Pay-off		5,000	8,500	10,500	10,250	8,500
Simple Average		5,000	8,500	10,500	11,000	10,000

(a) Maximum expected pay-off corresponds to 15 cases. It is equal to Rs 10,500 . Thus, optimal policy is to order 15 cases.
(b) When the manager is completely uncertain, we obtain simple average pay-off (ignoring probabilities, that is), Since it is the highest for 20 , she should buy 20 cases.
26.

Conditional Pay-off Matrix

Act, a_{i}	Demand, d_{j}						
	3	4	5	6	7	8	Expected
	0.05	0.10	0.30	0.40	0.10	0.05	
3	1,200	1,200	1,200	1,200	1,200	1,200	1,200
4	900	1,600	1,600	1,600	1,600	1,600	1,565
5	600	1,300	2,000	2,000	2,000	2,000	1,860
6	300	1,000	1,700	2,400	2,400	2,400	1,945
7	0	700	1,400	2,100	2,800	2,800	1,750
8	(300)	400	1,100	1,800	2,500	3,200	1,485

Optimal policy: $a_{i}=6$, Expected value $=1945$.
27.

Conditional Pay-off Matrix

Demand (Units)	Prob.	Units Manufactured			
		20,000	30,000	40,000	50,000
20,000	0.10	80,000	$(10,000)$	$(1,20,000)$	$(2,10,000)$
30,000	0.40	80,000	$1,90,000$	80,000	$(10,000)$
40,000	0.30	80,000	$1,90,000$	$2,80,000$	$1,90,000$
50,000	0.20	80,000	$1,90,000$	$2,80,000$	$3,90,000$
Expected Value		80,000	$1,70,000$	$1,60,000$	$1,10,000$

Optimal size of production run $=30,000$ units.
28. Let us call it situation A when selling price is Rs 15 and situation B when selling price is Rs 20 . From the information given, we have

Situation A
Contribution margin per unit
Total fixed cost ('000 Rs)

Rs $15-3=$ Rs 12
Rs $25+40=$ Rs 65

Situation B Rs $20-3=$ Rs 17
Rs $96+40=$ Rs 136

We may first calculate the materials cost under each of the three purchase options. This is done below:

		uation			Situation	
Sale ('000 kg)	36	28	18	28	23	13
Purchase option 1: Any Quantity @ Rs 3 per kg (No sales needed):						
Materials buy ('000 kg)	36	28	18	28	23	13
Materials cost ('000 Rs)	324	252	165	252	207	111
(3 kg @ Rs 3/kg)						
Purchase option 2: Price @ Rs 2.75 per kg, minimum quantity 5,000 kg:						
Materials required (in ' 000 kg)	108	84	54	84	69	39
Materials buy (in '000 kg)	108	84	54	84	69	50
Materials sale	-	-	-	-	-	11
Materials cost ('000 Rs)	297	231	148.5	231	189.75	126.5
Purchase option 3: Price @ Rs 2.50 per kg, minimum quantity 70,000 kg:						
Materials required (' 000 kg)	108	84	54	84	69	39
Materials buy ('000 kg)	108	84	70	84	70	70
Materials sale ('000 kg)	-	-	16	-	1	31
Materials cost ('000 Rs)	270	210	156	210	174	144

Now we can calculate the conditional and expected profit/loss for each of the situations and purchase options.
All values in '000s

	Situation A			Situation B		
Sale (in '000 units)	36	28	18	28	23	13
Purchase option 1:						
Gross contribution	432	336	216	476	391	221
Less Materials cost	324	252	162	252	207	117
\quad Fixed cost	65	65	65	65	65	65
Conditional profit/loss	43	19	(11)	88	48	(32)
Probability	0.3	0.5	0.2	0.2	0.5	0.2
Expected P/L	12.9	9.5	(2.2)	26.4	24.0	(6.4)
			$\underline{20.2}$			$\underline{44.0}$
Purchase option 2:						
Gross contribution	432	336	216	476	391	221
Less Materials cost	297	321	148.5	231	189.75	126.5
\quad Fixed cost	65	65	65	65	65	65
Conditional profit/loss	70	40	2.5	109	65.25	(41.5)
Probability	0.3	0.5	0.2	0.3	0.5	0.2
Expected P/L	21.0	20.0	0.5	32.7	32.625	(8.3)
			41.5			57.025
Purchase option 3:						
Gross Contribution	432	336	216	476	391	221
Less Materials cost	270	210	159	210	174	144
\quad Fixed cost	65	65	65	65	65	65
Conditional profit/loss	97	61	(8)	130	81	(59)
Probability	0.3	0.5	0.2	0.3	0.5	0.2
Expected P/L	29.1	30.5	(1.6)	39.0	40.5	$\underline{(11.8)}$
			58.0			67.7

From the expected profit values calculated, it may be observed that the optimal policy is to have selling price of Rs 20 and exercise purchase option 3, involving a cost of Rs 2.75 per kg for a minimum quantity of 70,000 units.
(b) The conditional pay-offs in each of the situations under optimistic, most likely, and pessimistic conditions for each of the purchase options are tabulated below:

Purchase option	Conditional Profitloss ('O00 Rs)					
	Optimistic	Most likely	Pessimistic			
1	43	48	19	48	(11)	(32)
2	70	109	40	65.25	2.5	(41.5)
3	97	130	61	81	(8)	(59)

Selection of best result under each condition gives:

Conditional profit	130	81	2.5
Probability	0.3	0.5	0.2
Expected profit	39.0	40.5	0.5

Expected profit $39.0 \quad 40.5$
Thus, expected profit under perfect information,

$$
\text { EPPI }=39.0+40.5+0.5=80 \text { (thousand) }
$$

Expected profit under optimal policy (obtained in a above) $=67.7$ (thousand)
\therefore Maximum price for perfect information,

$$
\text { EVPI }=80.0-67.7=12.3 \text { (thousand) }
$$

Thus,
EVPI = Rs 12,300.
29. From the given data,

Expected cost per machine if policy is not taken

$$
=0.20 \times 30+0.44 \times 70+0.36 \times 120=\text { Rs } 80
$$

Cost of buying policy $=8 \times 45=$ Rs 360
The calculation of expected cost under each of the two strategies is shown in table here.

Calculation of Expected Cost

No. of Machines Failing	Prob.	Course of Action	
		Buy Policy	Don't Buy Policy
3	0.15	360	240
4	0.30	360	320
5	0.50	360	400
6	0.05	360	480
	Expected cost	360	356

Conclution: Don't buy maintenance policy.
30. Without research:

Calculation of Expected Pay-off (Value in Rs lakhs)

Demand	Prob.	Size of Plant	
		2,500 Tonnes	5,000 Tonnes
Low	0.30	30	-20
High	0.70	40	55
	Expected value	37.0	32.5

EPPI $=0.30 \times 30+0.70 \times 55=$ Rs 47.5 lakhs
EVPI $=$ Rs 47.5 lacs - Rs 37.0 lacs $=$ Rs 10.5 lakhs
With research:
Let $\quad I_{1}$: A low demand is indicated by research, $I_{2}:$ A high demand is indicated by research,
E_{1} : The event of low demand, and
E_{2} : The event of high demand.

$$
\begin{aligned}
P\left(I_{1}\right) & =P\left(E_{1}\right) \times P\left(I_{1} / E_{1}\right)+P\left(E_{2}\right) \times P\left(I_{1} / E_{2}\right) \\
& =0.3 \times 0.8+0.7 \times 0.1=0.31 \\
P\left(I_{2}\right) & =P\left(E_{1}\right) \times P\left(I_{2} / E_{1}\right)+P\left(E_{2}\right) \times P\left(I_{2} / E_{2}\right) \\
& =0.3 \times 0.2+0.7 \times 0.9=0.69
\end{aligned}
$$

Calculation of posterior probabilities:
(a) For I_{1} :

$$
\begin{aligned}
& P\left(E_{1} / I_{1}\right)=\frac{0.24}{0.31}=0.77 \\
& P\left(E_{2} / I_{1}\right)=\frac{0.07}{0.69}=0.23
\end{aligned}
$$

Expected Pay-off:
For 2,500-Tonnes Plant: $0.77 \times 30+0.23 \times 40=32.3$ (Rs lakhs)
For 5,000-Tonnes Plant: $0.77(-20)+0.23 \times 55=-2.75$ (Rs lakhs)
Decision: 2,500-Tonnes Plant
(b) For I_{2} :

$$
\begin{aligned}
& P\left(E_{1} / I_{2}\right)=\frac{0.06}{0.69}=0.09 \\
& P\left(E_{2} / I_{2}\right)=\frac{0.63}{0.69}=0.91
\end{aligned}
$$

Expected pay-off:
For 2,500 -Tonnes Plant: $0.09 \times 30+0.91 \times 40=39.1$ (Rs lakhs)
For 5,000 -Tonnes Plant: $0.09(-20)+0.91 \times 55=48.25$ (Rs lakhs)
Decision: 5,000-Tonnes Plant.
Now, Overall expected pay-off $=0.31 \times 32.3+0.69 \times 48.25$

$$
=\text { Rs } 43.306 \text { lakhs }
$$

Expected value of sample in formation,

$$
\text { EVSI }=43.306-37=\text { Rs } 6.306 \text { lakhs. }
$$

Since EVSI is greater than Rs 2 lakhs, the cost of research, it is advisable to spend money on research. If 'low' is indicated by research, build a 2,500 -Tonnes plant, and if 'high' is indicated then build a 5,000-Tonnes plant.
31. First we calculate posterior probabilities in light of the sample information.

Calculation of Posterior Probabilities

Lot Type	Prior Prob.	Conditional Prob.	Joint Prob.	Posterior Prob.
H_{i}	$P\left(H_{i}\right)$	$P\left(E / H_{i}\right)$	$P\left(H_{i} \cap E\right)$	$P\left(H_{i} / E\right)$
1% def.	0.5	0.083	0.0415	0.2767
2% def.	0.3	0.185	0.0555	0.3700
5% def.	0.2	0.265	0.0530	0.3533
	$P(E)=0.1500$			

Next, compute expected cost of the alternatives.

Calculation of Expected Cost

Outcome	Prob.	Accept	Reject
1% def. lot	0.2767	0	600
2% def. lot	0.3700	400	0
5% def. lot	0.3533	600	0
	Expected value	360	166.2

Conclusion: Reject the lot.
32. (a)

Calculation of Expected Cost ('000 Rs)

Lot Type	Prob.	Accept	Reject
D_{1}	0.7	0	3
D_{2}	0.3	5	0
	Expected cost	1.5	2.1

Conclusion: Accept the lot.
(b) Calculate posterior probabilities in light of the sample information and recalculate the expected cost.

Calculation of Posterior Probabilities

Lot Type	Prior Prob.	Condition Prob. H_{i}	$P\left(H_{i}\right)$	Joint Prob. $P\left(H_{i} \cap E\right)$
D_{1}	0.7	$(0.05)^{2}=0.0025$	0.00175	Posterior Prob.
D_{2}	0.3	$(0.10)^{2}=0.0100$	0.00300	0.368
$P(E)=0.00475$			0.632	

Calculation of Expected Cost

Lot Type	Prob.	Accept	Reject
D_{1}	0.368	0	3
D_{2}	0.632	5	0
	Expected cost	3.160	1.104

Conclusion: Reject the lot.
(c) Expected value of the sample information,

EVS1 = Expected cost without Information - Expected cost with Information

$$
=1.5-1.104=0.396 \text { (thousand Rs) }=\text { Rs } 396
$$

(d) At testing cost of Rs 40 per unit, total cost testing $=$ Rs 80 . Since it is less than EVS1, testing should be done.
33. (a) The best option to the company, before the test, is given by expected profit. From the expected profit values shown calculated below, it is evident that optimal act is A_{1}.

Calculation of Expected Profit

Event	Probability	Course of Action	
		A_{1}	A_{2}
d_{1}	0.7	10 m	0
d_{2}	0.1	1 m	0
d_{3}	0.2	$(5 \mathrm{~m})$	0
	Expected profit	6.1 m	0

(b) Expected pay-off under perfect information,

$$
\mathrm{EPPI}=0.7 \times 10+0.1 \times 1+0.2 \times 0=\mathrm{Rs} 7.1 \mathrm{~m}
$$

$$
\therefore \quad \text { EVPI }=7.1-6.1=\text { Rs } 1 \mathrm{~m}
$$

(c) First of all, we calculate posterior probabilities, as given in table below:

Calculation of Posterior Probabilities

Event	Prior Prob. $P(d)$	Conditional Prob. $P(I / d)$	Joint Prob. $P(I \cap D)$	Posterior Prob. $P(d / I)$
For I_{1} :				
d_{1}	0.7	0.6	0.42	42/47
d_{2}	0.1	0.3	0.03	3/47
d_{3}	0.2	0.1	0.02	2/47
			0.47	
For I_{2} :				
d_{1}	0.7	0.3	0.21	21/27
d_{2}	0.1	0.6	0.06	6/27
d_{3}	0.2	0.1	0.02	2/27
			0.27	
For I_{3} :				
d_{1}	0.7	0.1	0.07	7/24
d_{2}	0.1	0.1	0.06	1/24
d_{3}	0.2	0.8	0.16	16/24
			0.24	

Next, we determine optimal course of action under each of the three outcomes of test marketing. This is shown in the next table.

Determination of Conditional Optimal Actions

Event	Indication I_{1}			Indication I_{2}			Indication I_{3}		
	Prob.	A_{1}	A_{2}	Prob.	A_{1}	A_{2}	Prob.	A_{1}	A_{2}
d_{1}	42/47	10	0	21/27	10	0	7/24	10	0
d_{2}	3/47	1	0	6/27	1	0	1/24	1	0
d_{3}	2/47	(5)	0	2/27	(5)	0	16/24	(5)	0
Exp. Value		/47	0		/29	0		(9/24)	0

Thus, optimal course of action when I_{1} is indicated: A_{1}
I_{2} is indicated: A_{1}
I_{3} is indicated: A_{2}
Now, we can calculate the expected value with sample information, as follows:

Event	Probability	Pay-off	Expected value
I_{1}	$47 / 100$	$413 / 47$	4.13
I_{2}	$29 / 100$	$206 / 29$	2.06
I_{3}	$24 / 100$	0	0.00
		EPSI	$=6.19$

(d) Expected value of test marketing

$$
=6.19-6.10=0.09 \text { million or Rs } 90,000
$$

34. With no Survey:

Calculation of Expected Profit

Event	Prob.	$S_{1}:$ produce	$S_{2}:$ Do not produce
$N_{1}:$ Success	0.60	150	0
$N_{2}:$ Failure	0.40	-100	0
	Expected value	50	0

EPPI $=0.60 \times 150+0.40 \times 0=$ Rs 90 lakhs
EVPI $=90-50=$ Rs 40 lakhs
Survey by Alpha:
Calculation of Posterior probabilities:
We have

$$
\begin{aligned}
P\left(Z_{1}\right) & =P\left(N_{1}\right) \times P\left(Z_{1} / N_{1}\right)+P\left(N_{2}\right) \times P\left(Z_{1} / N_{2}\right) \\
& =0.60 \times 0.90+0.40 \times 0.10=0.58 \\
\therefore \quad P\left(N_{1} / Z_{1}\right) & =\frac{0.54}{0.58}=0.93 \text { and } P\left(N_{2} / Z_{1}\right)=\frac{0.04}{0.58}=0.07
\end{aligned}
$$

Also,

$$
\begin{aligned}
P\left(Z_{2}\right) & =P\left(N_{1}\right) \times P\left(Z_{2} / N_{1}\right)+P\left(N_{2}\right) \times P\left(Z_{2} / N_{2}\right) \\
& =0.60 \times 0.10+0.40 \times 0.90=0.42 \\
\therefore \quad P\left(N_{1} / Z_{2}\right) & =\frac{0.06}{0.42}=0.14 \text { and } P\left(N_{2} / Z_{2}\right)=\frac{0.36}{0.42}=0.86
\end{aligned}
$$

Expected Pay-offs
In case of Z_{1} :
For $S_{1}: 0.93 \times 150+0.07(-100)=132.5 \quad$ Decision: S_{1}
For $S_{2}: 0.93 \times 0+0.07 \times 0=0$
In case of Z_{2} :
For $S_{1}: 0.14 \times 150+0.86(-100)=-65 \quad$ Decision $: S_{2}$
For $S_{2}: 0.14 \times 0+0.86=0$
Overall expected pay-off $=0.58 \times 132.5+0.42 \times 0=76.85$ (Rs lakhs)

$$
\mathrm{EVS} 1=76.85-50=\text { Rs } 26.85 \text { lakhs }
$$

Net increase in expected profit $=26.85-0.5=$ Rs 26.35 lakhs

Survey by Beta:
Calculation of Posterior Probabilities:
We have

$$
\left.\begin{array}{rl}
P\left(Z_{1}\right) & =0.60 \times 0.70+0.40 \times 0.30=0.54 \\
P\left(Z_{2}\right) & =0.60 \times 0.30+0.40 \times 0.70=0.46 \\
\therefore \quad P\left(N_{1} / Z_{1}\right) & =\frac{0.42}{0.54}=0.78 \text { and } P\left(N_{2} / Z_{1}\right)=\frac{0.12}{0.54}=0.22 \\
& P\left(N_{1} / Z_{2}\right)
\end{array}\right)=\frac{0.18}{0.46}=0.39 \text { and } P\left(N_{2} / Z_{2}\right)=\frac{0.28}{0.46}=0.61 \text {. }
$$

Expected Pay-offs: In case of Z_{1}
For $S_{1}: 0.78 \times 150+0.22(-100)=95 \quad$ Decision: S_{1}
For $S_{2}: 0.78 \times 0+0.22 \times 0=0$
In case of Z_{2}
For $S_{1}: 0.39 \times 150+0.61(-100)=-2.5 \quad$ Decision: S_{2}
For $S_{2}: 0.39 \times 0+0.61 \times 0=0$
Overall expected pay-off $=0.54 \times 95+0.46 \times 0=$ Rs 51.3 lakhs

$$
\mathrm{EVSI}=51.3-50=\mathrm{Rs} 1.3 \text { lakhs }
$$

Net increase in expected profit $=1.3-0.3=$ Rs 1 lakh
Thus, expected pay-offs are
(a) No survey: Rs 50 lakhs
(b) Survey by Alpha: Rs 76.85 - Rs $0.5=$ Rs 76.35 lakhs
(c) Survey by Beta: Rs 51.3 - Rs 0.3 = Rs 51 lakhs

Best option: Survey by Alpha Company.
EVPI = Rs 40 lakhs

Thus, expected pay-off is Rs $1,65,000$.
36.

Decision Tree
Analysis Table

Decision Node	Alternatives	EMV	Decision
1	National Launch	220,000	National Launch
	Sell Patent	60,000	
2	National Launch	26,000	National Launch
	Sell Patent	10,000	
3	Immediate National Launch	113,000	Test Marketing
	Sell Patent	30,000	
	Test marketing	128,000	

Conclusion: Go for test marketing and then launch nationally, whether it is (test marketing) is favourable or unfavourable.
37. The decision-tree corresponding to the given information is shown in the figure.

(i) The probabilities given indicate the likelihood of different regional outcomes, that is, $P(h)=0.40$, $P(m)=0.35$ and $P(l)=0.25$, and the chances of particular national outcomes, given high regional demand, that is, $P(H / h)=0.5, P(M / h)=0.3$ and $P(L / h)=0.2$. Considering the top branch of the decision-tree relating to a high regional demand, the expected value of going national is $0.5 \times 794+0.3$ $\times 672+0.2 \times 520-450=252.6$. The return from not going national and staying with regional distribution only is 275 , so that it would be more profitable to stay regional.

Now, if this is the situation following a high regional demand, it can presumably be inferred that it would be more profitable to go national if the regional demands were medium or low (nodes 2 and 3). In other words, if we start regional, we should probably not go beyond that.

Here we are not given any information about the probabilities of high, medium and low demand if we go national at the outset. If we assume that they would be similar to those regional, the expected value of going national at the outset is $0.4 \times 756+0.35 \times 510+0.25 \times 450-500=93.575$.

On the other hand, the expected value of regional distribution only is $0.40 \times 275+0.35 \times 198+0.25$ $\times 122-150=59.8$. Thus, it seems to suggest a national distribution from the outset. With national distribution, however, we would be gambling somewhat on the occurrence of high demand-regional distribution is less risky.
(ii) To compare the relative riskiness of the two alternatives, we shall compute their coefficients of variation.

Coefficient of variation $=\frac{\sigma}{\bar{X}} \times 100$
For regional distribution:

$$
\text { Variance }=\Sigma p X^{2}-\left(\Sigma p X^{2}\right)
$$

$$
\begin{aligned}
& =0.4 \times 275^{2}+0.35 \times 1.98^{2}+0.25 \times 122^{2}-209.8^{2} \\
& =3676.36 \\
\sigma & =\sqrt{\text { Variance }} \\
& =\sqrt{3676.36}=60.63
\end{aligned}
$$

Expected value (net of cost) $=59.8$
$\therefore \quad$ Coefficient of variation $=\frac{60.63}{59.8} \times 100=101.4 \%$
For national distribution:

$$
\begin{aligned}
\text { Variance } & =0.4 \times 756^{2}+0.35 \times 510.5^{2}+0.25 \times 450^{2}-593.575^{2} \\
& =18,121.7 \\
\sigma & =\sqrt{18,121.7}=134.62
\end{aligned}
$$

Expected value (net of cost) $=593.557-500=93.575$
$\therefore \quad$ Coefficient of variation $=\frac{134.62}{93.575} \times 100=143.9 \%$
Thus, the second alternative is more risky.
38.

Analysis Table

Decision Node	Alternatives	EMV	Decision
1	Manufacture	$75 \times 0.1+25 \times 0.3$	Royalty Basis
		$+(-10) \times 0.6=\mathrm{Rs} 9$	
	Royalty Basis	$35 \times 0.1+20 \times 0.3$	
		$+10 \times 0.6=$ Rs 15.5	
	Sell Rights	Rs 15	

All amounts in thousands of rupees.

Decision Tree

Analysis Table

Decision Node	Alternatives	EMV	Decision
1	Develop	7.5	Develop
	Do not develop	0	
2	Develop	-2.5	Do not develop
3	Do not develop	0	Royalty
	Manufacture	9.75^{*}	Basis
	Royalty Basis	15.5	

* $82.5 \times 0.1+25 \times 0.3-10 \times 0.6=9.75$

Result: No change in decision

39. The decision tree is shown below.

The analysis of tree follows.
Expected monetary value (EMV) at nodes 1 and 2:
Max $\{$ (Rs 20,000 - Rs 5,000), Rs 12,000$\}=$ Rs 15,000
\therefore Conditional decision at each of these nodes is to pay royalty of new process.
EMV at chance node $A=0.4 \times 15,000+0.6 \times 24,000=$ Rs 20,400
EMV at node 3: Max. \{(Rs 20,400 - Rs 6,000), Rs 12,000, (Rs 20,000 - Rs 5,000) \}

$$
\begin{aligned}
& =\text { Max. }\{\text { Rs } 14,400 \text {, Rs } 12,000 \text {, Rs } 15,000\} \\
& =\text { Rs } 15,000
\end{aligned}
$$

\therefore Conditional decision when R_{1} fails is to pay royalty of new process.
EMV at chance node $B=0.9 \times 26,000+0.1 \times 15,000=$ Rs 24,900
EMV at node 4: Max. \{(Rs 24,900 - Rs 10,000), Rs 12,000, (Rs 20,000 - Rs 5,000) \}

$$
\begin{aligned}
& =\text { Max. }\{\text { Rs } 14,900 \text {, Rs } 12,000 \text {, Rs } 15,000\} \\
& =\text { Rs } 15,000
\end{aligned}
$$

\therefore Conditional decision when R_{2} fails is to pay royalty of new process.
EMV at node 5: $\operatorname{Max}\{((0.9 \times 26,000+0.1 \times 15,000)-10,000), 12,000,(20,000-5,000)$,

$$
((0.6 \times 24,000+0.4 \times 15,000)-6,000)\}
$$

$$
\begin{aligned}
& =\text { Max. }\{\text { Rs } 14,900 \text {, Rs } 12,000 \text {, Rs } 15,000 \text {, Rs } 14,400\} \\
& =\text { Rs } 15,000
\end{aligned}
$$

Thus, optimal strategy for the company is that it should pay Rs 5,000 as royalty of a new process, which would result in maximum expected pay-off of Rs 15,000 .

Decision Tree
40.

Analysis Table

Decision Node	Alternatives	EMV	Decision
1	Design C	$12,50,000$	Design C
	Stop	0	
2	Design C	$12,50,000$	Design C
	Stop	0	
3	Design A	$13,37,500$	Design A
	Design B	$12,25,000$	
4	Design C	$12,50,000$	
	Bid	$3,02,500$	Bid
	Do not bid	0	

Conclusion: Bid and use design A. If it fails, use design C.

Do not bid 0
Decision Tree
41.

Notes and Working:

1. In case of continuation,

Income $=2+2(1-10 \%)+2(1-10 \%)^{2}+\ldots+2(1-10 \%)^{9}$

$$
\begin{aligned}
& =2+2(0.9)+2(0.9)^{2}+\ldots+2(0.9)^{9} \\
& =\frac{2\left(1-0.9^{10}\right)}{1-0.9}=\operatorname{Rs} 13.03 \mathrm{~m}
\end{aligned}
$$

2. The probability required for calculating the expected value of each branch may be obtained as follows: Using Bayes' Theorem,

$$
\begin{aligned}
P(\text { Good } / \text { Positive }) & =\frac{P(\text { Good }) \times P(\text { Positive } / \text { Good })}{P(\text { Good }) \times P(\text { Positive } / \text { Good })+P(\text { Poor }) \times P(\text { Positive } / \text { Poor })} \\
& =\frac{0.85 \times 0.60}{0.85 \times 0.60+0.10 \times 0.40}=0.927 \\
P(\text { Poor } / \text { Positive }) & =1-P(\text { Good } / \text { Positive }) \\
& =1-0.927=0.073
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
P(\text { Good } / \text { Negative }) & =\frac{P(\text { Good }) \times P(\text { Negative } / \text { Good })}{P(\text { Good }) \times P(\text { Negative } / \text { Good })+P(\text { Poor }) \times P(\text { Negative } / \text { Poor })} \\
& =\frac{0.15 \times 0.60}{0.15 \times 0.60+0.90 \times 0.40}=0.2 \\
P(\text { Poor } / \text { Negative }) & =1-P(\text { Good } / \text { Negative }) \\
& =1-0.2=0.8
\end{aligned}
$$

Decisions at various nodes are analysed and given below:

Decision node	Options	EMV	Decision
1	Deluxe	Rs 26.54 m	
2	Standard	Rs 17.91 m	Deluxe
2	Standard	Rs 7 m	
3	Shut down	Rs 15 m	Shut down
	Continue	Rs 21.38 m	
	Survey	Rs 13.03 m	Survey

The optimal decision, therefore, is to choose survey. If the survey is positive, choose deluxe upgrade and if it is negative, close down.
42. From the given data:

Prior Probability: $P(10 \%$ defective lot $)=3 / 5=0.6$

$$
P(4 \% \text { defective lot })=2 / 5=0.4
$$

The decision tree is shown in figure for which conditional pay-offs and the probabilities are shown calculated below.
For branch a_{1} : accept a lot without sampling:
(i) The expected cost of accepting a lot that is 10% defective $=\operatorname{Rs} 20,000$ per defective unit $\times 0.10 \times$ 50 units per lot $=$ Rs $1,00,000$.
(ii) The expected cost of accepting a lot that is 4% defective $=$ Rs 20,000 per defective unit $\times 0.04 \times$ 50 units per lot $=-$ Rs 40,000
For branch a_{2} : take a sample of two items:
(i) The expected cost of accepting a lot that is 10% defective $=$ Rs $1,00,000+2 \times 2,000=$ Rs $1,04,000$
(ii) The expected cost of accepting a lot that is 4% defective $=$ Rs $40,000+2 \times 2,000=$ Rs 44,000
(iii) The expected cost of rejecting a lot that is 10% defective $=$ Rs $2,000(0.90 \times 50)+2 \times 2,000=$ Rs 94,000
(iv) The expected cost of rejecting a lot that is 4% defective $=\operatorname{Rs} 2,000(0.96 \times 50)+2 \times 2,000=$ Rs 1,00,000

Decision Tree

Determination of Probabilities of Outcomes

Let H_{1} and H_{2} be the events that a lot contains, respectively, 10% and 4% defectives; and E_{1}, E_{2}, and E_{3} be the events that, respectively, none, one, and both of the items sampled would be defective. Accordingly,

$$
\begin{aligned}
P\left(E_{1}\right) & =P\left(H_{1} \cap E_{1}\right)+P\left(H_{2} \cap E_{1}\right) \\
& =0.6 \times 0.90^{2}+0.4 \times 0.96^{2}=0.85464 \\
P\left(E_{2}\right) & =P\left(H_{1} \cap E_{2}\right)+P\left(H_{2} \cap E_{2}\right) \\
& =0.6 \times 0.90 \times 0.10+0.4 \times 0.96 \times 0.04 \times 2=0.13872 \\
P\left(E_{3}\right) & =P\left(H_{1} \cap E_{3}\right)+P\left(H_{2} \cap E_{3}\right) \\
& =0.6 \times 0.10^{2}+0.4 \times 0.04^{2}=0.00664
\end{aligned}
$$

From these, posterior probabilities can be obtained as follows:

$$
\begin{aligned}
& P\left(H_{1} / E_{1}\right)=0.486 / 0.85464=0.569 \\
& P\left(H_{2} / E_{1}\right)=0.36864 / 0.85464=0.431
\end{aligned}
$$

$$
\begin{aligned}
& P\left(H_{1} / E_{2}\right)=0.108 / 0.13872=0.779 \\
& P\left(H_{2} / E_{2}\right)=0.03072 / 0.13872=0.221 \\
& P\left(H_{1} / E_{3}\right)=0.006 / 0.00664=0.904 \\
& P\left(H_{2} / E_{3}\right)=0.00064 / 0.00664=0.096
\end{aligned}
$$

Using principle of minimising expected cost, we arrive at the best decisions at nodes 1,2 , and 3 .
At node 1:
$E\left(\right.$ Cost of accept $\left./ E_{1}\right)=0.569 \times 1,04,000+0.431 \times 44,000=78,140$
$E\left(\right.$ Cost of reject $\left./ E_{1}\right)=0.569 \times 94,000+0.431 \times 1,00,000=96,586$
Decision : Accept
At node 2:
$E\left(\right.$ Cost of accept $\left./ E_{2}\right)=0.779 \times 1,04,000+0.221 \times 44,000=90,740$
$E\left(\right.$ Cost of reject $\left./ E_{2}\right)=0.779 \times 94,000+0.221 \times 1,00,000=95,326$
Decision : Accept
At nodes 3:
$E\left(\right.$ Cost of accept $\left./ E_{3}\right)=0.904 \times 1,04,000+0.096 \times 44,000=98,240$
$E\left(\right.$ Cost of reject $\left./ E_{3}\right)=0.904 \times 94,000+0.096 \times 1,00,000=94,576$
Decision : reject
Next, the decision nodes are replaced by their best values to yield the decision tree in reduced form as shown in the figure below.

Revised decision tree

Expected cost of 'do not take sample': a_{1}

$$
=0.6 \times 1,00,000+0.4 \times 40,000=\text { Rs } 76,000
$$

Expected cost of 'take sample': a_{2}

$$
\begin{aligned}
& =0.85464 \times 78,140+0.13872 \times 90,740+0.00664 \times 94,576 \\
& =\text { Rs } 79,997
\end{aligned}
$$

Conclusion: Do not take sample.
In order to make one indifferent between sampling and not sampling, the cost of sampling per unit can be determined as follows:
$E($ Cost of not sample $)=E($ Cost of take sample $)+$ Cost of sampling

$$
\begin{aligned}
76,000 & =79,997-2 \times 2,000+2 C \\
C & =(76,000-75,997) / 2=\operatorname{Rs} 15
\end{aligned}
$$

or $\quad C=(76,000-75,997) / 2=$ Rs 15
Thus, if the cost of sampling a unit is greater than a bare Rs 1.50 , we would choose to accept the lot without sampling and if $C<$ Rs 1.50 , then we would take a sample of two.
Calculation of EVPI
We have
Expected cost of accepting a 10% defective lot $\quad=1,04,000-4,000$

$$
=\text { Rs } 1,00,000
$$

Expected cost of rejecting a 10% defective lot $=94,000-4,000$

$$
=\text { Rs } 90,000
$$

Expected cost of accepting a 4% defective lot $\quad=44,000-4,000$

$$
=\text { Rs 40,000 }
$$

Expected cost of rejecting a 4% defective lot $\quad=1,00,000-4,000$

$$
=\operatorname{Rs} 96,000
$$

Since expected cost of rejecting a 10% defective lot is lower than that of accepting it, and expected cost of accepting a 4% defective lot is lower than that of rejecting it, we would take the respective decisions of rejecting a 10% and accepting a 4% defective lot. Since these would occur with probabilities 0.6 and 0.4 , we have,
Expected cost under perfect information,

$$
=0.6 \times 90,000+0.4 \times 40,000=\text { Rs } 70,000
$$

Now, EVPI $=$ Expected cost without information minus Expected cost under perfect information

$$
\begin{aligned}
& =\text { Rs } 76,000-70,000 \\
& =\text { Rs } 6,000
\end{aligned}
$$

43. (a) (i) Using EMV Criterion,
$\mathrm{EMV}=100,000 \times 0.5+(-60,000) \times 0.5=$ Rs 20,000
It being positive, he should accept the contract.
(ii) Using EU criterion, the contract is acceptable if $0.5 \times U(100,000)+0.5 \times U(-60,000)>(U(0)$

Here $0.5 \times 0.72+0.5 \times 0.30$ works out to be 0.51 , which is smaller than $U(0)=0.55$. Hence, he should not accept.
(b) If the contract is offered twice, we have

Outcome	Pay-off	Probability
Two successes	200,000	0.25
One success one failure	40,000	0.50
Two failures	$(1,20,000)$	0.25

(i) Using EMV Criterion,

$$
\begin{aligned}
\mathrm{EMV} & =2,00,000 \times 0.25+40,000 \times 0.50+(-1,20,000) \times 0.50 \\
& =\operatorname{Rs} 40,000
\end{aligned}
$$

The EMV being positive, he should accept the offer.
(ii) $U(2,00,000) \times 0.25+U(40,000) \times 0.50+U(-1,20,000) \times 0.25=1.00 \times 0.25+0.62 \times 0.50+0 \times$ $0.25=0.56$

Since it is greater than $U(0)=0.55$, he should accept.
44. Here $U(10,000)=0.5 \times 30+0.5 \times(-2)=14$

Now, if p be the probability for outcome of Rs 0 , we have,

$$
p \times U(0)+(1-p) \times P(20,000)=-U(10,000)
$$

$\therefore \quad p \times 0+(1-p)(20)=14$
or $\quad p=6 / 20=0.30$
Required probabilities are 0.30 and 0.70 respectively.
45. (a) EU of the opportunity $=0.54 \times 0+0.30 \times 0.80+0.16 \times 1.00$

$$
=0.40
$$

Since $U(x)=0.40$, which corresponds to Rs 2,000 , the manager would be prepared to pay a maximum of Rs 2,000 for the opportunity in question.
(b) $E U\left(\right.$ Alternative $\left.A_{1}\right)=0.5 \times 0.80+0.5 \times 0.40$

$$
=0.4+0.2=0.60
$$

$E U\left(\right.$ Alternative $\left.A_{2}\right)=0.5 \times 0.90+0.5 \times 0.25$

$$
=0.45+0.125=0.575
$$

$E U\left(\right.$ Alternative $\left.A_{3}\right)=0.5 \times 1.00+0.5 \times 0.0$

$$
=0.5+0.0=0.5
$$

Alternative A_{1} is, therefore, the best one.
46. (a) For a single individual:

With $U(2,00,000)=0.90, U(-1,00,000)=0.40$ and $U(0)=0.70$,

$$
\begin{aligned}
E U(\text { with contract }) & =0.5 \times 0.9+0.5 \times 0.4 \\
& =0.45+0.20=0.65
\end{aligned}
$$

$E U($ without contract $)=0.70$
Hence, he would not be inclined to accept offer of the contract.
For four individuals:

$$
\text { Gain per person }=\operatorname{Rs} 2,00,000 / 4=\operatorname{Rs} 50,000, U(50,000)=0.78
$$

$$
\text { Loss per person }=\text { Rs } 1,00,000 / 4=\text { Rs } 25,000, U(-25,000)=0.64
$$

$E U($ with contract $)=0.5 \times 0.78+0.5 \times 0.64$

$$
=0.39+0.32=0.71
$$

$E U($ without contract $)=0.70$
Hence, it is preferable for four individuals to accept the contract as a group.
(b) For C_{l},
$E U=0.40 \times U(-40,000)+0.60 \times U(70,000)$

$$
=0.40 \times 0.60+0.60 \times 0.80=0.72>U(0)=0.70
$$

For C_{2},
$E U=0.25 \times U(70,000)+0.50 \times U(15,000)+0.25 \times U(-40,000)$

$$
=0.25 \times 0.80+0.50 \times 0.73+0.25 \times 0.60=0.715>U(0)=0.70
$$

Conclusion: Both are acceptable but prefer C_{2}. Accept C_{2}.

CHAPTER 14

1.

Transition Probability Matrix

From State	Rs 0	$\begin{gathered} \text { To } \\ \text { Rs } 10 \end{gathered}$	$\begin{gathered} \text { State } \\ \text { Rs } 20 \end{gathered}$	Rs 30	Rs 40	Rs 50	Rs 60
Rs 0	1	0	0	0	0	0	0
Rs 10	0.6	0	0	0.4	0	0	0
Rs 20	0	0.6	0	0	0.4	0	0
Rs 30	0	0	0.6	0	0	0.4	0
Rs 40	0	0	0	0.6	0	0	0.4
Rs 50	0	0	0	0	0	1	0
Rs 60	0	0	0	0	0	0	1

2. The transition probability matrix is given below:

	Transition Probability Matrix		
	S_{1}	S_{2}	S_{3}
S_{1}	$\left[\begin{array}{lll}0.5625 & 0.3125 & 0.1250 \\ S_{2} & 0.5000 & 0.1250 \\ S_{3} & 0.0500 & 0.7500\end{array}\right]$		

The entries in the matrix are obtained as follows. Of the 800 customers in S_{1} in the beginning of the year, 250 are lost to S_{2} and 100 to S_{3}, while the remaining 450 stay with S_{1}. Accordingly, the transition probabilities in row 1 are obtained as $450 / 800,250 / 800$, and $100 / 800$; or $0.5625,0.3215$, and 0.1250 respectively. Similarly, other row values are calculated.
3. (a) From the given data, $Q(1)=\left(\begin{array}{ll}0.60 & 0.40\end{array}\right), Q(2)=\left(\begin{array}{ll}0.64 & 0.36\end{array}\right)$ and $Q(3)=\left(\begin{array}{ll}0.656 & 0.344\end{array}\right)$. Let the transition probability matrix, P, be

$$
P=\left[\begin{array}{ll}
x_{1} & 1-x_{1} \\
x_{2} & 1-x_{2}
\end{array}\right]
$$

Now, $\quad Q(2)=Q(1) \times P$ and $Q(3)=Q(2) \times P$. Thus,

$$
\begin{align*}
& \left(\begin{array}{ll}
0.64 & 0.36
\end{array}\right)=\left(\begin{array}{ll}
0.64 & 0.40
\end{array}\right)\left(\begin{array}{ll}
x_{1} & 1-x_{1} \\
x_{2} & 1-x_{2}
\end{array}\right) \tag{i}\\
& 0.60 x_{1}+0.40 x_{2}=0.64 \tag{ii}\\
& 0.60\left(1-x_{1}\right)+0.40\left(1-x_{2}\right)=0.36
\end{align*}
$$

$$
\text { or } \quad 0.60 x_{1}+0.40 x_{2}=0.64
$$

$\left(\begin{array}{ll}0.656 & 0.344\end{array}\right)=\left(\begin{array}{ll}0.64 & 0.36\end{array}\right)\left(\begin{array}{ll}x_{1} & 1-x_{1} \\ x_{2} & 1-x_{2}\end{array}\right)$
or $\quad 0.64 x_{1}+0.36 x_{2}=0.656$

$$
\begin{equation*}
0.64\left(1-x_{1}\right)+0.36\left(1-x_{2}\right)=0.344 \tag{iii}
\end{equation*}
$$

From equations (i) and (iii), $x_{1}=0.8$ and $x_{2}=0.4$. Thus,

$$
P=\left(\begin{array}{ll}
0.8 & 0.2 \\
0.4 & 0.6
\end{array}\right)
$$

(b) Expected market share in period $4, Q(4)$ can be had as

$$
\begin{aligned}
Q(4)=Q(3) \times P & =\left(\begin{array}{ll}
0.656 & 0.344
\end{array}\right)\left(\begin{array}{ll}
0.8 & 0.2 \\
0.4 & 0.6
\end{array}\right) \\
& =\left(\begin{array}{ll}
0.6624 & 0.3376
\end{array}\right)
\end{aligned}
$$

\therefore Market shares are: 66.24% and 33.76%.
(c) The actual market share of 66% and 34% are very close to the shares estimated above. Hence, there appears to be no reason to revise the transition probability matrix.
4. From the given information, we have

Transition probability Matrix

	Transition probability	
	On time	Late
On time	0.70	0.30
Late	0.90	0.10

If q_{1} and q_{2} be the long-run probabilities for being on time and late respectively, we have

$$
\begin{align*}
q_{1}= & 0.70 q_{1}+0.90 q_{2} \\
q_{2}= & 0.30 q_{1}+0.10 q_{2} \\
0.30 q_{1}-0.90 q_{2} & =0 \tag{i}\\
\text { Accordingly, } \quad-0.30 q_{1}+0.90 q_{2} & =0 \\
q_{1}+\quad q_{2} & =1 \tag{ii}
\end{align*}
$$

Solving equations (ii) and (iii) simultaneously, we get $q_{1}=0.75$ and $q_{2}=0.25$.
Thus, in the long run, the employee is expected to be on time and late with probabilities 0.75 and 0.25 respectively.
5. (a) Evidently, brand y has more loyal customers as (i) it retains 95% of its customers, and (ii) more customers are shifting from the other brand to this (0.10) from this brand to the other (0.05).
Let q_{1} and q_{2} be the projected market shares of the two brands. Thus,

$$
\begin{aligned}
& q_{1}=0.90 q_{1}+0.05 q_{2} \\
& q_{2}=0.10 q_{1}+0.95 q_{2} \\
& q_{1}+q_{2}=1
\end{aligned}
$$

Solving these, we get $q_{1}=1 / 3$ and $q_{2}=2 / 3$.
(b) Let q_{1}, q_{2} and q_{3} be the long-run market shares of brands X, Y and Z respectively. Accordingly,

$$
\begin{align*}
& q_{1}=0.80 q_{1}+0.05 q_{2}+0.40 q_{3} \tag{i}\\
& q_{2}=0.10 q_{1}+0.75 q_{2}+0.30 q_{3} \tag{ii}\\
& q_{3}=0.10 q_{1}+0.20 q_{2}+0.30 q_{3} \tag{iii}\\
& q_{1}+q_{2}+q_{3}=1 \tag{iv}
\end{align*}
$$

Considering equations (i), (ii) and (iv), and re-arranging,

$$
\begin{aligned}
0.20 q_{1}-0.05 q_{2}-0.40 q_{3} & =0 \\
-0.10 q_{1}+0.25 q_{2}-0.30 q_{3} & =0 \\
q_{1}+q_{2}+q_{3} & =1 \\
\Delta_{1}=0.26, \Delta_{1}=0.115, \Delta_{2} & =0.100, \Delta_{3}=0.045
\end{aligned}
$$

Thus, $q_{1}=0.115 / 0.26=0.44, q_{2}=0.100 / 0.26=0.39$ and $q_{3}=0.045 / 0.26=0.17$.
The expected market shares are $44 \%, 39 \%$ and 17%. Brand Y is expected to suffer from the introduction of new brand.
6. In equilibrium, the firm C would hold the entire market. This is because this firm retains all the customers that reach it (the transition probability $C-C$ being equal to 1).

From the given transition probabilities, the equilibrium probabilities q_{1}, q_{2}, and q_{3} may be stated as follows:

$$
\begin{aligned}
& q_{1}=0.80 q_{1}+0.15 q_{2} \\
& q_{2}= 0.12 q_{1}+0.70 q_{2} \\
& q_{3}= 0.08 q_{1}+0.15 q_{2}+q_{3}, \text { and } \\
& q_{1}+q_{2}+q_{3}=1
\end{aligned}
$$

Rearranging the first two of the equations and taking the last equation alongside, we get

$$
\begin{gathered}
0.20 q_{1}-0.15 q_{2}=0 \\
-0.12 q_{1}+0.30 q_{2}=0 \\
q_{1}+q_{2}+q_{3}=1
\end{gathered}
$$

In matrix notation,

$$
\left(\begin{array}{rrr}
0.20 & -0.15 & 0 \\
-0.12 & 0.30 & 0 \\
1.00 & 1.00 & 1.00
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Here, $\Delta=0.360, \Delta_{1}=0, \Delta_{2}=0$, and $\Delta_{3}=0.360$. Thus, $q_{1}=\Delta_{1} / \Delta=0 / 0.360=0, q_{2}=\Delta_{2} / \Delta=0 / 0.360=0$, and $q_{3}=\Delta_{3} / \Delta=0.360 / 0.360=1$. Accordingly, the shares of the firms A and B would be nil and C would have cent per cent share of the market. It is true that C is an absorbing state.
7. (a) In accordance with the given information, the transition probability matrix is given below:

Transition Probability Matrix		
	$A A$	
$B B$		
$A A$	0.75	
$B B$	0.40	

(b) Calculation of probabilities:
(i) The probability of a currently $A A$ buyer to buy Cola $B B$ in the next-to-next purchase would be given by element, 1,2 of the matrix P^{2}, where

$$
\begin{aligned}
P & =\left(\begin{array}{ll}
0.75 & 0.25 \\
0.40 & 0.60
\end{array}\right) \\
P^{2} & =\left(\begin{array}{ll}
0.75 & 0.25 \\
0.40 & 0.60
\end{array}\right)\left(\begin{array}{ll}
0.75 & 0.25 \\
0.40 & 0.60
\end{array}\right)=\left(\begin{array}{ll}
0.6625 & 0.3375 \\
0.5400 & 0.4600
\end{array}\right)
\end{aligned}
$$

\therefore Required probability $=0.3375$
(ii) To get the required probability, we have Initial condition $=\left(\begin{array}{ll}0.60 & 0.40\end{array}\right)$,

$$
P^{3}=\left(\begin{array}{ll}
0.75 & 0.25 \\
0.40 & 0.60
\end{array}\right)^{3}=\left(\begin{array}{ll}
0.631875 & 0.368125 \\
0.589000 & 0.411000
\end{array}\right)
$$

Post-multiplying initial condition vector by column one of the above matrix, we get 0.614725 . Thus, the probability that three periods from now, the customers would buy Cola $A A$ is 0.61 .
(iii) To determine long-run shares, q_{1} and q_{2}, for the two Colas $A A$ and $B B$ respectively, we have

$$
\begin{align*}
q_{1} & =0.75 q_{1}+0.40 q_{2} \tag{i}\\
q_{2} & =0.25 q_{1}+0.60 q_{2} \tag{ii}\\
\text { Also, } \quad 1 & =q_{1}+\quad q_{2}
\end{align*}
$$

Now, solving equations (ii) and (iii) simultaneously, we get $q_{1}=0.615$ and $q_{2}=0.385$.
The long-run market shares for the two Colas shall be 61.5% and 38.5% respectively.
8. (a) When frequent fliers make one flight in a month:

$$
\begin{aligned}
Q(2)=Q(0) \times P^{2} & =\left(\begin{array}{lll}
0.20 & 0.50 & 0.30
\end{array}\right)\left(\begin{array}{lll}
0.90 & 0.03 & 0.07 \\
0.15 & 0.80 & 0.05 \\
0.20 & 0.30 & 0.50
\end{array}\right) \\
& =\left(\begin{array}{lll}
0.3957 & 0.4629 & 0.1414
\end{array}\right)
\end{aligned}
$$

\therefore Expected market shares: $A A=39.57 \%, B B=46.29 \%$ and $C C=14.14 \%$. When frequent fliers make two flights in a month:

$$
\begin{aligned}
Q(4)=Q(0) \times P^{4} & =\left(\begin{array}{lll}
0.20 & 0.50 & 0.30
\end{array}\right)\left(\begin{array}{lll}
0.90 & 0.03 & 0.07 \\
0.15 & 0.80 & 0.05 \\
0.20 & 0.30 & 0.50
\end{array}\right) \\
& =\left(\begin{array}{lll}
0.4965 & 0.3897 & 0.1138
\end{array}\right)
\end{aligned}
$$

$\therefore \quad$ Expected market shares: $A A=49.65 \%, B B=38.97 \%$ and $C C=11.38 \%$.
(b) When frequent fliers make one flight in a month:

If q_{1}, q_{2} and q_{3} be the respective shares of $A A, B B$ and $C C$ airlines in the long run, we have

$$
\begin{align*}
& q_{1}=0.90 q_{1}+0.15 q_{2}+0.20 q_{3} \tag{i}\\
& q_{2}=0.03 q_{1}+0.80 q_{2}+0.30 q_{3} \tag{ii}\\
& q_{3}=0.07 q_{1}+0.05 q_{2}+0.50 q_{3} \tag{iii}\\
& q_{1}+q_{2}+q_{3}=1
\end{align*}
$$

(iv)

Using equations (i), (ii) and (iv),

$$
\begin{aligned}
& \left(\begin{array}{rrr}
0.10 & -0.15 & -0.20 \\
-0.03 & 0.20 & -0.30 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& q_{1}=0.085 / 01365=0.6227 \quad \text { or } \quad 62.27 \% \\
& q_{2}=0.036 / 01365=0.2637 \quad 26.37 \% \\
& q_{3}=0.0155 / 01365=01136 \quad 11.36 \%
\end{aligned}
$$

When frequent fliers make two flights in a month, the answer is same.
9. From the given information, we may derive transition probability matrix as follows:

	State		
	X	Y	Z
X	0	0	1
Y	$2 / 3$	0	$1 / 3$
Z	$2 / 3$	$1 / 3$	0

If the long-run proportionate visits to cities X, Y, and Z be q_{1}, q_{2}, and q_{3} respectively, we can write

$$
\begin{aligned}
& q_{1}=0 q_{1}+0.667 q_{2}+0.667 q_{3} \\
& q_{2}=0 q_{1}+0 q_{2}+0.333 q_{3} \\
& q_{3}=q_{1}+0.333 q_{2}+0 q_{3} \\
& q_{1}+q_{2}+q_{3}=1
\end{aligned}
$$

Also,

Rearranging the above equations, we get

$$
\begin{align*}
q_{1}-0.667 q_{2}-0.667 q_{3} & =0 \tag{i}\\
0 q_{1}+q_{2}-0.333 q_{3} & =0 \tag{ii}\\
-q_{1}-0.333 q_{2}+q_{3} & =0 \tag{iii}\\
q_{1}+q_{2}+q_{3} & \tag{iv}
\end{align*}
$$

Taking equations (i), (ii) and (iv) and arranging in matrix notation, we get

$$
\left(\begin{array}{rrr}
1 & -0.667 & -0.667 \\
0 & 1 & -0.333 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

To solve for q_{1}, q_{2} and q_{3}, we get

$$
\begin{aligned}
\Delta & =2.2222 \\
\Delta_{1} & =0.8888 \\
\Delta_{2} & =0.3333 \\
\Delta_{3} & =1.0000 \\
q_{1} & =\Delta_{1} / \Delta=0.8888 / 2.2222=0.40 \\
q_{2} & =\Delta_{2} / \Delta=0.3333 / 2.2222=0.15 \\
q_{3} & =\Delta_{3} / \Delta=1.0000 / 2.2222=0.45
\end{aligned}
$$

Accordingly,

Hence, the salesman would visit the three cities $40 \%, 15 \%$, and 45% times respectively.
10. Using the given information, we may express the initial condition $Q(0)$ and transition probability matrix P as follows:

$$
\begin{aligned}
Q(0) & =\left(\begin{array}{lll}
0.40 & 0.30 & 0.30
\end{array}\right) \\
P & =\left(\begin{array}{lll}
0.88 & 0.07 & 0.05 \\
0.12 & 0.85 & 0.03 \\
0.08 & 0.10 & 0.82
\end{array}\right)
\end{aligned}
$$

Both, the row- and column-wise, the values for Business Today, Business Line, and Business Life are shown.
From the above, we may determine the likely share of the Business Today by multiplying the row vector $Q(0)$ with first column of the matrix P.
Accordingly, expected share of Business Today in the next year $=0.40 \times 0.88+0.30 \times 0.12+0.30 \times 0.08$ $=0.412$
Now, we may assess the desirability of the policy as follows:
At present:

$$
\begin{aligned}
\text { Profit for Business Today } & =0.15(40 \% \text { of Rs } 50,00,000) \\
& =\operatorname{Rs~} 3,00,000
\end{aligned}
$$

Proposed Policy:

$$
\begin{aligned}
& \text { Expected profit for Business Today } \\
&=0.15(41.2 \% \text { of Rs } 50,00,000)-50,000 \\
&=\operatorname{Rs} 2,59,000
\end{aligned}
$$

Clearly it is not advisable to adopt the proposed policy.
11. From the given data, we have

$$
\begin{aligned}
& Q(0)=\left(\begin{array}{lll}
0.3 & 0.4 & 0.3
\end{array}\right) \quad \text { and } \quad P=\left[\begin{array}{lll}
0.85 & 0.08 & 0.07 \\
0.05 & 0.90 & 0.05 \\
0.15 & 0.07 & 0.78
\end{array}\right] \\
& Q(1)=Q(0) \times P=\left(\begin{array}{lll}
0.32 & 0.405 & 0.275
\end{array}\right) \\
& Q(2)=Q(0) \times P^{2}=\left(\begin{array}{lll}
0.3335 & 0.40935 & 0.25715
\end{array}\right)
\end{aligned}
$$

Accordingly,
Market shares next year, Jan. 1 are $32 \%, 40.5 \%$ and 27.5% respectively.
Market shares next to next year, Jan. 1 would be $33.35 \%, 40.93 \%$ and 25.72% respectively.
Market shares in equilibrium:
If q_{1}, q_{2} and q_{3} be the respective shares in equilibrium,
We have

$$
\begin{aligned}
0.85 q_{1}+0.05 q_{2}+0.15 q_{3} & =q_{1} \Rightarrow 0.15 q_{1}-0.05 q_{2}-0.15 q_{3}=0 \\
0.08 q_{1}+0.90 q_{2}+0.07 q_{3} & =q_{2} \Rightarrow-0.08 q_{1}+0.10 q_{2}-0.07 q_{3}=0 \\
0.07 q_{1}+0.05 q_{2}+0.78 q_{3} & =q_{3} \Rightarrow-0.07 q_{1}-0.05 q_{2}+0.22 q_{3}=0 \\
q_{1}+q_{2}+q_{3} & =1 \Rightarrow q_{1}+q_{2}+q_{3}=1
\end{aligned}
$$

Using above equations except the third one,

$$
\left[\begin{array}{rrr}
0.15 & -0.05 & -0.15 \\
-0.08 & 0.10 & -0.07 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Thus,

$$
\Delta=0.052, \Delta_{1}=0.0185, \Delta_{2}=0.0225 \text { and } \Delta_{3}=0.011
$$

$$
\begin{aligned}
& q_{1}=\Delta_{1} / \Delta=0.0185 / 0.052=0.3558 \\
& q_{2}=\Delta_{2} / \Delta=0.0225 / 0.052=0.4327 \\
& q_{3}=\Delta_{3} / \Delta=0.011 / 0.052=0.2115
\end{aligned}
$$

Thus, long-run shares of the three are expected to be $35.58 \%, 43.27 \%$ and 21.15% respectively for A, B and C.
12. (a) Given, initial condition $\mathrm{Q}(0)=\left(\begin{array}{lll}0.40 & 0.40 & 0.20\end{array}\right)$, and transition probability matrix,
$A B C$
$A B C\left[\begin{array}{lll}0.80 & 0.16 & X Y Z \\ P Q R \\ X Y Z\end{array}\left[\begin{array}{lll}0.04 \\ 0.12 & 0.84 & 0.04 \\ 0.18 & 0.06 & 0.76\end{array}\right]\right.$

The share of market expected to be held by different firms on January 1, 2004, may be obtained by $Q(0) P^{2}$. Accordingly,

$$
\begin{aligned}
Q(0) P^{2} & =\left(\begin{array}{lll}
0.40 & 0.40 & 0.20
\end{array}\right)\left[\begin{array}{ccc}
0.80 & 0.16 & 0.04 \\
0.12 & 0.84 & 0.04 \\
0.18 & 0.06 & 0.76
\end{array}\right]^{2} \\
& =\left(\begin{array}{ll}
0.40576 & 0.42176
\end{array}\right.
\end{aligned}
$$

\therefore Expected shares on the desired date are:

$$
A B C=40.6 \% ; P Q R=42.2 \% \text { and } X Y Z=17.2 \%
$$

(b) Determination of equilibrium market shares: Let q_{1}, q_{2}, and q_{3} be the respective shares of $A B C, P Q R$ and XYZ. Accordingly,

$$
\begin{aligned}
q_{1}= & 0.80 q_{1}+0.12 q_{2}+0.18 q_{3}, \\
q_{2}= & 0.16 q_{1}+0.84 q_{2}+0.06 q_{3}, \\
q_{3}= & 0.04 q_{1}+0.04 q_{2}+0.76 q_{3}, \text { and } \\
& q_{1}+q_{2}+q_{3}=1
\end{aligned}
$$

Rearranging the above equations,

$$
\begin{align*}
0.20 q_{1}-0.12 q_{2}-0.18 q_{3} & =0 \tag{i}\\
-0.16 q_{1}+0.16 q_{2}-0.06 q_{3} & =0 \tag{ii}\\
-0.04 q_{1}-0.04 q_{2}+0.24 q_{3} & =0 \tag{iii}\\
q+q_{2}+q_{3} & =1
\end{align*}
$$

Putting equation (i), (ii) and (iv) in matrix notation.

$$
\left(\begin{array}{rrr}
0.20 & -0.12 & -0.18 \\
-0.16 & 0.16 & -0.06 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Now, we may solve for q_{1}, q_{2}, and q_{3} to get,

$$
\begin{aligned}
\Delta & =0.0896, \Delta_{1}=0.0360, \Delta_{2}=0.0408, \Delta_{3}=0.0128 \\
q_{1} & =\frac{0.0360}{0.0896}=40.18 \% \\
q_{2} & =\frac{0.0408}{0.0896}=45.54 \% \\
q_{3} & =\frac{0.0128}{0.0896}=14.28 \%
\end{aligned}
$$

13. (a) Market shares expected after two months, $Q(2)$, can be obtained as $Q(0) \times P^{2}$.

$$
\begin{aligned}
\therefore \quad Q(2) & =\left(\begin{array}{lll}
0.45 & 0.25 & 0.30
\end{array}\right)\left[\begin{array}{lll}
0.03 & 0.95 & 0.02 \\
0.20 & 0.05 & 0.75
\end{array}\right] \\
& =\left(\begin{array}{lll}
0.4059 & 0.3391 & 0.2550
\end{array}\right)
\end{aligned}
$$

\therefore Expected market shares after two months are:

$$
X=40.59 \%, Y=33.91 \% \text { and } Z=25.50 \%
$$

(b) Let the long run market shares be q_{1}, q_{2} and q_{3} respectively for X, Y and Z. Thus,

$$
\begin{align*}
q_{1}= & 0.80 q_{1}+0.03 q_{2}+0.20 q_{3} \tag{i}\\
q_{2}= & 0.10 q_{1}+0.95 q_{2}+0.05 q_{3} \tag{ii}\\
q_{3}= & 0.10 q_{1}+0.02 q_{2}+0.75 q_{3} \tag{iii}\\
& q_{1}+q_{2}+q_{3}=1 \tag{iv}
\end{align*}
$$

Using equations (i), (ii) and (iv), in matrix notation

$$
\left[\begin{array}{rrr}
0.20 & -0.03 & -0.20 \\
-0.10 & 0.05 & -0.05 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{array}{lll}
q_{1}=0.0115 / 0.0485=0.2371 & \text { or } & 23.71 \% \\
q_{2}=0.0300 / 0.0485=0.6186 & \text { or } & 61.86 \% \\
q_{3}=0.0070 / 0.0485=0.1443 & \text { or } & 14.43 \%
\end{array}
$$

(c) The actual market shares in the long run are not likely to be close to the expected market shares because changing circumstances like consumer preferences, introduction of other brands, etc. may render transition probability matrix invalid.
14. Here,

$$
\begin{aligned}
& Q(0)=\left(\begin{array}{lll}
0.45 & 0.30 & 0.25
\end{array}\right) \text { and } P=\left[\begin{array}{lll}
0.80 & 0.14 & 0.06 \\
0.03 & 0.90 & 0.07 \\
0.06 & 0.09 & 0.85
\end{array}\right] \\
& Q(1)=Q(0) \times P=\left(\begin{array}{lll}
0.3840 & 0.3555 & 0.2605
\end{array}\right)
\end{aligned}
$$

Expected market shares of $A B C, X Y Z$ and $P Q R$ on Jan. 1 next year are $38.40 \%, 35.55 \%$ and 20.05% respectively. Let q_{1}, q_{2} and q_{3} be the equilibrium market shares of the firms.

$$
\begin{align*}
0.80 q_{1}+0.03 q_{2}+0.06 q_{3} & =q_{1} \Rightarrow 0.20 q_{1}-0.03 q_{2}-0.06 q_{3}=0 \tag{i}\\
0.14 q_{1}+0.90 q_{2}+0.09 q_{3} & =q_{2} \Rightarrow-0.14 q_{1}+0.10 q_{2}-0.09 q_{3}=0 \tag{ii}\\
0.06 q_{1}+0.07 q_{2}+0.85 q_{3} & =q_{3} \Rightarrow-0.06 q_{1}-0.07 q_{2}+0.15 q_{3}=0 \tag{iii}\\
q_{1}+q_{2}+\quad q_{3} & =1 \tag{iv}
\end{align*}
$$

From equations (i), (ii) and (iv), we have

$$
\left.\begin{array}{l}
\\
\end{array} \begin{array}{rrr}
0.20 & -0.03 & -0.06 \\
-0.14 & 0.10 & -0.09 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \begin{aligned}
& \Delta=0.0509, \Delta_{1}=0.0087, \Delta_{2}=0.0264, \Delta_{3}=0.0158 \\
& \therefore \quad q_{1}=0.0087 / 0.0509=0.1709 \\
&
\end{aligned} \quad \begin{aligned}
& q_{2}=0.0264 / 0.0509=0.5187 \\
& q_{3}=0.158 / 0.0509=0.3104
\end{aligned}
$$

Thus, expected shares of the firms in equilibrium are $17.09 \%, 51.87 \%$ and 31.04% respectively.
15. Policy 1:

From the given information, it is evident that all the bearings will be replaced at each inspection and none will be worn out. Thus, in such a situation, cost per bus per inspection $=$ Rs 250 .
Policy 2:
For this, let the states be redefined as G (that is, new) and A (alternative) and states 3 and 4 go immediately to state G. The transition probability matrix shall be as follows:

	G	A
G	0.15	0.85
A	$0.3+0.2$	0.50

From this matrix, we have

$$
\begin{gathered}
q_{1}=0.15 q_{1}+0.50 q_{2} \\
q_{2}=0.85 q_{1}+0.50 q_{2} \\
\\
q_{1}+q_{2}=1
\end{gathered}
$$

Solving these, we get $q_{1}=10 / 27$ and $q_{2}=17 / 27$.
Thus, at next inspection, $(10 / 27) \times(15 / 100)+(17 / 27) \times(30 / 100)=11 / 45$ is the fraction needing replacement since it is in state 3 and $(17 / 27) \times(20 / 100)=17 / 135$ is the fraction worn out. Accordingly, the cost per bus per inspection $=(11 / 45) \times 250+(17 / 35) \times 1200=$ Rs 212.22 .
Policy 2 is better, therefore.
16. Let W, F and P indicate, respectively, the states of running well, running fairly well, and running poorly. Also, let q_{1}, q_{2} and q_{3} be the equilibrium probabilities of the three states respectively.
Policy 1:
The transition probability matrix is:

	W	F	P
W	0.7	0.2	0.1
F	0	0.6	0.4
P	1	0	0

Further,

$$
\begin{aligned}
q_{1}= & 0.7 q_{1}+0 q_{2}+q_{3} \\
q_{2}= & 0.2 q_{1}+0.6 q_{2}+0 q_{3} \\
q_{3}= & 0.1 q_{1}+0.4 q_{2}+0 q_{3} \\
& q_{1}+q_{2}+q_{3}=1
\end{aligned}
$$

Solving these, we get $q_{1}=0.556, q_{2}=0.278, q_{3}=0.167$.
Policy 2:
The transition probability matrix is

	W	F	P
W	0.7	0.2	0.1
F	1	0	0
P	1	0	0

Here

$$
q_{1}=0.7 q_{1}+q_{2}+q_{3}
$$

$$
q_{2}=0.2 q_{1}
$$

$$
q_{3}=0.1 q_{1}
$$

$$
q_{1}+q_{2}+q_{3}=1
$$

Solving these, we get $q_{1}=0.769, q_{2}=0.154$, and $q_{3}=0.077$. Thus, downtime percentage is:
Policy 1: 16.7%, Policy 2: $15.4+7.7=23.1 \%$.
17. As a first step, we calculate steady-state probabilities. Let q_{1}, q_{2}, q_{3} and q_{4} be the steady-state probabilities for the states $1,2,3$ and 4 respectively. From the given information,

$$
\begin{aligned}
& q_{1}=0 q_{1}+0 q_{2}+0 q_{3}+0 q_{4} \\
& q_{2}= 0.75 q_{1}+0.50 q_{2}+0 q_{3}+0 q_{4} \\
& q_{3}=0.25 q_{1}+0.50 q_{2}+0.50 q_{3}+0 q_{4} \\
& q_{4}= 0 q_{1}+0 q_{2}+0.50 q_{3}+0 q_{4} \\
& q_{1}+q_{2}+q_{3}+q_{4}=1
\end{aligned}
$$

The solution of above equations yields $q_{1}=0.182, q_{2}=0.273, q_{3}=0.364$, and $q_{4}=0.182$.
The probabilities indicate that on an average 18.2% of the days the machine will be overhauled, for 27.3% days it will be in good condition, and in 36.4% days it will be in fair condition. Similarly, of the total, in 18.2% days, it will be inoperative at the day-end. Using this information,

$$
\begin{aligned}
\text { Average cost of maintenance per day } & =0.182 \times 125+0.182 \times 75 \\
& =\text { Rs } 36.36
\end{aligned}
$$

18. The transition probability matrix, considering the service departments as transient states and the production departments as absorbing states, may be expressed as follows:

Transition Probability Matrix

$P=$| $\quad S_{1}$ |
| :---: |
| S_{1} |
| S_{2} |
| S_{3} |
| S_{2} |
| P_{1} |
| P_{2} |\(\left[\begin{array}{lllll}0 \& S_{2} \& P_{1} \& P_{2}

0.25 \& 0.05 \& 0.40 \& 0.30

0.10 \& 0 \& 0.25 \& 0.35 \& 0.30

0.30 \& 0.15 \& 0 \& 0.15 \& 0.40

0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 1\end{array}\right]\)

From this,

$$
Q=\left(\begin{array}{lll}
0.00 & 0.25 & 0.05 \\
0.10 & 0.00 & 0.25 \\
0.30 & 0.15 & 0.00
\end{array}\right) \text { and } R=\left(\begin{array}{ll}
0.40 & 0.30 \\
0.35 & 0.30 \\
0.15 & 0.40
\end{array}\right)
$$

Now,

$$
\begin{aligned}
(I-Q) & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{lll}
0.00 & 0.25 & 0.05 \\
0.10 & 0.00 & 0.25 \\
0.30 & 0.15 & 0.00
\end{array}\right) \\
& =\left(\begin{array}{rrr}
1.00 & -0.25 & -0.05 \\
-0.10 & 1.00 & -0.25 \\
-0.30 & -0.15 & 1.00
\end{array}\right)
\end{aligned}
$$

Taking inverse of $(I-Q)$,

$$
(I-Q)^{-1}=\frac{1}{0.903}\left(\begin{array}{lll}
0.9625 & 0.2575 & 0.1125 \\
0.1750 & 0.9850 & 0.2550 \\
0.3150 & 0.2250 & 0.9750
\end{array}\right)
$$

Further,

$$
(I-Q)^{-1} R=\frac{1}{903}\left(\begin{array}{ll}
492 & 411 \\
453 & 450 \\
351 & 552
\end{array}\right)
$$

Now, the direct overhead matrix D, for S_{1}, S_{2}, and S_{3} is given to be (60,000 $25,500 \quad 60,500$). Thus,

$$
\begin{aligned}
D(I-Q)^{-1} R & =(60,000 \quad 25,500 \quad 60,500)\left(\begin{array}{ll}
492 / 903 & 411 / 903 \\
453 / 903 & 450 / 903 \\
351 / 903 & 552 / 903
\end{array}\right) \\
& =(69,000 \quad 77,000)
\end{aligned}
$$

Thus, the total overhead to be allocated to P_{1} and P_{2} would be Rs 69,000 and Rs 77,000 respectively.
19. From the given data,

$P=$| S_{1} |
| :---: |
| $S_{2} S_{2}$ |
| S_{2} |
| S_{3} |
| P_{1} |
| P_{2} |\(\left[\begin{array}{llllll}0 \& 0.15 \& 0.25 \& 0.40 \& 0.20

0.20 \& 0 \& 0.05 \& 0.35 \& 0.40

0.35 \& 0.20 \& 0 \& 0.25 \& 0.20

\hdashline 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 1\end{array}\right]\)

So,

$$
\begin{aligned}
Q & =\left(\begin{array}{lll}
0 & 0.15 & 0.25 \\
0.20 & 0 & 0.05 \\
0.35 & 0.20 & 0
\end{array}\right) \quad R=\left(\begin{array}{ll}
0.40 & 0.20 \\
0.35 & 0.40 \\
0.25 & 0.20
\end{array}\right) \\
I-Q & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{lll}
0 & 0.15 & 0.25 \\
0.20 & 0 & 0.05 \\
0.35 & 0.20 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & -0.15 & -0.25 \\
-0.20 & 1 & -0.05 \\
-0.35 & -0.20 & 1
\end{array}\right)
\end{aligned}
$$

Allocated expenses, $\quad E=K \times(I-Q)^{-1} \times R$
where $k=(6,000 \quad 8,000 \quad 68,500)$, the vector of direct expenses

$$
\begin{aligned}
\therefore & E
\end{aligned} \quad\left(\begin{array}{lll}
6,000 & 8,000 & 68,500
\end{array}\right)\left(\begin{array}{lll}
1.15133 & 0.23259 & 0.29946 \\
0.25294 & 1.06120 & 0.11630 \\
0.45355 & 0.29365 & 1.12807
\end{array}\right)\left(\begin{array}{ll}
0.40 & 0.20 \\
0.35 & 0.40 \\
0.25 & 0.20
\end{array}\right)
$$

20. To consider this problem as absorbing chains, we express the holding company and subsidiary companies as transient states H_{1}, S_{1}, and S_{2} respectively, and the outside shareholders of these, O_{1}, O_{2}, O_{3}, as the absorbing states. We first obtain the transition probability matrix as follows:

States

$P=$| H_{1} |
| ---: |
| H_{1} |
| S_{1} |
| S_{2} |
| O_{1} |
| O_{2} |
| O_{2} |
| O_{3} |$\left[\right.$| S_{1} | S_{2} | O_{1} | O_{2} | O_{3} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.03 | 0.06 | 0.91 | 0 | 0 | |
| 0.60 | 0 | 0.10 | 0 | 0.30 | 0 |
| 0.80 | 0.10 | 0 | 0 | 0 | 0.10 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | | |$]$

Here,

$$
Q=\left(\begin{array}{lll}
0.00 & 0.03 & 0.06 \\
0.60 & 0.00 & 0.10 \\
0.80 & 0.10 & 0.00
\end{array}\right) \text { and } R=\left(\begin{array}{lll}
0.91 & 0.00 & 0.00 \\
0.00 & 0.30 & 0.00 \\
0.00 & 0.00 & 0.10
\end{array}\right)
$$

Now,

$$
(I-Q)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{lll}
0.00 & 0.03 & 0.06 \\
0.60 & 0.00 & 0.10 \\
0.80 & 0.10 & 0.00
\end{array}\right)=\left(\begin{array}{ccc}
1 & -0.03 & -0.06 \\
-0.60 & 1 & -0.10 \\
-0.80 & -0.10 & 1
\end{array}\right)
$$

Taking inverse of $(I-Q)$, we get

$$
(I-Q)^{-1}=\frac{1000}{918}\left(\begin{array}{lll}
0.990 & 0.036 & 0.063 \\
0.680 & 0.952 & 0.136 \\
0.860 & 0.124 & 0.982
\end{array}\right)
$$

Now,

$$
(I-Q)^{-1} R=\frac{1}{918}\left(\begin{array}{rrr}
900.9 & 10.8 & 6.3 \\
618.8 & 285.6 & 13.6 \\
782.6 & 37.2 & 98.2
\end{array}\right)
$$

With the net profits matrix N, for H_{1}, S_{1} and S_{2} given as $N=(30,000 \quad 17,500 \quad 5,000)$, the matrix of the amount of profits going to outside shareholders D is given as

$$
D=N(I-Q)^{-1} R=(45,500 \quad 6,000 \quad 1,000)
$$

Evidently, the total profit to the outside shareholders is $45,500+6,000+1,000=52,500$, which is equal to total net profit earned by three companies separately, which works out to be $30,000+17,500+5,000=$ Rs 52,500.
21. From the given data, we have

$$
\left.P= \begin{array}{ccc:cc}
\\
2 \\
3.4 & 0.2 & 0.1 & 0.2 & 0.1 \\
0.3 & 0.4 & 0.1 & 0.1 & 0.1 \\
4 \\
0.2 & 0.4 & 0.1 & 0.1 & 0.2 \\
\hdashline 0 & 0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 0 & 1.0
\end{array}\right]
$$

Thus,

$$
\begin{aligned}
Q & =\left(\begin{array}{lll}
0.4 & 0.2 & 0.1 \\
0.3 & 0.4 & 0.1 \\
0.2 & 0.4 & 0.1
\end{array}\right) \text { and } I-Q=\left(\begin{array}{ccc}
0.6 & -0.2 & -0.1 \\
-0.3 & 0.6 & -0.1 \\
-0.2 & -0.4 & 0.9
\end{array}\right) \\
(I-Q)^{-1} & =\left[\begin{array}{lll}
2.29358 & 1.00917 & 0.36697 \\
1.33028 & 2.38532 & 0.41284 \\
1.10092 & 1.28440 & 1.37615
\end{array}\right]
\end{aligned}
$$

Expected amounts that may be eventually (i) collected and (ii) defaulted,

$$
\begin{aligned}
E & =\left(\begin{array}{lll}
20,00,000 & 40,00,000 & 30,000
\end{array}\right)(I-Q)^{-1}\left(\begin{array}{ll}
0.2 & 0.1 \\
0.1 & 0.1 \\
0.1 & 0.2
\end{array}\right) \\
& =\left(\begin{array}{ll}
48,34,862 & 41,65,138
\end{array}\right) .
\end{aligned}
$$

CHAPTER 15

1. (a)

	b_{1}	b_{2}	Row Minima	
a_{1}	3	7	3^{*}	Saddle point $=a_{1} b_{1}$
a_{2}	-5	5	-5	
Column Maxima	3^{*}	7		

(b)

	b_{1}	b_{2}	b_{3}	b_{4}	Row Minima	
a_{1}	5	8	2	4	2^{*}	
a_{2}	2	6	1	3	1	Saddle point $=a_{1} b_{3}$
Column Maxima	5	8	2^{*}	4		

2.

	b_{1}	b_{2}	b_{3}	b_{4}	Row Minima	
a_{1}	5	-4	5	8	-4	
a_{2}	6	2	0	-5	-5	Saddle point $=a_{3} b_{1}$
a_{3}	7	12	8	7	$7 *$	
a_{4}	2	8	-6	5	-6	
Column Maxima	7^{*}	12	8	8		

Optimal strategies: for $A=a_{3}$, for $B=b_{1}$; Value of game $=7$
3.

	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}	Row Minima
a_{1}	18	8	18	8	18	8	8^{*}
a_{2}	15	6	15	6	15	6	6
a_{3}	18	8	18	8	18	8	8^{*}
a_{4}	-15	-6	-15	-6	-15	-6	-15
Column Maxima	18	8^{*}	18	8^{*}	18	8^{*}	

The game is strictly determinable. It has multiple saddle points. They are: $a_{1} b_{2}, a_{1} b_{4}, a_{1} b_{6}, a_{3} b_{2}, a_{3} b_{4}$ and $a_{3} b_{6}$. Value of game $=8$. It is not fair since $V \neq 0$.
4.

	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	Row Minima
A_{1}	8	10	-3	-8	-12	-12
A_{2}	3	6	0	6	12	0^{*}
A_{3}	7	5	-2	-8	17	-8
A_{4}	-11	12	-10	10	20	-11
A_{5}	-7	0	0	6	2	-7
Column Max.	8	12	0^{*}	10	20	

(a) Maximum strategy $=A_{2}$, Minimum strategy $=B_{3}$
(b) Yes, since a saddle point exists
(c) $V=0$
(d) Yes, since in the game value $=0$
5.

	B_{1}	B_{2}	B_{3}	Row Minima
A_{1}	5	9	3	3
A_{2}	6	-12	-11	-12
A_{3}	8	16	10	8^{*}
Column Maxima	8^{*}	16	10	

The saddle point is evidently given by $A_{3} B_{1}$. Thus, optimal strategies for A and B are A_{3} and B_{1} respectively.
Game value $=8$.
Principle of dominance
Step 1: $R 3$ dominates $R 1$ and $R 2$ both. Delete rows 1 and 2 .
Step 2: $C 1$ dominates $C 2$ and $C 3$ both. Delete columns 2 and 3 of the reduced matrix. This leaves only a single value $=8$, which is the saddle point.
6.

ABC

Major Change	No Major Change	Row Minima
0	a	0^{*}
$-b$	0	$-b$
0^{*}	a	

Optimal strategies: Major change by each of the companies. $V=0$
7. Strategies available to Kumar:

1. One plane on installation I and five on installation II
2. Two planes on installation I and four on installation II
3. Three planes on installation I and three on installation II
4. Four planes on installation I and two on installation II
5. Five planes on installation I and one on installation II

Enemies' strategies:

1. One plane on installation I and four on installation II
2. Two planes on installation I and two on installation II
3. Three planes on installation I and two on installation II
4. Four planes on installation I and one installation II

Kumar's strategies	1	2	3	4	Row Minima
	Enemy's strategies				
1	4	2	1	0	0
2	1	3	0	-1	-1
3	-2	2	2	-2	-2
4	-1	0	3	1	-1
5	0	1	2	4	0
Column Maxima	4	3	3	4	

Evidently, the game has no saddle point.
8.

Godrej \& Boyce	Hindustan Level Ltd			Row Minima
	No advertising (1)	Med. Advertising (2)	Heavy adv. (3)	
No advertising (1)	50	40	28	28
Medium advertising (2)	70	50	45	45
Heavy advertising (3)	75	47.5	50	47.5
Column maxima	75	50	50	

It is clear that the game has no saddle point. Thus, the players need to play mixed strategies.
Row 3 dominates Row 1. Delete Row 1.
Column 2 dominates column 1 in the reduced matrix, so delete column 1. The reduced matrix is:

$$
\begin{array}{ll}
50 & 45 \\
47.5 & 50
\end{array}
$$

Let Godrej and Boyce play strategies 2 and 3 with probabilities p and $1-p$ respectively; and Hindustan Lever Ltd plays strategies 2 and 3 with probabilities y and $1-y$ respectively.

$$
\begin{aligned}
& x=\frac{a_{22}-a_{21}}{\left(a_{11}+a_{22}\right)-\left(a_{12}+a_{21}\right)}=\frac{50-47.5}{(50+50)-(47.5+45)}=0.33 \\
& y=\frac{a_{22}-a_{12}}{\left(a_{11}+a_{22}\right)-\left(a_{12}+a_{21}\right)}=\frac{50-45}{(50+50)-(45+47.5)}=0.67 \\
& v=\frac{\left(a_{11} \times a_{22}\right)-\left(a_{12} \times a_{21}\right)}{\left(a_{11}+a_{22}\right)-\left(a_{12}+a_{21}\right)}=\frac{(50 \times 50)-(45 \times 47.5)}{(50+50)-(45+47.5)}=48.33
\end{aligned}
$$

$\therefore \quad$ Optimal strategies: for Godrej \& Boyce $(0,0.33,0.67)$

$$
\text { for Hindustan Lever }(0,0.67,0.33)
$$

Market share for Godrej \& Boyce $=48.33$
9. From the given information, the pay-off matrix is drawn here:

First partner's	Second partner's strategy					
strategy	0	1	2	3	4	Row
	Minima					
0	0	-1	0	1	2	-1
1	1	0	0	1	2	0^{*}
2	0	0	0	1	2	0^{*}
3	-1	-1	-1	0	2	-1
4	-2	-2	-2	-2	0	-2
Column Maxima	1	0^{*}	0^{*}	1	2	

There are four saddle points here. Thus, there are four pairs of optimal strategies: 1-1, 1-2, 2-1 and 2-2. The game is indeed a fair one as the game value is zero.
10. On the basis of the given information, the pay-off matrix can be stated as follows:

| Firm 1's |
| :---: | ---: | :---: | :---: | :---: |
| strategy |\quad| Firm 2's strategy | | | Row Minima |
| :---: | :---: | :---: | :---: |
| A | | | |

Since a saddle point exists corresponding to $C-C$, both the firms should open their branches in city C.
11. Let $a_{1}, b_{1}: 5$ paise coin; $a_{2}, b_{2}: 10$ paise coin and $a_{3}, b_{3}: 20$ paise coin.

		Player B			
		b_{1}	b_{2}	b_{3}	Row Minima
Player A	a_{1}	-5	10	20	-5
	a_{2}	5	-10	-10	-10
	a_{3}	5	-20	-20	-20
Column Maxima		5	10	20	

The game has no saddle point. We attempt to reduce the size of the given matrix.
Row 2 dominates Row 3. Delete Row 3.
In the reduced matrix, column 2 dominates column 3. Delete column 3. The revised matrix is:

$$
\begin{aligned}
& \begin{array}{lrr}
& b_{1} & b_{2} \\
a_{1} & -5 & 10 \\
a_{2} & 5 & -10
\end{array} \\
& \text { With usual notations, } \quad x=\frac{-10-5}{(-5-10)-(5+10)}=\frac{1}{2} \\
& y=\frac{-10-10}{(-5-10)-(5+10)}=\frac{2}{3} \\
& v=\frac{(-5)(-10)-(5 \times 10)}{(-5-10)-(5+10)}=0=0
\end{aligned}
$$

$\therefore \quad$ Optimal strategy: $A(1 / 2,1 / 2,0), B(2 / 3,1 / 3,0), V=0$
12.

Firm A's	Firm B's strategy			Row Minima
strategy	No promo.	Mod. Promo.	High promo.	
No Prmotion	0	2	-15	-15
Mod. Promotion	12	18	-4	-4
Price cut	20	15	6	6^{*}
Col. Maxima	20	15	6^{*}	

(a) The game has a saddle point. Optimal strategies are: Firm A: Price cut, Firm B: High promotion.
(b) Value of the game, $V=6$. The game is strictly determinable. It is not fair since $V \neq 0$.
(c) Yes. Given the situation, there is no better option.
(d) The strategies need not maximize profits for either of the firms but none can obtain higher profits in the given circumstances.
13. The row minima are $-2,12$ and 10 respectively, while column maxima values are 16,14 and 13 respectively. The game has no saddle point since maximin and minimax values are not equal.
To check for dominance, we find that column 2 dominates column 1. Hence, column 1 can be deleted. Further, row 3 dominates row 1 . So row 1 is deleted. The game is now reduced to the size 2×2. With usual notations,

$$
\begin{aligned}
& x=\frac{a_{22}-a_{21}}{\left(a_{11}+a_{22}\right)-\left(a_{21}+a_{12}\right)}=\frac{10-14}{(12+10)-(14+13)}=\frac{-4}{-5}=0.8 \\
& y=\frac{a_{22}-a_{12}}{\left(a_{11}+a_{22}\right)-\left(a_{21}+a_{12}\right)}=\frac{10-13}{(12+10)-(14+13)}=\frac{-3}{-5}=0.6 \\
& v=\frac{\left(a_{11} \times a_{22}\right)-\left(a_{21} \times a_{12}\right)}{\left(a_{11}+a_{22}\right)-\left(a_{21}+a_{12}\right)}=\frac{12 \times 10-14 \times 13}{(12+10)-(14+13)}=\frac{-62}{-5}=12.4
\end{aligned}
$$

Thus, optimal policy is:
For A $(0,0.8,0.2)$, For B ($0,0.6,0.4$); and game value $=12.4$.
14. From the given information, the pay-off matrix may be derived as shown here:

A's strategy	P's strategy		
	Do nothing	Price cut	Row Minina
Advertise	7	-2	-2^{*}
Do nothing	0	-5	-5
Column Maxima	7	-2^{*}	

Evidently, a saddle point exists. The optimal strategy for firm A is to advertise, and for firm P to go for price cut.
15. With row minima values as $-4,9$ and -5 , and the column maxima values as 10,20 and 16 , the game has no saddle point. Using rule of dominance,
Step 1: A_{2} dominates A_{1}. Delete A_{1}.
Step 2: B_{1} dominates B_{2} in the reduced matrix. Delete B_{2}. This leaves the matrix as:

	B_{1}	B_{3}
A_{2}	9	16
A_{3}	10	-5

Now, let x be the probability with which A plays A_{2} and y be probability that B plays B_{1}. We have

$$
\begin{aligned}
& x=\frac{-5-10}{(9-5)-(16+10)}=\frac{15}{22} \\
& y=\frac{-5-16}{(9-5)-(16+10)}=\frac{21}{22} \\
& v=\frac{(9)(-5)-(16 \times 10)}{(9-5)-(16+10)}=\frac{205}{22}
\end{aligned}
$$

Accordingly,
Optimal strategy for $A:(0,15 / 22,7 / 22)$
Optimal strategy for B : $(21 / 22,0,1 / 22)$
Values of the game $=205 / 22$
16. The given game has no saddle point. We observe,

Row 3 dominates Row 1. So we delete Row 1.
Column 2 dominates column 1 in the reduced matrix. Deletion of this column leads to the following matrix:

	Med. advt.	Small advt.
Med. advt.	60	95
Small advt.	90	65

With usual notations,

$$
\begin{aligned}
& x=\frac{65-90}{(60+65)-(90+95)}=\frac{5}{12} \\
& y=\frac{65-95}{(60+65)-(90+95)}=\frac{1}{2} \\
& v=\frac{(60 \times 65)-(90 \times 95)}{(60+65)-(90+95)}=77 \frac{1}{2}
\end{aligned}
$$

$\therefore \quad$ Optimal strategy for $A=(0,5 / 12,7 / 12)$
Optimal strategy for $B=(0,1 / 2,1 / 2)$
Value of game $=77 \frac{1}{2}$
17. This problem does not have a saddle point. Both the parties have to play mixed strategies. We can attempt to reduce it to a 2×2 problem for solution. The graph is shown here.
The highest point in the lower envelope is k, given by the intersection of B_{1} and B_{2}. Thus, the 2×2 problem is:

	B_{1}	B_{2}
A_{1}	-2	1
A_{2}	5	-2

If x is the probability that management plays strategy A_{1} and y is the probability that union plays B_{1}, we have

$$
\begin{aligned}
& x=\frac{-2-5}{(-2-2)-(5+1)}=\frac{7}{10} \\
& y=\frac{-2-1}{(-2-2)-(5+1)}=\frac{3}{10} \\
& v=\frac{(-2)(-2)-(5)(1)}{(-2-2)-(5+1)}=\frac{1}{10}
\end{aligned}
$$

Thus, optimal strategy for the management is $(7 / 10,3 / 10)$, for the union it is $(3 / 10,7 / 10,0)$ and the game value $=1 / 10$.
18. For F_{1}, the strategies are:

$$
\begin{aligned}
& a_{1}: \text { make } 300 \text { colour sets } \\
& a_{2}: \text { make } 300 \text { black and white sets }
\end{aligned}
$$

For F_{2}, the strategies are:

$$
b_{1}: \text { make } 600 \text { colour sets }
$$

b_{2} : make 300 colour and 300 black and white sets
b_{3} : make 600 black and white sets
Foe the combination of $a_{1} b_{1}$, the profit to F_{1} would be $\frac{300}{300+600} \times 300 \times 200=$ Rs 20,000
wherein $(300 /(300+600))$ represents share of market for $F_{1}, 300$ is the total market for colour television sets and Rs 200 is the profit per set.
In a similar say, other profit figures may be obtained. They are shown in the matrix below.

$$
\begin{array}{ccccc}
& & b_{1} & b_{2} & b_{3} \\
F_{1} \text { ', s strategy } & a_{1} & 20,000 & 30,000 & 60,000 \\
& a_{2} & 45,000 & 45,000 & 30,000
\end{array}
$$

Since no saddle point exists, determine optimal mixed strategy. From the graph, we find that maximum point in the lower envelope is given by strategies b_{1} and b_{3} of F_{2}.
With usual notations,

$$
\begin{aligned}
x & =\frac{a_{22}-a_{21}}{\left(a_{11}-a_{22}\right)-\left(a_{12}-a_{21}\right)} \\
& =\frac{30,000-45,000}{(20,000+30,000)-(60,000+45,000)}=\frac{3}{11} \\
y & =\frac{a_{22}-a_{12}}{\left(a_{11}-a_{22}\right)-\left(a_{12}+a_{21}\right)} \\
& =\frac{30,000-60,000}{(20,000+30,000)-(60,000+45,000)}=\frac{6}{11} \\
v & =\frac{\left(a_{11} \times a_{22}\right)-\left(a_{12} \times a_{21}\right)}{\left(a_{11}+a_{22}\right)-\left(a_{12}+a_{21}\right)} \\
& =\frac{20,000 \times 30,000-60,000 \times 45,000}{(20,000+30,000)-(60,000+45,000)}=38,182
\end{aligned}
$$

Thus, optimal for F_{1} is $(3 / 11,8 / 11)$, for F_{2} is $(6 / 11,0,5 / 11)$ and the game value is Rs 38,182 .
19. With row minima values as $-5,-70,-5$ and -80 , and column maxima values as $20,16,60$ and 15 , the game does not have a saddle point. Using the rule of dominance,
(i) Row X_{1} dominates X_{3}. Delete X_{3}.
(ii) Column Y_{1} dominates column Y_{3} while column Y_{4} dominates Y_{2}. Delete columns Y_{2} and Y_{3}.
(iii) Row X_{2} dominates X_{4}. Deletion of X_{4} leads to the following matrix:

	Y_{1}	Y_{4}
X_{1}	-5	15
X_{2}	20	-70

If x be the probability for player X to play X_{1} and y be the probability for Y to Y_{1}, we have

$$
\begin{aligned}
& x=\frac{a_{22}-a_{21}}{\left(a_{11}+a_{22}\right)-\left(a_{12}+a_{21}\right)}=\frac{-70-20}{(-5-70)-(15+20)}=\frac{9}{11} \\
& y=\frac{a_{22}-a_{12}}{\left(a_{11}+a_{22}\right)-\left(a_{12}+a_{21}\right)}=\frac{-70-15}{(-5-70)-(15+20)}=\frac{17}{22} \\
& v=\frac{\left(a_{11} \times a_{22}\right)-\left(a_{12} \times a_{21}\right)}{\left(a_{11}+a_{22}\right)-\left(a_{12}+a_{21}\right)}=\frac{(-5)(-70)-(15 \times 20)}{(-5-70)-(15+20)}=\frac{-5}{11}
\end{aligned}
$$

Thus, optimal strategy for $X:(9 / 11,2 / 11,0,0)$, optimal strategy for $Y:(17 / 22,0,0,5 / 22)$, and game value, $v=-5 / 11$.
20. The game does not have a saddle point. Applying dominance rule,
(i) Row A_{1} dominates row A_{3}. Delete A_{3}.
(ii) Column B_{3} dominates column B_{4}. Delete B_{4}.
(iii) Column B_{3} is dominated by $0.5 B_{1}+0.5 B_{2}$. The reduced problem is:

	B_{1}	B_{2}
A_{1}	150	-18
A_{2}	6	102

With usual notations,

$$
\begin{aligned}
& x=\frac{102-6}{(150+102)-(6-18)}=\frac{96}{264}=\frac{4}{11} \\
& y=\frac{102+18}{(150+102)-(6-18)}=\frac{5}{11} \\
& v=\frac{(150-102)-(6)(-18)}{(150+102)-(6-18)}=\frac{642}{11}
\end{aligned}
$$

Accordingly,
Optimal strategy for A : $(4 / 11,7 / 11,0)$, optimal strategy for $B:(5 / 11,6 / 11,0,0)$ and value of game $=642 / 11$.
21. The game has not saddle point. By rule of dominance, we attempt to reduce it to a 2×2 game.

1. Row 3 dominates row 2 . Delete the second row.
2. Column 3 dominates column 1 , which is also deleted. With usual notations, we have

$$
\begin{aligned}
& x=\frac{50-20}{(40+50)-(-80+20)}=\frac{1}{5} \\
& y=\frac{50+80}{(40+50)-(-80+20)}=\frac{13}{15} \\
& v=\frac{(40 \times 50)-(-80)(20)}{(40+50)-(-80+20)}=24
\end{aligned}
$$

From these results, the optimal strategies are: $A(1 / 5,0,4 / 5)$ and $B(0,13 / 15,2 / 15)$. The game value $=24$.
22. Here row minima are $-1,-5$ and -4 , while column maxima are $0,2,4$ and 5 . Hence, there is no saddle point. So obtain solution to this problem, we attempt to reduce its order.
(i) Delete column 4, since it is dominated by column 3.
(ii) In the reduced matrix, row 1 dominates row 3 . So delete row 3 .
(iii) Column 3 is deleted next, since it is seen to be dominated by columns 1 and 2. This leads to a 2×2 game with strategies A_{1} and A_{2} for player A and B_{1} for B_{2} and player B. Accordingly,

$$
\begin{aligned}
& x=\frac{2+5}{(0+2)-(-1-5)}=\frac{7}{8} \\
& y=\frac{2+1}{(0+2)-(-1-5)}=\frac{3}{8} \\
& v=\frac{(0 \times 2)-(-1)(-5)}{(0+2)-(-1-5)}=\frac{-5}{8}
\end{aligned}
$$

Thus, optimal strategy for $A:(7 / 8,1 / 8,0)$; for $B:(3 / 8,5 / 8,0,0)$; and value of game $=-5 / 8$.
23. There is no saddle point. Column b_{2} dominates b_{3}. Deleting b_{3} reduces the game to a 2×2 game. Accordingly,

$$
\begin{aligned}
& x=\frac{3-7}{(2+3)-(5+7)}=\frac{4}{7} \\
& y=\frac{3-5}{(2+3)-(5+7)}=\frac{2}{7} \\
& v=\frac{(2 \times 3)-(5 \times 7)}{(2+3)-(5+7)}=\frac{29}{7}
\end{aligned}
$$

Optimal strategies are: $A(4 / 7,3 / 7), B(2 / 7,5 / 7,0)$ and the game value $=29 / 7$.
24. The row minima are $13,8,8$ and 18 while column maxima are $63,68,33$ and 23 respectively. The maximin value is 18 while the minimax value is 23 . Hence, the game has no saddle point and, therefore, no pure strategies.
Next, we check for dominance.
A_{1} dominates A_{2}. So delete A_{2}.
B_{3} dominates both B_{1} and B_{2}. Hence, delete B_{1} and B_{2}. Finally, delete A_{3} as it is doninated by A_{4}.
With no further dominance seen, the game is reduced to 2×2. With usual notations,

$$
\begin{aligned}
& x=\frac{a_{22}-a_{21}}{\left(a_{11}+a_{22}\right)-\left(a_{21}+a_{12}\right)}=\frac{23-18}{(33+23)-(18+13)}=\frac{5}{25}=0.2 \\
& y=\frac{a_{22}-a_{12}}{\left(a_{11}+a_{22}\right)-\left(a_{21}+a_{12}\right)}=\frac{23-13}{(33+23)-(18+13)}=\frac{10}{25}=0.4 \\
& v=\frac{\left(a_{11} \times a_{22}\right)-\left(a_{21} \times a_{12}\right)}{\left(a_{11}+a_{22}\right)-\left(a_{21}+a_{12}\right)}=\frac{33 \times 23-18 \times 13}{(33+23)-(18+13)}=\frac{525}{25}=21
\end{aligned}
$$

The optimal strategies are: for $\mathrm{A}(0.2,0,0,0.8)$; for $\mathrm{B}(0,0,0.4,0.6)$; with game value $=21$.
25. (i) The row minima are $-2,-1$ and 2 while the column maxima are 3,4 and 6 . Thus, the game has no saddle point. Accordingly, pure strategies do not exist for the players.
(ii) Deletion of column 3, which is dominated by column 1 entries, reduces the game to a 3×2 game and the rule of dominance is not seen to work further. We can proceed graphically to solve the problem. From the graph, P and Q are seen to be the two minimax points.
Evaluation of P and Q
For $P: \begin{array}{rrr}b_{1} & b_{2} \\ & & a_{2} \\ & -1 & 4\end{array} \quad y=\frac{2-4}{(-1+2)-(2+4)}=\frac{2}{5}=0.4$

$$
\begin{array}{rrrr}
\text { For } Q: & & b_{1} & b_{2} \\
& a_{1} & 2 & -2 \\
& a_{3} & 2 & 2
\end{array} \quad y=\frac{2+2}{(3+2)-(-2+2)}=\frac{4}{5}=0.8
$$

Thus, an optimal strategy for A is $(0,0,1)$ while for B it is any pair of $(y, 1-y)$ where $0.4 \leq y \leq 0.8$. The game value, $v=2$.
26. The game does not have saddle point. It is observed that row 3 strategy dominates row 2 strategy and, in the revised matrix, column 3 strategy dominates column 1 strategy. This leaves the game as a 2×2 game as follows:

	Radio	TV
Newspaper	50	-17
TV	30	60

Accordingly,

$$
\begin{aligned}
& x=\frac{60-30}{(50+60)-(-17+30)}=\frac{30}{97} \\
& y=\frac{60+17}{(50+60)-(-17+30)}=\frac{77}{97} \\
& v=\frac{(50 \times 60)-(-17)(30)}{(50+60)-(-17+30)}=\frac{3510}{97}
\end{aligned}
$$

Thus, optimal strategy for $A:(30 / 97,0,67 / 97)$, for $B:(0,77 / 97,20 / 97)$, and game value, $v=3510 / 97$.
27. The game has no saddle point. We solve the game graphically.

The highest point in the lower envelope is K, which is determined by strategies B_{1} and B_{4}. Thus, the game is reduced to the order 2×2 as follows:

$$
\begin{array}{crr}
& B_{1} & B_{4} \\
A_{1} & 2 & -3 \\
A_{2} & -3 & 1
\end{array}
$$

It is solved analytically, with usual notations as:

$$
\begin{aligned}
& x=\frac{1-(-3)}{(2+1)-(-3-3)}=\frac{4}{9} \\
& y=\frac{1-(-3)}{(2+1)-(-3-3)}=\frac{4}{9} \\
& v=\frac{(2 \times 1)-(-3)(-3)}{(2+1)-(-3-3)}=\frac{-7}{9}
\end{aligned}
$$

Therefore, optimal strategy for $A:(4 / 9,5 / 9)$, for $B:(4 / 9,0$,
 $0,5 / 9,0)$; and game value $=-7 / 9$.
28 The pay-off corresponding to various strategies are presented on the graph., Here player B has two strategies available, we consider the upper envelope and locate the minimum point in it. This point is K, which lies at the intersection of A_{1} and A_{3}. Accordingly, the game is reduced to 2×2 size as shown here.

	B_{1}	B_{2}
A_{1}	3	4
A_{3}	6	-2

With usual notations,

$$
\begin{aligned}
& x=\frac{-2-6}{(3-2)-(4+6)}=\frac{8}{9} \\
& y=\frac{-2-4}{(3-2)-(4+6)}=\frac{2}{3} \\
& v=\frac{(3)(-2)-(4 \times 6)}{(3-2)-(4+6)}=\frac{10}{3}
\end{aligned}
$$

Thus, optimal strategy for $A:(8 / 9,0,1 / 9,0,0)$; for $B:(2 / 3,1 / 3)$; and game value $=10 / 3$.
29. With row minima values as 6,5 and 7 , and the column maxima values as $9,11,9$ there is evidently no saddle point. It may be observed that $0.5 A_{1}+0.5 A_{2}$ dominates A_{3}. After deleting A_{3}, B_{1} is seem to dominate B_{3}. Its detetion leads to the following 2×2 game.

$$
\begin{array}{ccc}
& B_{1} & B_{2} \\
A_{1} & 6 & 11 \\
A_{2} & 9 & 5
\end{array}
$$

With usual notations,

$$
\begin{aligned}
& x=\frac{5-9}{(6+5)-(9+11)}=\frac{4}{9} \\
& y=\frac{5-11}{(6+5)-(9+11)}=\frac{6}{9} \\
& v=\frac{(6 \times 5)-(11 \times 9)}{(6+5)-(11+9)}=\frac{23}{3}
\end{aligned}
$$

Accordingly, optimal strategy for $A:(4 / 9,5 / 9,0)$, for B : $(2 / 3$,
 $1 / 3,0$) and value of the game, $v=23 / 3$.
30. Let x_{i} be the probability that firm X would play i th strategy. If U be value of game, we define $X_{i}=x_{i} / U$. Similarly, let y_{i} be the probability that firm Y would play j th strategy. If V be the game value, we define $Y_{i}=y_{i} / V$. The prblem is:

From X 's point of view

$$
\text { Minimise } \quad \frac{1}{U}=X_{1}+X_{2}+X_{3}
$$

Subject to

$$
\begin{gathered}
90 X_{1}+110 X_{2}+120 X_{3} \geq 1 \\
80 X_{1}+100 X_{2}+70 X_{3} \geq 1 \\
110 X_{1}+90 X_{2}+80 X_{3} \geq 1 \\
X_{1}, X_{2}, X_{3} \geq 0
\end{gathered}
$$

From Y's point of view

$$
\text { Maximise } \frac{1}{V}=Y_{1}+Y_{2}+Y_{3}
$$

Subject to

$$
\begin{gathered}
90 Y_{1}+80 Y_{2}+110 Y_{3} \leq 1 \\
110 Y_{1}+100 Y_{2}+90 Y_{3} \geq 1 \\
120 Y_{1}+70 Y_{2}+80 Y_{3} \leq 1 \\
Y_{1}, Y_{2}, Y_{3} \geq 0
\end{gathered}
$$

Solution to the game: Column 2 dominates column 1. Delete the dominated column. In the reduced matrix, the third row is seen to be dominated by the other rows. Hence, it is deleted. The resulting matrix is:

	Do not change	Reduce price
Increase price	80	110
Do not change	100	90

With usual notations,

$$
\begin{aligned}
& x=\frac{90-100}{(80+90)-(110+100)}=\frac{1}{4} \\
& y=\frac{90-110}{(80+90)-(110+100)}=\frac{1}{2} \\
& v=\frac{(80 \times 90)-(110 \times 100)}{(80+90)-(110+100)}=95
\end{aligned}
$$

$\therefore \quad$ Optimal strategy for $X:(1 / 4,3 / 4,0)$; for $Y:(0,1 / 2,1 / 2)$ and game value $=95$.
31. Let x_{i} be the probability of player A to play the i th strategy and U be the value of the game. We define $X_{i}=x_{i} / U$. Similarly, let y_{j} be the probability of player B to play the j th strategy, and V be the value of the game. We define $Y_{j}=y_{j} / V$. The LPP is:
$\begin{array}{ll}\text { From A's point of view } & \text { From B's point of view } \\ \text { Minimise } \frac{1}{U}=X_{1}+X_{2}+X_{3} & \text { Maximise } \frac{1}{V}=Y_{1}+Y_{2}+Y_{3}\end{array}$
Subject to

$$
\begin{array}{cc}
5 X_{1}+10 X_{2}+6 X_{3} \geq 1 & 5 Y_{1}+7 Y_{2}+2 Y_{3} \leq 1 \\
7 X_{1}+4 X_{2}+2 X_{3} \geq 1 & 10 Y_{1}+4 Y_{2}+9 Y_{3} \leq 1 \\
2 X_{1}+9 X_{2} & \geq 0 \\
X_{1}, X_{2}, X_{3} \geq 0 & 6 Y_{1}+2 Y_{2} \leq 1 \\
\hline
\end{array} Y_{1}, Y_{2}, Y_{3} \geq 0.4
$$

32. Since some of the entries in the matrix are negative, we add constant (say 10) as will make all values to be non-negative. The resulting matrix is:

Player B

	18	30	7	11
Player A	16	35	14	12
	10	2	22	19
	26	19	31	10

The linear programming formulation of the game is:

$$
\begin{array}{lc}
\text { For Player } A & \text { For Player } B \\
\text { Minimise } 1 / U=X_{1}+X_{2}+X_{3}+X_{4} & \text { Maximise } 1 / V=Y_{1}+Y_{2}+Y_{3}+Y_{4} \\
\text { Subject to } & \text { Subject to } \\
18 X_{1}+16 X_{2}+10 X_{3}+26 X_{4} \geq 1 & 18 Y_{1}+30 Y_{2}+7 Y_{3}+11 Y_{4} \leq 1 \\
30 X_{1}+35 X_{2}+2 X_{3}+19 X_{4} \geq 1 & 16 Y_{1}+35 Y_{2}+14 Y_{3}+12 Y_{4} \leq 1 \\
7 X_{1}+14 X_{2}+22 X_{3}+31 X_{4} \geq 1 & 10 Y_{1}+2 Y_{2}+22 Y_{3}+19 Y_{4} \leq 1 \\
11 X_{1}+12 X_{2}+19 X_{3}+10 X_{4} \geq 1 & 26 Y_{1}+19 Y_{2}+31 Y_{3}+10 Y_{4} \leq 1 \\
\quad X_{1}, X_{2}, X_{3}, X_{4} \geq 0 & Y_{1}, Y_{2}, Y_{3}, Y_{4} \geq 0
\end{array}
$$

Where $X_{i}=x_{i} / U, x_{i}$ is the probability that A plays i th strategy, U is the game value; $Y_{j}=y_{j} / V, y_{j}$ is the probability that B plays j th strategy and V is the game value. The true game value $=U$ (or V) minus 10 .
33. (a) Here the maximum value is -2 while the minimax is 1 . So the game has no saddle point.
(b) Apparently, none of the strategies is seen to dominate another. So the game cannot be reduced in size.
(c) The LPP is:

Maximise $1 / V=Y_{1}+Y_{2}+Y_{3}$
Subject to

$$
\begin{gathered}
8 Y_{1}+Y_{2}+Y_{3} \leq 1 \\
Y_{1}+Y_{2}+5 Y_{3} \leq 1 \\
Y_{1}+4 Y_{2}+Y_{3} \leq 1 \\
Y_{1}, Y_{2}, Y_{3} \geq 0
\end{gathered}
$$

Notes: $Y_{1}=y_{1} / V, Y_{2}=y_{2} / V$ and $Y_{3}=y_{3} / V$ where y_{1}, y_{2} and y_{3} are the respective probabilities with which the three strategies are played by player Y, and V is the game value.

For formulating the game as LPP, a constant (=3) has been added to all values in the matrix so that no negative values appear.
The solution follows.
Simplex Tableau 1: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	8	1	1	1	0	0	1	1
$S_{2} 0$	1	1	5	0	1	0	1	$1 / 5 \leftarrow$
$S_{3} 0$	1	4	1	0	0	1	1	1
C_{j}	1	1	1	0	0	0		
Solution	0	0	0	1	1	1		
Δ_{j}	1	1	1	0	0	0		
			\uparrow					

Simplex Tableau 2: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} \quad 0$	$39 / 5$	$4 / 5$	0	1	$-1 / 5$	0	$4 / 5$	1
$Y_{3} \quad 1$	$1 / 5$	$1 / 5$	1	0	$1 / 5$	0	$1 / 5$	1
$S_{3} 0$	$4 / 5$	$19 / 5$	0	0	$-1 / 5$	1	$4 / 5$	$4 / 19 \leftarrow$
C_{j}	1	1	1	0	0	0		
Solution	0	0	$1 / 5$	$4 / 5$	0	$4 / 5$		
Δ_{j}	$4 / 5$	$4 / 5$	0	0	$-1 / 5$	0		
		\uparrow						

Simplex Tableau 3: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	$145 / 19$	0	0	1	$-3 / 19$	$-4 / 19$	$12 / 19$	$12 / 145 \leftarrow$
$Y_{3} 1$	$3 / 19$	0	1	0	$4 / 19$	$-1 / 19$	$3 / 19$	1
Y_{2}	1	$4 / 19$	1	0	0	$-1 / 19$	$5 / 19$	$4 / 19$

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$Y_{1} 1$	1	0	0	$19 / 145$	$-3 / 145$	$-4 / 145$	$12 / 145$
$Y_{3} 1$	0	0	1	$-3 / 145$	$31 / 145$	$-7 / 145$	$21 / 145$
$Y_{2} 1$	0	1	0	$-4 / 145$	$-7 / 145$	$39 / 145$	$28 / 145$
C_{j}	1	1	0	0	0		
Solution	$12 / 145$	$28 / 145$	$21 / 145$	0	0	0	$61 / 145$
Δ_{j}	0	0	0	$-12 / 145$	$-21 / 145$	$-28 / 145$	

Thus, $Y_{1}=12 / 145, Y_{2}=28 / 145, Y_{3}=21 / 145$ and $V=\operatorname{Rec} 61 / 145$ or $145 / 61$. Accordingly, $y_{1}=12 / 61$, $Y_{2}=28 / 61$ and $y_{3}=21 / 61$.
(d) Game Value $=V-3=145 / 61-3=-38 / 61$.
34. From A's point of view:

Minimise $1 / U=X_{1}+X_{2}+X_{3}$
Subject to

$$
\begin{gathered}
5 X_{1}+5 X_{2}+8 X_{3} \geq 1 \\
4 X_{1}+8 X_{2}+5 X_{3} \geq 1 \\
7 X_{1}+4 X_{2}+6 X_{3} \geq 1 \\
X_{1}, X_{2}, X_{3} \geq 0
\end{gathered}
$$

From B's point of view:
Maximise $1 / V=Y_{1}+Y_{2}+Y_{3}$
Subject to

$$
\begin{gathered}
5 Y_{1}+4 Y_{2}+7 Y_{3} \leq 1 \\
5 Y_{1}+8 Y_{2}+4 Y_{3} \leq 1 \\
8 Y_{1}+5 Y_{2}+6 Y_{3} \leq 1 \\
Y_{1}, Y_{2}, Y_{3} \geq 0
\end{gathered}
$$

Where $X_{\mathrm{i}}=x_{i} / U$ and $x_{i}($ for $i=1,2,3)$ is the probability of A to play A_{1}, A_{2} and A_{3} respectively; and where $Y_{i}=y_{i} / V$ and $y_{i}($ for $i=1,2,3)$ is the probability to play B_{1}, B_{2} and B_{3} respectively by B. The solution to the game from B 's point of view is given here.

Simplex Tableau 1: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	5	4	7	1	0	0	1
S_{2}	0	5	8	4	0	1	0	1
S_{3}	0	8^{*}	5	6	0	0	1	$1 / 5$
C_{j}	1	1	1	0	0	0	0	$1 / 8$
Solution	0	0	0	1	1	1		
Δ_{j}	1	1	1	0	0	0		

Simplex Tableau 2: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0	$7 / 8$	$13 / 4$	1	0	$-5 / 8$	$3 / 8$
S_{2}	0	0	$39 / 8^{*}$	$1 / 4$	0	1	$-5 / 8$	$3 / 8$
Y_{1}	1	1	$5 / 8$	$3 / 4$	0	0	$1 / 8$	$1 / 8$
C_{j}	1	1	1	0	0	0		$1 / 5$
Solution	$1 / 8$	0	0	$3 / 8$	$3 / 8$	0		
Δ_{j}	0	$3 / 8$	$2 / 8$	0	0	$-1 / 8$		

Simplex Tableau 3: Non-optimal Solution
$\left.\begin{array}{|l|rrrrrr|r|r|}\hline \text { Basis } & Y_{1} & Y_{2} & Y_{3} & S_{1} & S_{2} & S_{3} & b_{i} & b_{i} / a_{i j} \\ \hline S_{1} & 0 & 0 & 0 & 125 / 39^{*} & 1 & -7 / 39 & -20 / 39 & 4 / 13 \\ Y_{2} & 1 & 0 & 1 & 2 / 39 & 0 & 8 / 39 & -5 / 39 & 1 / 13 \\ Y_{1} & 1 & 1 & 0 & 28 / 39 & 0 & -5 / 39 & 8 / 39 & 1 / 13\end{array}\right\}$

Simplex Tableau 4: Optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$Y_{3} 1$	0	0	1	$39 / 125$	$-7 / 125$	$-20 / 125$	$12 / 125$
Y_{2}	1	0	1	0	$-2 / 125$	$26 / 125$	$-15 / 125$
$Y_{1} \quad 1$	1	0	0	$-28 / 125$	$-11 / 125$	$40 / 125$	$1 / 125$
C_{j}	1	1	1	0	0	0	
Solution	$1 / 125$	$9 / 125$	$12 / 125$	0	0	0	
Δ_{j}	0	0	0	$-9 / 125$	$-8 / 125$	$-5 / 125$	

With $Y_{1}=\frac{1}{125}, Y_{2}=\frac{9}{125}$, and $Y_{3}=\frac{12}{125}, \frac{1}{\mathrm{~N}}=\frac{1}{125}+\frac{9}{125}+\frac{12}{125}=\frac{22}{125}$
Thus, $\quad V=\frac{125}{22}$ and $y_{1}=\frac{1}{125} \times \frac{125}{22}=\frac{1}{22}, y_{2}=\frac{9}{125} \times \frac{125}{22}=\frac{9}{22}, y_{3}=\frac{12}{125} \times \frac{125}{22}=\frac{12}{22}$
Similarly, for player A : $\frac{1}{U}=\frac{9}{125}+\frac{8}{125}+\frac{5}{125}=\frac{22}{125}$ and $U=\frac{125}{22}$
Thus, $x_{1}=\frac{9}{125} \times \frac{125}{22}=\frac{9}{22}, x_{2}=\frac{8}{125} \times \frac{125}{22}=\frac{8}{22}, x_{3}=\frac{5}{125} \times \frac{125}{22}=\frac{5}{22}$
35. (a) Since some of the entries are negative, we add a constant $(=2)$ to each of the values in the matrix. Next, let y_{1}, y_{2} and y_{3} be the respective probabilities of player Y playing the three strategies and V be the value of the game. We define $Y_{i}=y_{i} / V$. The LP model is

Maximise $\quad 1 / V=Y_{1}+Y_{2}+Y_{3}$
Subject to

$$
\begin{gathered}
3 Y_{1}+Y_{2}+Y_{3} \leq 1 \\
Y_{1}+Y_{2}+5 Y_{3} \leq 1 \\
Y_{1}+6 Y_{2}+Y_{3} \leq 1 \\
Y_{1}, Y_{2}, Y_{3} \geq 0
\end{gathered}
$$

Simplex Tableau 1: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$S_{1} 0$	3	1	1	1	0	0	1	$1 / 3 \leftarrow$
$S_{2} 0$	1	1	5	0	1	0	1	1
$S_{3} 0$	1	6	1	0	0	1	1	1
C_{j}	1	1	1	0	0	0		
Solution	0	0	0	1	1	1		
Δ_{j}	1	1	1	0	0	0		
	\uparrow							

Simplex Tableau 2: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
Y_{1}	1	1	$1 / 3$	$1 / 3$	$1 / 3$	0	0	$1 / 3$
S_{2}	0	0	$2 / 3$	$14 / 3$	$-1 / 3$	1	0	$2 / 3$
S_{3}	0	0	$17 / 3$	$2 / 3$	$-1 / 3$	0	1	$2 / 3$
C_{j}	1	1	1	0	0	0		
Solution	$1 / 3$	0	0	0	$2 / 3$	$2 / 3$		
Δ_{j}	0	$2 / 3$	$2 / 3$	$-1 / 3$	0	0		
		\uparrow						

Simplex Tableau 3: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}	$b_{i} / a_{i j}$
$y_{1} 1$	1	0	$5 / 17$	$6 / 17$	0	$-1 / 17$	$5 / 17$	1
S_{2}	0	0	0	$78 / 17^{*}$	$-5 / 17$	1	$-2 / 17$	$10 / 17$
$Y_{2} \quad 1$	0	1	$2 / 17$	$-1 / 17$	1	$3 / 17$	$2 / 17$	1
C_{j}	1	1	1	0	0	0		
Solution	$5 / 17$	$2 / 17$	0	0	$10 / 17$	0		
Δ_{j}	0	0	$10 / 17$	$-5 / 17$	0	$-2 / 17$		
		\uparrow						

Simple Tableau 4: Optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	S_{1}	S_{2}	S_{3}	b_{i}
$Y_{1} 1$	1	0	0	$29 / 78$	$-5 / 78$	$-2 / 39$	$10 / 39$
$Y_{3} 1$	0	0	1	$-5 / 78$	$17 / 78$	$-1 / 39$	$5 / 39$
$Y_{2} \quad 1$	0	1	0	$-2 / 39$	$-1 / 39$	$7 / 39$	$4 / 39$
C_{j}	1	1	1		0	0	
Solution	$10 / 39$	$4 / 39$	$5 / 39$	0	0	0	
Δ_{j}	0	0	0	$-10 / 39$	$-5 / 39$	$-4 / 39$	

Here $Y_{1}=\frac{10}{39}, Y_{2}=\frac{4}{39}$ and $Y_{3}=\frac{5}{39}$ and $\frac{1}{V}=\frac{19}{39}$ or $V=\frac{39}{19}$
$\therefore \quad y_{1}=\frac{10}{39} \times \frac{39}{19}=\frac{10}{19}, y_{2}=\frac{4}{39} \times \frac{39}{19}=\frac{4}{19}, y_{3}=\frac{5}{39} \times \frac{39}{19}=\frac{5}{19}$ and the game value $=39 / 19-2=1 / 19$.
(b) Dual Problem:

Minimise $\quad \frac{1}{U}=X_{1}+X_{2}+X_{3}$
Subject to

$$
\begin{aligned}
& 3 X_{1}+X_{2}+X_{3} \geq 1 \\
& X_{1}+X_{2}+6 X_{3} \geq 1 \\
& X_{1}+5 X_{2}+X_{3} \geq 1 \\
& X_{1}, X_{2}, X_{3} \geq 0
\end{aligned}
$$

From the Simplex Tableau 4, we have $X_{1}=10 . / 39, X_{2}=5 / 39$ and $X_{3}=4 / 39$, and $1 / U=19 / 39$ or $U=$ 39/19. Accordingly, $x_{1}=\frac{10}{39} \times \frac{39}{19}=\frac{10}{19}, x_{2}=\frac{5}{39} \times \frac{39}{19}=\frac{5}{19}$ and $x_{3}=\frac{4}{39} \times \frac{39}{19}=\frac{4}{19}$. Game value $=39 / 19-2=1 / 19$.
36. The given problem does not have saddle point. Accordingly, we may formulate and solve it as an LPP.

Let x_{i} be the probability that Hindustan Motor Co. would play i th strategy. If U be the value of the game, we define $X_{i}=x_{i} / U$. Similarly, let y_{j} be the probability that j th strategy would be played by India Motor Co. If V be the game value, we define $Y_{j}=y_{j} / V$. Accordingly, the problem is stated below.
From Hindustan Motor Co's point of view:
Minimise $\frac{1}{U}=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}$
Subject to

$$
\begin{array}{r}
3 X_{1}+5 X_{2}+2 X_{3}+6 X_{4}+2 X_{5} \geq 1 \\
4 X_{1}+6 X_{2}+X_{3}+4 X_{4}+X_{5} \geq 1 \\
2 X_{1}+7 X_{2}+4 X_{3}+2 X_{4}+9 X_{5} \geq 1 \\
8 X_{1}+4 X_{2}+5 X_{3}+3 X_{4}+4 X_{5} \geq 1 \\
X_{1}, X_{2}, X_{3}, X_{4}, X_{5} \geq 0
\end{array}
$$

From India Motor Co's point of view:

$$
\text { Maximise } \quad \frac{1}{V}=Y_{1}+Y_{2}+Y_{3}+Y_{4}
$$

Subject to

$$
\begin{array}{r}
3 Y_{1}+4 Y_{2}+2 Y_{3}+8 Y_{4} \leq 1 \\
5 Y_{1}+6 Y_{2}+7 Y_{3}+4 Y_{4} \leq 1 \\
2 Y_{1}+Y_{2}+4 Y_{3}+5 Y_{4} \leq 1 \\
6 Y_{1}+4 Y_{2}+2 Y_{3}+3 Y_{4} \leq 1 \\
2 Y_{1}+Y_{2}+9 Y_{3}+4 Y_{4} \leq 1 \\
Y_{1}, Y_{2}, Y_{3}, Y_{4} \geq 0
\end{array}
$$

Solution from India Motor Co's point of view follows. It is obtained in tables below.
Simplex Tableau 1: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	Y_{4}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	b_{i}	$b_{i} / a_{i j}$	
S_{1}	0	2	4	2	8	1	0	0	0	0	1	$1 / 3$
S_{2}	0	5	6	7	7	0	1	0	0	0	1	$1 / 5$
S_{3}	0	2	1	4	5	0	0	1	0	0	1	$1 / 2$
S_{4}	0	6^{*}	4	2	3	0	0	0	1	0	1	$1 / 6 \leftarrow$
S_{5}	0	2	1	9	4	0	0	0	0	1	1	$1 / 2$
C_{j}	1	1	1	1	0	0	0	0	0			
Solution	0	0	0	0	1	1	1	1	1			
Δ_{j}	1	1	1	1	0	0	0	0	0			
	\uparrow											

Simplex Tableau 2: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	Y_{4}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0	2	1	$13 / 2$	1	0	0	$-1 / 2$	0	$1 / 2$
S_{2}	0	0	$8 / 3$	$16 / 3^{*}$	$3 / 2$	0	1	0	$-5 / 6$	0	$1 / 6$
S_{3}	0	0	$-1 / 3$	$10 / 3$	4	0	0	1	$-1 / 3$	0	$2 / 3$
Y_{1}	1	1	$2 / 3$	$1 / 3$	$1 / 2$	0	0	0	$1 / 6$	0	$1 / 6$
S_{5}	0	0	$-1 / 3$	$25 / 3$	3	0	0	0	$-1 / 3$	1	$2 / 3$
C_{j}	1	1	1	1	0	0	0	0	0		$1 / 2$
Solution	$1 / 6$	0	0	0	$1 / 2$	$1 / 6$	$2 / 3$	0	$2 / 3$		
Δ_{j}	0	$1 / 3$	$2 / 3$	$1 / 2$	0	0	0	$-1 / 6$	0		
			\uparrow								

Simplex Tableau 3: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	Y_{4}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	b_{i}	$b_{i} / a_{i j}$
S_{1}	0	0	$3 / 2$	0	$199 / 32^{*}$	1	$-3 / 16$	0	$-11 / 32$	0	$15 / 32$
Y_{3}	1	0	$1 / 2$	1	$9 / 32$	0	$3 / 16$	0	$-5 / 32$	0	$1 / 32$
S_{3}	0	0	-2	0	$49 / 16$	0	$-5 / 8$	1	$3 / 16$	0	$9 / 16$
Y_{1}	1	1	$1 / 2$	0	$13 / 32$	0	$-1 / 16$	0	$7 / 32$	0	$5 / 32$
S_{5}	0	0	$-9 / 2$	0	$21 / 32$	0	$-25 / 16$	0	$31 / 32$	1	$13 / 32$
C_{j}	1	1	1	1	0	0	0	0	0		
Solution	$5 / 32$	0	$1 / 32$	0	$15 / 32$	0	$9 / 16$	0	$13 / 32$		
Δ_{j}	0	0	0	$5 / 16$	0	$-1 / 8$	0	$-1 / 32$	0		

Simplex Tableau 4: Non-optimal Solution

Basis	Y_{1}	Y_{2}	Y_{3}	Y_{4}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	b_{i}	
Y_{4}	1	0	$48 / 199$	0	1	$32 / 199$	$-6 / 199$	0	$-11 / 199$	0	$15 / 199$
Y_{3}	1	0	$86 / 199$	1	0	$-9 / 199$	$39 / 199$	0	$-28 / 199$	0	$2 / 199$
S_{3}	0	0	$-545 / 199$	0	0	$-98 / 199$	$-106 / 199$	1	$71 / 199$	0	$66 / 199$
Y_{1}	1	1	$359 / 398$	0	0	$-13 / 199$	$-10 / 199$	0	$48 / 199$	0	$25 / 199$
S_{5}	0	0	$-927 / 199$	0	0	$-21 / 199$	$-307 / 199$	0	$200 / 199$	1	$71 / 199$
C_{j}	1	1	1	1	0	0	0	0	0		
Solution	$2 / 199$	0	$2 / 199$	$15 / 199$	0	0	$66 / 199$	0	$71 / 199$		
Δ_{j}	0	$-229 / 398$	0	0	$-10 / 199$	$-23 / 199$	0	$-9 / 199$	0		

Objective function value $=\frac{1}{V}$

$$
=\frac{25}{199}+0+\frac{2}{199}+\frac{15}{199}=\frac{42}{199}
$$

Thus, game value, $\quad V=199 / 42$.
Now, since $\quad y_{j}=Y_{j} \times V$, we have

$$
\begin{aligned}
& y_{1}=Y_{1} \times V=\frac{25}{199} \times \frac{199}{42}=\frac{25}{42} ; y_{2}=Y_{2} \times V=0 \times \frac{199}{42}=0 \\
& y_{3}=Y_{3} \times V=\frac{2}{199} \times \frac{199}{42}=\frac{2}{42} ; \text { and } y_{4}=Y_{4} \times V=\frac{15}{199} \times \frac{199}{42}=\frac{15}{42}
\end{aligned}
$$

Similarly, we can derive the values of $x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5} from the Δ_{j} values of the Simplex Tableau 4.
Accordingly, $\quad x_{1}=\frac{10}{199} \times \frac{199}{42}=\frac{10}{42}, x_{2}=\frac{23}{199} \times \frac{199}{42}=\frac{23}{42}, x_{3}=0, x_{4}=\frac{9}{199} \times \frac{199}{42}=\frac{9}{42}$ and $x_{5}=0$.
Thus, optimal strategy for Hindustan Motor Co.: (10/42, 23/42, 0, 9/42, 0); for India Motor Co.: (25/42, $0,2 / 42,15 / 42$), and game value $=199 / 42$.

If it were known that India Motor Co. would produce model K_{4} only, Hindustan Motor Co. would produce model J_{1} because it will entail the highest pay-off.

CHAPTER 16

1.

\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
Stage 1	Stage 2	Stage 3	Stage 4	Stage 5

Recursive relationship: $f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}$
Stage 5

State, s_{5} Node	$f_{5}^{*}\left(s_{5}\right)$	x_{5}^{*}
10	6	$10-12$
11	10	$11-12$

Stage 4

State, s_{4} Node	$f_{4}\left(s_{4}\right)=c_{4}\left(s_{4}, x_{4}\right)+f_{5}^{*}\left(s_{5}\right)$	$f_{4}^{*} s_{4}$	x_{4}^{*}	
6	$x_{4}=6-10$	$2+6=8$	8	$6-10$
7	$x_{4}=7-11$	$9+10=19$	19	$7-11$
8	$x_{4}=8-11$	$12+10=22$	22	$8-11$
9	$x_{4}=9-11$	$6+10=16$	16	$9-11$

Stage 3

State, s_{3} Node	$f_{3}\left(s_{3}\right)=c_{3}\left(s_{3}, x_{3}\right)=f_{4}^{*}\left(s_{4}\right)$	$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}	
3	$x_{3}=3-6$	$4+8=12$		
	$x_{3}=3-7$	$6+19=25$	25	$3-7$
4	$x_{3}=4-7$	$12+19=31$		
	$x_{3}=4-8$	$11+22=33$	33	$4-8$
5	$x_{3}=5-7$	$9+19=28$	28	
	$x_{3}=5-8$	$3+22=25$		
	$x_{3}=5-9$	$10+16=26$		

Stage 2

State, s_{2} Node	$f_{2}\left(s_{2}\right)=c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)$	$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}	
1	$1-3$	$7+25=32$		
	$1-4$	$6+33=39$	39	$1-4$
2	$2-5$	$5+28=33$	33	$2-5$

Stage 1

Stage, s_{1} Node	$f_{1}\left(s_{1}\right)=c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)$	$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}	
0	$0-1$	$8+39=47$	47	$0-1$
	$0-2$	$2+33=35$		

Scanning through Stages 1 through 5 decisions, we observe that the longest path is $0-1-4-8-11-12$ with length of 47.
2.

Recursive relationship: $f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}$
(i) \quad Stage 4

State, s_{5} Node	$f_{4}^{*}\left(s_{4}\right)$	x_{4}^{*}	
D_{1}	$x_{4}=D_{1}$	7	$D_{1}-E$
D_{2}	$x_{4}=D_{2}$	5	$D_{2}-E$
D_{3}	$x_{4}=D_{3}$	6	$D_{3}-E$
D_{4}	$x_{4}=D_{4}$	10	$D_{4}-E$

Stage 3

State, s_{3} Node	$f_{3}\left(s_{3}\right)=c_{3}\left(s_{3}, x_{3}\right)=f_{4}^{*}\left(s_{4}\right)$	$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}	
c_{1}	$x_{3}=C_{1}-D_{1}$	$9+7=16$		
	$x_{3}=C_{1}-D_{2}$	$10+5=15$	15	$C_{1}-D_{2}$
c_{2}	$x_{3}=C_{2}-D_{2}$	$12+5=17$	$C_{2}-D_{2}$	
	$x_{3}=C_{2}-D_{3}$	$12+6=18$		$C_{3}-D_{3}$
c_{3}	$x_{3}=C_{3}-D_{3}$	$10+6=16$	16	
	$x_{3}=C_{3}-D_{4}$	$19+10=29$		

Stage 2

State, s_{2} Node	$f_{2}\left(s_{2}\right)=c_{2}\left(\mathrm{~s}_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)$	$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}	
B_{1}	$x_{2}=B_{1}-C_{1}$	$7+15=22$	22	$B_{1}-C_{1}$
	$x_{2}=B_{1}-C_{2}$	$10+17=27$		
B_{2}	$x_{2}=B_{2}-C_{2}$	$11+17=28$	22	$B_{2}-C_{3}$
	$x_{2}=B_{2}-C_{3}$	$6+16=22$		

Stage 1

Stage, s_{1} Node	$f_{1}\left(s_{1}\right)=c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)$	$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}	
A	$x_{1}=A-B_{1}$	$8+22=30$	30	$A-B_{1}$
	$x_{1}=A-B_{2}$	$14+22=36$		

From the above calculations, it is evident that the shortest route from A to E is: $A-B_{1}-C_{1}-D_{2}-E$ with a length equal to 30 .
(ii) Stage 3

State, s_{3} Node	$f_{3}\left(s_{3}\right)$	$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}	
C_{1}	$x_{3}=C_{1}-D_{1}$	9	9	$C_{1}-D_{1}$
	$x_{3}=C_{1}-D_{2}$	10		
C_{2}	$x_{3}=C_{2}-D_{2}$	12	12	$C_{2}-D_{2}$ or
	$x_{3}=C_{2}-D_{3}$	12	12	$C_{2}-D_{3}$
C_{3}	$x_{3}=C_{3}-D_{3}$	10	10	$C_{3}-D_{3}$
	$x_{3}=C_{3}-D_{4}$	19		

Stage 2

State, s_{2} Node	$f_{2}\left(s_{2}\right)$	$c_{2}\left(s_{2}, x_{2}\right)+f_{2}^{*}\left(s_{2}\right)$	$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}
B_{1}	$B_{1}-C_{1}$	$7+9=16$	16	$B_{1}-C_{1}$
	$B_{1}-C_{2}$	$10+12=22$		
B_{2}	$B_{2}-C_{2}$	$11+12=23$	16	$B_{2}-C_{3}$
	$B_{2}-C_{3}$	$6+10=16$		

Stage 1

State, s_{1} Node	$f_{1}\left(s_{1}\right)=c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)$	$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}	
A	$A-B_{1}$	$8+16=24$	24	$A-B_{1}$
	$A-B_{2}$	$14+16=30$		

From the preceding analysis, it is evident that the shortes path from A to any point on D is $A-B_{I}-C_{1}-D_{1}$ with a length $=24$.
3. (a)

Stage 4

State, s_{4} Node	$f_{4}^{*}\left(s_{4}\right)$	x_{4}^{*}	
7	$x_{4}=7-11$	6	$7-11$
8	$x_{4}=8-11$	11	$8-11$
9	$x_{4}=9-11$	6	$9-11$
10	$x_{4}=10-11$	10	$10-11$

Stage 3

State, s_{3} Node	$f_{3}\left(s_{3}\right) c\left(s_{3}, x_{3}\right)+f_{4}^{*}\left(s_{4}\right)$		$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}
4	$x_{3}=4-7$	$4+6=10$	10	4-7
	$x_{3}=4-8$	$12+11=23$		
5	$x_{3}=5-8$	$7+11=18$		
	$x_{3}=5-9$	$8+6=14$	14	5-9
6	$x_{3}=6-9$	$3+6=9$	9	6-9
	$x_{3}=6-10$	$9+10=19$		

Stage 2

State, s_{2} Node	$f_{2}\left(s_{2}\right)=c\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)$	$f_{2}^{*}\left(s_{3}\right)$	x_{2}^{*}	
2	$x_{2}=2-4$	$6+10=16$	$2-4$	
3	$x_{2}=2-5$	$5+14=19$		
	$x_{2}=3-5$	$10+14=24$	17	$3-6$

Stage 1

State, s_{1} Node	$f_{1}\left(s_{1}\right)=c\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)$	$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}	
1	$x_{1}=1-2$	$7+16=23$		
	$x_{1}=1-3$	$3+17=20$	20	$1-3$

It is clear that shortest route from initial node to the final node is 1-3-6-9-11, with a distance of 20 km .
(b) When 6-9 is not available: Stage 4, as above

Stage 3

State, s_{3} Node	$f_{3}\left(s_{3}\right)=c\left(s_{3}, x_{3}\right)=f_{4}^{*}\left(s_{4}\right)$	$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}	
4	$x_{3}=4-7$	$4+6=10$	10	$4-7$
	$x_{3}=4-8$	$12+11=23$		
5	$x_{3}=5-8$	$7+11=18$	14	$5-9$
	$x_{3}=5-9$	$8+6=14$	19	$6-10$

Stage 2

State, s_{2} Node	$f_{2}\left(s_{2}\right)=c\left(\mathrm{~s}_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)$	$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}	
2	$x_{2}=2-4$	$6+10=16$	16	$2-4$
	$x_{2}=2-5$	$5+14=19$		
3	$x_{2}=3-5$	$10+14=24$	24	$3-5$
	$x_{2}=3-6$	$8+19=27$		

Stage 1

State, s_{1} Node	$f_{1}\left(s_{1}\right)=c\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)$	$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}	
1	$x_{1}=1-2$	$7+16=23$	23	$1-2$
	$x_{1}=1-3$	$3+24=27$		

Thus, if 6-9 is not available, then the shortest route would be 1-2-4-7-11 and the distance would be 23 km .
4. There are two stages here: $n=1$ and 2 . Let x_{n} be the decision variables at stage n. Further, the state S_{n} indicates the amount of resources R_{1} and R_{2} at least. Let $S_{\mathrm{n}}=\left(R_{1}, R_{2}\right)$. Thus,

$$
\begin{aligned}
& S_{1}=(4,800,7,200) \\
& S_{2}=\left(4,800-20 x_{1}, 7,200-80 x_{1}\right)
\end{aligned}
$$

Recursive relationship:

$$
\begin{aligned}
f^{*}\left(R_{1}, R_{2}\right) & =\min _{x_{n}}\left(R_{1}, R_{2}, x_{\mathrm{n}}\right) \\
f_{2}^{*}\left(R_{1}, R_{2}\right) & =\min _{\substack{50 \\
50 \\
50 \\
50,800 \\
x_{2} \geq 7,200}}\left(24 x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(4,800,7,200)=40 x_{1}+f_{2}^{*}\left(4,800-20 x_{1}, 7,200-80 x_{1}\right) \\
& f_{1}^{*}(4,800,7,200)=\min _{\substack{20 x_{1} \geq 4800 \\
80 x_{1} \geq 7200}}\left\{40 x_{1}+f_{1}^{*}\left(4,800-20 x_{1}, 7,200-80 x_{1}\right)\right.
\end{aligned}
$$

Stage 2
$\operatorname{State}\left(R_{1}, R_{2}\right)$
$R_{1} \geq 0, R_{2} \geq 0$
Stage 1
We have, $f_{2}^{*}\left(4,800-20 x_{1}, 7,200-80 x_{1}\right)=24 \max \left(R_{1} / 50, R_{2} / 50\right)$

$$
\begin{aligned}
& =24 \max \left[\frac{4,800-20 x_{1}}{50}, \frac{7,200-80 x_{1}}{50}\right] \\
& =24 \max \left(96-0.4 x_{1}, 144-1.6 x_{1}\right) \\
f_{1}^{*}(4,800,7,200) & =\min _{x_{1} \geq 0}\left\{40 x_{1}+24 \max \left(96-0.4 x_{1}, 144-1.6 x_{1}\right)\right\}
\end{aligned}
$$

The minimum value that x_{1} can take is 0 , which yields $f_{1}=24 \times 144=3,456$. Similarly, the maximum value that x_{1} can take (here $R_{1}, R_{2} \geq=0$) is 240 which yields f_{1} equal to $40 \times 240=9,600$. To know, if there is any value of x_{1} between 0 and 240 which may yield value of f_{1} lower than the values obtained so far, we solve the two constraint equations simultaneously to get $x_{1}=40$ (and $x_{2}=80$) which yields $f_{1}=3,520$. From the results, it is evident that the optimal solution is $x_{1}=0, s_{2}=144$ and $Z=3,456$.
5. There are two stages involved here, $n=1,2$. Here x_{n} is the decision variable at stage n.

The states S_{n} indicate the amounts of resources, R_{1} and R_{2}, available for allocation. Let $s_{n}=\left(R_{1}, R_{2}\right)$. Thus.

$$
\begin{aligned}
& S_{1}=(12,40) \\
& S_{2}=\left(12-2 x_{1}, 40-15 x_{1}\right)
\end{aligned}
$$

Recursive relationship:

Stage 2
$\begin{array}{llc}\text { State }\left(R_{1}, R_{2}\right) & f_{2}^{*}\left(R_{1}, R_{2}\right) & x_{2}^{*} \\ R_{1} \geq 0 R_{2} \geq 0 & 20 \min \left\{R_{1} / 4, R_{2} / 5\right\} & \min \left\{R_{1} / 4, R_{2} / 5\right\}\end{array}$

$$
20 \min \left\{R_{1} / 4, R_{2} / 5\right\}
$$

$$
\min \left\{R_{1} / 4, R_{2} / 5\right\}
$$

Stage 1
We have $f_{2}^{*}\left(12-2 x_{1}, 40-15 x_{1}\right)=20 \min \left\{R_{1} / 4, R_{2} / 5\right\}$

$$
\begin{aligned}
& =20 \min \left[\frac{12-2 x_{1}}{4}, \frac{40-15 x_{1}}{5}\right] \\
& =20 \min \left\{3-0.5 x, 8-3 x_{1}\right\}
\end{aligned}
$$

Further,

$$
f_{1}^{*}(12,40)=\max _{x_{1} \geq 0}\left[30 x_{1}+20 \min \left\{3-0.5 x_{1}, 8-3 x_{1}\right\}\right]
$$

To solve, we first set $x_{1}=0$. For this, $f_{1}(12,40)=30 \times 0+20(3)=60$. Further, the maximum value that x_{1} can assume is $8 / 3$. This gives $f_{1}(12,40)=80$. Next, we see if any value between 0 and $8 / 3$ yields a higher value of the function. For this, we set $R_{1}=R_{2}$, so that $3-0.5 x_{1}=8-3 x_{1}$, implying $x_{1}=2$. This gives f_{1} $(12,40)=30 \times 2+20 \times 2=100$, which indeed is higher than the previously obtained values. Thus, optimal solution is : $x_{1}=2, x_{2}=2$, and $Z=100$.

$$
\begin{aligned}
& f^{*}\left(R_{1}, R_{2}\right)=\max _{x_{n}}\left(R_{1}, R_{2}, x_{n}\right) \\
& f_{2}^{*}\left(R_{1}, R_{2}\right)=\max \left(20 x_{2}\right) \\
& \begin{array}{c}
4 x_{2} \leq R_{1}, \\
5 x_{2} \leq R_{2}, x_{2} \geq 0
\end{array} \\
& f_{1}(12,40)=30 x_{1}+f_{2}^{*}\left(12-2 x_{1}, 40-15 x_{1}\right) \\
& \text { Also, } \quad f_{1}^{*}(12,40)=\max _{\substack{2 x_{1} \leq 12, 15 x_{1} \leq 40, x_{1} \geq 0}}\left\{30 x_{1}+f_{2}^{*}\left(12-2 x_{1}, 40-15 x_{1}\right)\right\}
\end{aligned}
$$

6. Here there are two stages: $n=1$ and 2 , and x_{n} represents the decision variable at stage n. The states s_{n} indicate the amounts of resources R_{1}, R_{2} and R_{3} available for distribution.

$$
\begin{aligned}
& S_{1}=(8,36,36) \\
& S_{2}=\left(8-2 x_{1}, 36,36-6 x_{1}\right)
\end{aligned}
$$

Since x_{1} is not known, let $S_{2}=\left(R_{1}, R_{2}, R_{3}\right)$
Recursive relationship:

$$
\begin{aligned}
& f^{*}\left(R_{1}, R_{2}, R_{3}\right)=\max _{x_{n}}\left(R_{1}, R_{2}, R_{3} ; x_{n}\right) \\
& f_{2}^{*}\left(R_{1}, R_{2}, R_{3}\right)=\max _{\substack{6 x_{2} \leq R_{2}, 4 x_{2}, \leq R_{3}}}\left(20 x_{2}\right) \\
& f_{1}(8,36,36,)=12 x_{1}+f_{2}^{*}\left(8-2 x_{1}, 36,36-6 x_{1}\right)
\end{aligned}
$$

Stage 2
State $\left(R_{1}, R_{2}, R_{3}\right)$

$$
\begin{array}{ll}
f_{2}^{*}\left(R_{1}, R_{2}, R_{3}\right) & x_{n}^{*} \\
20 \min \left\{\frac{R_{2}}{6}, \frac{R_{3}}{4}\right\} & \min \left\{R_{2} / 6, R_{3} / 4\right\}
\end{array}
$$

Stage 1
We have, $\quad f_{2}^{*}\left(R_{1}, R_{2}, R_{3}\right)=20 \mathrm{~min}\left\{R_{2} / 6, R_{3} / 4\right\}$

$$
\begin{aligned}
& =20 \min \left\{\frac{36}{6}, \frac{36-6 x_{1}}{4}\right\} \\
& =20 \min \left\{6,9-1.5 x_{1}\right\}
\end{aligned}
$$

Further,

$$
f_{1}^{*}(8,36,36)=\max _{\substack{2 x_{1} \leq 8, 6 x_{1} \leq 36}}\left\{12 x_{1}+20 \min \left(6,9-1.5 x_{1}\right)\right\}
$$

Here the minimum value for $x_{1}=0$ (leaving $x_{2}=6$) while the maximum value it can take is 4 (with $x_{2}=3$). When $x_{1}=0, f_{1}$ works out to be 120 and when $x_{1}=4 f_{1}$ equals 108 . Now, to consider if there are any values which may yield the function value greater than 120 , we consider equating R_{1}, R_{2}, and R_{3} pairwise. Setting $R_{1}=R_{2}$, we get $x_{1}=4$ and $x_{2}=6$ which is not feasible. When we set $R_{1}=R_{3}$, we get $x_{1}=4$ and $x_{2}=3$ which we have alrady considered. Finally, considering R_{2} and R_{3} together, we obtain $x_{1}=2$ (and $x_{2}=6$) This yields f_{1} equal to 144 . This is higher than the values obtained earlier. Thus, optimal solution to the problem is: $x_{1}=2, x_{2}=6$, and $Z=144$.
7. Here stage are the stores 1,2 , and 3 while states are the number of loads available for allocation. The recursive relationship is:

$$
f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

Stage 3

State,	$f_{3}\left(s_{3}\right)=c_{3}\left(s_{3}, x_{3}\right)$							$f_{3}^{*}\left(s_{3}\right)$
s_{3}	$x_{3}=0$	$x_{3}=1$	$x_{3}=2$	$x_{3}=3$	$x_{3}=4$	$x_{3}=5$		x_{3}^{*}
0	0					0	0	
1	0	1,600				3,600	1	
2	0	1,600	3,600			5,200	2	
3	0	1,600	3,600	5,200		7,200	3	
4	0	1,600	3,600	5,200	7,200		4	
5	0	1,600	3,600	5,200	7,200	8,000	8,000	5

Stage 2

State,	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right\}$						$f_{2}^{*}\left(s_{3}\right)$	x_{2}^{*}
s_{2}	$x_{2}=0$	$x_{2}=1$	$x_{2}=2$	$x_{2}=3$	$x_{2}=4$	$x_{2}=5$		0
0	0					2,400	1	
1	1,600	2,400				4,400	2	
2	3,600	4,00	4,400			6,000	$1,2,3$	
3	5,200	6,000	6,000	6,000		8,000	2	
4	7,200	7,600	8,000	7,600	7,600		9,600	$1,2,3$
5	8,000	9,600	9,600	9,600	9,200	8,800		

Stage 1

State,s_{1}	$x_{1}=0$	$f_{1}\left(\mathrm{~s}_{1}\right)=\left\{\mathrm{c}_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)\right\}$					$f_{1}^{*}\left(s_{4}\right)$	x_{1}^{*}
		$x_{1}=1$	$x_{1}=2$	$x_{1}=3$	$x_{1}=4$	$x_{1}=5$		
5	9,600	10,000	9,600	10,000	9,200	8,400	10,000	1,3

Scanning through the calculations, the optimal solution is: store $1: 1$ load, store $2: 2$ loads, store $3: 2$; loads; or store $1: 3$ loads, store $2: 2$ loads and store 3: nil. In each case the profit obtainable $=$ Rs 10,000 .
8. The Stages here are the regions $1,2,3$ and 4 while the states are the number of salespersons available for assignment. The recursive relationship is:

$$
f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

Stage 4

State, s_{4}	$f_{4}\left(s_{4}\right)=c_{4}\left(s_{4}, x_{4}\right)$							$f_{4}^{*}\left(s_{4}\right)$	x_{4}^{*}
	$x_{4}=0$	$x_{4}=1$	$x_{4}=2$	$x_{4}=3$	$x_{4}=4$	$x_{4}=5$	$x_{4}=6$		
0	0							0	0
1	0	12						12	1
2	0	12	22					22	2
3	0	12	22	28				28	3
4	0	12	22	28	32			32	4
5	0	12	22	28	32	34		34	5
6	0	12	22	28	32	34	36	36	6

Stage 3

State s_{3}	$f_{3}\left(s_{3}\right)=\left\{c_{3}\left(s_{3}, x_{3}\right)+f_{4}^{*}\left(s_{4}\right)\right\}$							$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}
	$x_{3}=0$	$x_{3}=1$	$x_{3}=2$	$x_{3}=3$	$x_{3}=4$	$x_{3}=5$	$x_{3}=6$		
0	0							0	0
1	12	10						12	0
2	22	22	20					22	0,1
3	28	32	32	30				32	1, 2
4	32	38	42	42	36			42	2, 3
5	34	42	48	52	48	42		52	3
6	36	44	52	58	58	54	44	58	3, 4

Stage 2

State,	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right\}$								$f_{2}^{*}\left(s_{2}\right)$
s_{2}	$x_{2}=0$	$x_{2}=1$	$x_{2}=2$	$x_{2}=3$	$x_{2}=4$	$x_{2}=5$	$x_{2}=6$		x_{2}^{*}
0	0					0	0		
1	12	14				14	1		
2	22	26	22			26	1		
3	32	36	34	32			36	1	
4	42	46	44	44	36		46	1	
5	52	56	54	54	48	42		56	1
6	58	66	64	64	58	54	44	66	1

Stage 1

State,	$f_{1}\left(s_{1}\right)=\left\{c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)\right.$							$f_{1}^{*}\left(s_{1}\right)$
s_{1}	$x_{1}=0$	$x_{1}=1$	$x_{1}=2$	$x_{1}=3$	$x_{1}=4$	$x_{1}=5$	$x_{1}=6$	x_{1}^{*}
6	66	64	64	66	62	58	48	

An analysis of optimal solutions at various stages, we obtain the following multiple optimal solution to the problem:
Region: $\begin{array}{llllll} & 1 & 2 & 3 & 4 & \text { Increase in sales (Rs lakh) }\end{array}$
$\begin{array}{llllll}\text { Sales persons: } & 3 & 1 & 0 & 2 & 66 \\ & 3 & 1 & 1 & 1 & 66\end{array}$
9. The four areas, A, B, C, and D are the four stages while the states are the number of commercial ads available to be inserted. The recursive relationship is:

$$
f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

Stage 4

State,	$f_{4}\left(s_{4}\right)=c_{4}\left(s_{4}, x_{4}\right)$							
s_{4}	$x_{4}=0$	$x_{4}=1$	$x_{4}=2$	$x_{4}=3$	$x_{4}^{*}=4$	$x_{4}=5$		x_{4}^{*}
0	0					0	0	
1	0	7				7	15	1
2	0	7	15			25	2	
3	0	7	15	25			3	
4	0	7	15	25	29		4	
5	0	7	15	25	29	33	33	5

Stage 3

State,	$f_{3}\left(s_{3}\right)=\left\{c_{3}\left(s_{3}, x_{3}\right)+f_{4}^{*}\left(s_{4}\right)\right.$							
s_{1}	$x_{3}=0$	$x_{3}=1$	$x_{3}=2$	$x_{3}=3$	$x_{3}=4$	$x_{3}=5$		$f_{3}^{*}\left(s_{3}\right)$
0	0					0	0	
1	7	11				11	19	2
2	15	18	19			26	1,2	
3	25	26	26	23			36	1
4	29	36	34	30	21		45	3
5	33	40	44	45	28	27		

Stage 2

State,	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right.$							
s_{2}	$x_{2}=0$	$x_{2}=1$	$x_{2}=2$	$x_{2}=3$	$x_{2}=4$	$x_{2}=5$		
0	0					0	$x_{2}^{*}\left(s_{2}\right)$	
1	11	13				13	1	
2	19	24	17			34	1	
3	26	32	28	21		32	1	
4	36	39	36	32	23		39	1
5	44	49	43	40	34	25	49	1

Stage 1

State,								
s_{1}	$x_{1}=0$	$x_{1}=1$	$x_{1}=2$	$x_{1}=3$	$f_{1}\left(s_{1}\right)=\left\{c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)\right\}$	x_{1}^{*}		
5	49	48	47	43	38	31	49	0

The optimal solution is:
Area: $A \quad B \quad C \quad D \quad$ No. of additionl votes
No. of ads: $0 \quad 1 \quad 1 \quad 3 \quad 0+3+11+25=49$ thousand
10. In this case, the stages are the four districts A, B, C and D, while the states are the number of workers available for employment. The recursive relationship is:

$$
f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

Stage 4

State, s_{4} Node	$f_{4}^{*}\left(s_{4}\right)$	x_{4}^{*}
0	0	0
1	13	1
2	24	2
3	32	3
4	39	4
5	45	5
6	50	6

Stage 3

State, s_{3}	$f_{3}\left(s_{3}\right)=\left\{c_{3}\left(s_{3}, x_{3}\right)+f_{4}^{*}\left(s_{4}\right)\right\}$							$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}
	$x_{3}=0$	$x_{3}=1$	$x_{3}=2$	$x_{3}=3$	$x_{3}=4$	$x_{3}=5$	$x_{3}=6$		
0	0							0	0
1	13	23						33	1
2	24	46	43					46	1
3	32	57	56	47				57	1
4	39	65	67	60	50			67	2
5	45	72	75	71	63	52		75	2
6	50	78	82	79	74	65	53	82	2, 6

Stage 2

State, s_{2}	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right\}$							$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}
	$x_{3}=0$	$x_{3}=1$	$x_{3}=2$	$x_{3}=3$	$x_{3}=4$	$x_{3}=5$	$x_{3}=$		
0	0							0	0
1	33	20						33	0
2	46	53	38					53	1
3	57	66	71	54				71	2
4	67	77	84	87	65			87	3
5	75	87	95	100	98	73		100	3
6	82	95	105	111	111	106	80	111	3, 4

Stage 1

State,									
	s_{1}	$x_{1}=0$	$x_{1}=1$	$x_{1}=2$	$x_{1}=3$	$x_{1}=4$	$x_{1}=5$	$x_{1}=6$	$f_{1}^{*}\left(s_{1}\right)$
6	111	125	129	126	116	102	72	129	2

Thus, optimal solution is:
$A: 2$ workers, $B: 3$ workers, $C: 1$ worker, $D:$ none. Estimated increase in the number of votes $=42+54+33$ $=129$.
11. The stages here are represented by the containers A, B, C and D while the states are indicated by the capacity short of 15 tons. The recursive relationship is:

$$
f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

Stage 4

State, s_{5}	$f_{4}^{*}\left(s_{4}\right)$	x_{4}^{*}
0	0	0
1	840	1
2	840	1
3	840	1
4	840	1
5	840	1
6	840	1
7	1,680	2
8	1,680	2
9	1,680	2
10	1,680	2
11	1,680	2
12	1,680	2
13	2,520	3
14	2,520	3
15	2,520	3

Stage 3

State, s_{3}	$f_{3}\left(s_{3}\right)=\left\{c_{3}\left(s_{3}, x_{3}\right)+f_{4}^{*}\left(s_{4}\right)\right\}$					$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}
	$x_{3}=0$	$x_{3}=1$	$x_{3}=2$	$x_{3}=3$	$x_{3}=4$		
0	0					0	0
1	840	720				720	1
2	840	720				720	1
3	840	720				720	1
4	840	720				720	1
5	840	1,560	1,440			840	0
6	840	1,560	1,440			840	0
7	1680	1,560	1,440			1,440	2
8	1,680	1,560	1,440			1,440	2
9	1,680	1,560	2,280	2,160		1,560	1
10	1,680	1,560	2,280	2,160		1,560	1
11	1,680	2,400	2,280	2,160		1,680	0
12	1,680	2,400	2,280	2,160		1,680	0
13	2,520	2,400	2,280	3,000	2,880	2,280	2
14	2,520	2,400	2,280	3,000	2,880	2,280	2
15	2,520	2,400	3,120	3,000	2,880	2,400	1

Stage 2

State, s_{2}	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right\}$						$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}
	$x_{2}=0$	$x_{2}=1$	$x_{2}=2$	$x_{2}=3$	$x_{2}=4$	$x_{2}=5$		
0	0						0	0
1	720	600					600	1
2	720	600					600	1
3	720	600					600	1
4	720	1,320	1,200				720	0
5	840	1,320	1,200				840	0
6	840	1,320	1,200				840	0
7	1,440	1,320	1,920	1,800			1,320	1
8	1,440	1,440	1,920	1,800			1,440	0,1
9	1,560	1,440	1,920	1,800			1,440	1
10	1,560	2,040	1,920	2,520	2,400		1,560	0
11	1,680	2,040	2,040	2,520	2,400		1,680	0
12	1,680	2,160	2,040	2,520	2,400		1,680	0
13	2,280	2,160	2,640	2,520	3,120	3,000	2,160	1
14	2,280	2,280	2,640	2,640	3,120	3,000	2,280	0,1
15	2,400	2,280	2,760	2,640	3,120	3,000	2,280	1

Stage 1

State,	$f_{1}\left(s_{1}\right)=c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)$				$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}
s_{1}	$x_{1}=0$	$x_{1}=1$	$x_{1}=2$	$x_{1}=3$		
15	2,280	2,340	2,400	3,000	2,280	0

The optimal solution is: A : none; $B: 1 ; C$: none; $D: 2$. Total cost $=$ Rs 2,280 .
12. Let the four products represent the four stages and the amount of budget remaining to be allocated to be s_{n}. The recursive relationship is:

$$
f_{n}^{*}\left(s_{n}\right)=\max _{1 \leq x_{n} \leq s_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

where x_{n} is the advertising amount (in lakhs of Rs) spent on product n.
Stage 4

State, s_{4}	$f_{4}^{*}\left(s_{4}\right)$	x_{4}^{*}
1	9	1
2	13	2
3	19	3
4	25	4

Stage 3

State,	$f_{3}\left(s_{3}\right)=\left\{c_{3}\left(s_{3}, x_{3}\right)+f_{4}^{*}\left(s_{4}\right)\right\}$				$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}
s_{3}	$x_{3}=1$	$x_{3}=2$	$x_{3}=3$	$x_{3}=4$		
2	15				15	1
3	19	21			21	2
4	25	25	27		27	3
5	31	31	31	33	33	4

Stage 2

State	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right\}$				$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}
s_{2}	$x_{2}=1$	$x_{2}=2$	$x_{2}=3$	$x_{2}=4$		
3	30				30	1
4	36	32			36	1
5	42	38	20		42	1
6	48	44	35	42	48	1

Stage 1

State,	$f_{1}\left(s_{1}\right)=\left\{c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)\right\}$				$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}
s_{1}	$x_{1}=1$	$x_{1}=2$	$x_{1}=3$	$x_{1}=4$		
7	57	57	54	51	57	1,2

From the analysis, we obtain the following optimal solutions:
Product $A: 1$ lakh, $B: 1$ lakh, $C: 4$ lakh, $D: 1$ lakh or
Product A: 2 lakh, $B: 1$ lakh, $C: 3$ lakh, $D: 1$ lakh,
Increase in sales $=$ Rs 57 lakh.
13. There are three stages here, $n=1,2,3$, represented by plants X, Y and Z, while the amount (in lakh Rs) available for allocation represents the states. If x_{n} be the amount allocated to plant n, the recursive relationship is:

$$
f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

Stage 3

State, s_{3}	$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}
0	0	0
20	8	20
40	18	40
60	22	60
80	32	80

Stage 2

State,	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right\}$					$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}
s_{2}	$x_{2}=0$	$x_{2}=20$	$x_{2}=40$	$x_{2}=60$	$x_{2}=80$		
0	0				0	0	
20	8	6			18	0	
40	18	14	12			0	
60	22	24	20	24	30	32	0,60
80	32	28	30	32	30		

Stage 1

State,	$f_{1}\left(s_{1}\right)=\left\{c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)\right\}$					$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}
s_{1}	$x_{1}=1$	$x_{1}=20$	$x_{1}=40$	$x_{1}=60$	$x_{1}=80$		
80	32	28	28	38	28	38	60

The optimal solution is: plant X : Rs 60 lakh, Plant Y : nil, Plant Z: Rs 20 lakh. Total return $=$ Rs 38 lakh.
The second-best solution is: Plants X and Y : nil, Plant Z: Rs 80 lakh; or Plant X : nil, Plant Y : Rs 60 lakh and plant Z : Rs 20 lakh. Return = Rs 32 lakh.
14. There are three stages $(n=1,2,3)$ represented by contractors A, B and C. The states are the number of substations available for allocation, while the recursive relationship is

$$
f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

Stage 3

State, s_{3}	$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}
0	0	0
1	65	1
2	120	2
3	200	3
4	270	4
5	340	5
6	400	6

Stage 2

State s_{2}	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right\}$							$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}
	$x_{2}=0$	$x_{2}=1$	$x_{2}=2$	$x_{2}=3$	$x_{2}=4$	$x_{2}=5$	$x_{2}=6$		
0	0							0	0
1	65	60						60	1
2	120	125	120					120	0, 2
3	200	180	185	170				170	3
4	270	260	240	235	250			235	3
5	340	330	320	290	315	320		290	3
6	400	400	390	370	370	385	410	370	3, 4

Stage 1

State,									
	s_{1}	$x_{1}=0$	$x_{1}=1$	$x_{1}=2$	$x_{1}=3$	$x_{1}=4$	$x_{1}=5$	$x_{1}=6$	$f_{1}^{*}\left(s_{1}\right)$
6	370	360	375	370	380	390	400	360	1

Optimal solution: $A: 1 ; B: 3$ and $C: 2$. Total cost $=$ Rs 360
15. Let the four items I_{1}, I_{2}, I_{3} and I_{4} represent the four stages, $n=1,2,3,4$. The states are the number of tons available for loading. If x_{n} be the number of units of the items loaded, the recursive relationship is

$$
f_{n}^{*}\left(s_{n}\right)=\max _{x_{n}}\left\{c_{n}\left(s_{n}, x_{n}\right)+f_{n+1}^{*}\left(s_{n+1}\right)\right\}
$$

Stage 4

State, s_{4}	$f_{4}^{*}\left(s_{4}\right)$	x_{4}^{*}
0	0	0
1	0	0
2	36	1
3	36	1
4	72	2
5	72	2
6	108	3
7	108	3
8	144	4
9	144	4
10	180	5
11	180	5
12	216	6
13	216	6
14	252	7

Stage 3

State,	$f_{3}\left(s_{3}\right)=\left\{c_{3}\left(s_{3}, x_{3}\right)+f_{4}^{*}\left(s_{4}\right)\right\}$		$f_{3}^{*}\left(s_{3}\right)$	x_{3}^{*}	
s_{3}	$x_{3}=0$	$x_{3}=1$	$x_{3}=2$	0	0
0	0		0	0	
1	0		36	0	
2	36		36	0	0
3	36	60		72	0
4	72	60	108	0	
5	72	96	108	0	
6	108	132	144	0	
7	108	132	120	180	0
8	144	168	168	156	180
9	180	204	156	216	0
10	180	204	192	216	0
11	216			252	
12	252			0	0
13				0	
14				0	0

Stage 2

State, s_{2}	$f_{2}\left(s_{2}\right)=\left\{c_{2}\left(s_{2}, x_{2}\right)+f_{3}^{*}\left(s_{3}\right)\right\}$				$f_{2}^{*}\left(s_{2}\right)$	x_{2}^{*}
	$x_{2}=0$	$x_{2}=1$	$x_{2}=2$	$x_{2}=3$		
0	0				0	0
1	0				0	0
2	36				36	0
3	36				36	0
4	72	50			72	0
5	72	50			72	0
6	108	86			108	0
7	108	86			108	0
8	144	122	100		144	0
9	144	122	100		144	0
10	180	158	136		180	0
11	180	158	136		180	0
12	216	194	172	150	216	0
13	216	194	172	150	216	0
14	252	230	208	186	252	0

Stage 1

State,							
	$f_{1}\left(s_{1}\right)=\left\{c_{1}\left(s_{1}, x_{1}\right)+f_{2}^{*}\left(s_{2}\right)\right\}$					$f_{1}^{*}\left(s_{1}\right)$	x_{1}^{*}
14	$x_{1}=0$	$x_{1}=1$	$x_{1}=2$	$x_{1}=3$	$x_{1}=4$		

A scan of the optimal decisions at various stages leads to the following overall optimal decision:
$I_{1}=I_{2}=I_{3}=$ nil, $I_{4}=7$ units; Total value $=252$ units.
16. Stages: Each day is considered as a stage. There are five stages, therefore, Monday: 1, Tuesday: 2; Wednesday: 3; Thursday: 4 and Friday: 5.
States: In each stage, there are two states: to sell or to hold (except in stage 5, where shares can only be sold).
Payoff: The payoff is the expected price realised.

Solution:

Stage 5: If shares are not sold by this time, then
Expected payoff $=0.25 \times 40+0.30 \times 41+0.45 \times 42=$ Rs 41.2. At each other stage, the investor can either sell or wait. She should sell the shares if the prevailing price is greater than the expected price (payoff) in the next stage and wait if the price is lower than that.
Stage 4: There is a 70% of chance of waiting and a 30% chance of selling (since Rs $42>$ Rs 41.2)
Expected payoff $=0.30 \times 4.2+0.70 \times 41.2=$ Rs 41.44
Stage 3: Expected payoff $=0.30 \times 42+0.70 \times 41.44=$ Rs 41.608
Stage 2: Expected payoff $=0.30 \times 42+0.70 \times 41.608=$ Rs 41.7256
Stage 1: Expected payoff $=0.30 \times 42+0.70 \times 41.7256=$ Rs 41.80792
Thus, following optimal policy, the investor can sell the shares for an expected price of Rs 41.81 . For various days, the decision rule is as follows:
Days: Monday through Thursday
Sell if the price of shares is Rs 22, else wait
Day: Friday
Sell at any price
Expected receipt $=5,000(41.81-0.20)=$ Rs 2,08,050.
17. Stages: Each week may be considered as a stage. Thus, there are four stages.

States: There are two states in every stage: to buy or to wait.
Payoff: The payoff function is given by the expected price at a given stage.

Solution:

Stage 4: Here, the manager has no choice so that the scrap must be bought if it has not been purchased earlier.
Expected price $=0.2 \times 1,000+0.5 \times 1,100+0.3 \times 1,200=$ Rs 1,110
Other stages: At each other stage, the manager can either buy at the prevailing price or he can wait until next week. The optimal policy dictates that if the price in the current week is higher than the expected price in the next week (stage), he can wait until next stage, while if the price is lower than that, he should buy in the current stage. Accordingly, analysis for other stages follows.
Stage 3: There is a 20% of buying at Rs 1,000 and a 50% chance of buying at Rs 1,110 . Similarly, there is a 30% chance of waiting, in which case the payoff would be Rs 1,110 (from stage 4). Thus,
Expected payoff $=0.20 \times 1,000+0.50 \times 1,100+0.30 \times 1,110=$ Rs 1,083
Stage 2: Expected payoff $=0.20 \times 1,000+0.80 \times 1,083=$ Rs $1,066.4$
Stage 1: Expected payoff $=0.20 \times 1,000+0.80 \times 1,066.4=$ Rs $1,053.1$
Accordingly, following optimal policy, the manager will pay an expected price of Rs $1,053.1$. For each week, the decision rule is:

First week: Buy if the price is Rs 1,000
Wait if the price is Rs 1,100 or Rs 1,200
Second week: Buy if the price is Rs 1,000
Wait if the price is Rs 1,100 or Rs 1,200

Third week: Buy if the price is Rs 1,000 or Rs 1,100
Wait if the price is Rs 1,200
Fourth week: Buy at the prevailing price.
18. Assuming that the salesman starts from city A, this is the last city he would visit. When he has only one city left to visit, his problem is trivial: he goes from city he is in to A. Next, we can work backward to a problem in which he is in some city and left only two cities to visit, and finally, we can determine the shortest tour that originates in A and has four cities to visit. Accordingly, we let the stages be represented by the number of cities the salesman has already visited. At any stage, the city to be next visited would be determined by the current location of the salesman and cities already visited by him. We define $f_{t}(i, s)$ to be the minimum distance to be travelled to complete a tour when $t-1$ cities in the set S have been visited and city i is the last city visited. Further, let $C_{i j}$ represents the distance between cities i and j. In the solution, we represent cities A, B, C and D be represented as $1,2,3$ and 4 respectively.
Stage 4: Here $S=\{2,3,4\}$ and possible states are $(2,\{2,3,4\}),(3,\{2,3,4\})$ and $(4,\{2,3,4\})$. Thus,

$$
\begin{aligned}
& f_{4}(2,\{2,3,4\})=C_{21}=1,297^{*} \\
& f_{4}(3,\{2,3,4\})=C_{31}=1,522^{*} \\
& f_{4}(4,\{2,3,4\})=C_{41}=772^{*}
\end{aligned}
$$

(2 to 1)

Stage 3

$$
\begin{aligned}
& f_{3}(2,\{2,3\})=C_{24}+f_{4}(4,\{2,3,4\})=1,360+772=2,132^{*} \\
& f_{3}(3,\{2,3\})=C_{34}+f_{4}(4,\{2,3,4\})=884+772=1,656^{*} \\
& f_{3}(2,\{2,4\})=C_{23}+f_{4}(3,\{2,3,4\})=1,306+1,522=2,828^{*} \\
& f_{3}(4,\{2,4\})=C_{43}+f_{4}(3,\{2,3,4\})=884+1,522=2,406^{*} \\
& f_{3}(3,\{3,4\})=C_{32}+f_{4}(2,\{2,3,4\})=1,306+1,297=2,603^{*} \\
& f_{3}(4,\{3,4\})=C_{42}+f_{4}(2,\{2,3,4\})=1,360+1,297=2,657^{*}
\end{aligned}
$$

(2 to 4)
(3 to 4)

$$
(2 \text { to } 3)
$$

$$
(4 \text { to } 3)
$$

$$
\text { (4 to } 2)
$$

Stage 2

$$
\begin{aligned}
& f_{2}(2,\{2\})=\min \left[\begin{array}{l}
\mathrm{C}_{23}+f_{3}(3,\{2,3\})=1,306+1,656=2,962^{*} \\
C_{24}+f_{3}(4,\{2,4\})=1,306+2,406=3,766
\end{array}\right. \\
& f_{2}(3,\{3\})=\min \left[\begin{array}{l}
C_{34}+f_{3}(4,\{3,4\})=884+2,657=3,541 \\
C_{32}+f_{3}(2,\{2,3\})=1,306+2,132=3,438^{*}
\end{array}\right. \\
& f_{2}(4,\{4\})=\min \left[\begin{array}{l}
C_{42}+f_{3}(2,\{2,4\})=1,360+2,828=4,188 \\
C_{43}+f_{3}(3,\{3,4\})=884+2,603=3,487^{*}
\end{array}\right.
\end{aligned}
$$

$$
\text { (2 to } 3 \text {) }
$$

$$
(2 \text { to } 4)
$$

(3 to 4)

$$
(3 \text { to } 2)
$$

$$
\text { (4 to } 2)
$$

$$
(4 \text { to } 3)
$$

Stage 1
At this stage, the salesman has not visited any cities and he happens to be in city A.

$$
f_{1}(1,\{\cdot\})=\min \left[\begin{array}{l}
C_{12}+f_{2}(2,\{2\})=1,297+2,962=4,259^{*} \\
C_{13}+f_{2}(3,\{3\})=1,522+3,438=4,960 \\
C_{14}+f_{2}(4,\{4\})=772+3,487=4,259^{*}
\end{array}\right.
$$

Optimal decision: There are two optimal decisions indicated here: Go from city $1(A)$ to city $2(B)$, from city $2(B)$ to city $3(C)$ and, finally, from city C to city $4(D)$ and then to city $1(A)$. Else, go from city $1(A)$ to city $4(D)$, then to city $3(C)$, next to city $2(B)$ and, finally, to city $1(A)$. Each of these involves a total distance of 4,259 units of distance. Of course, one of the tours here is simply a reversal of other.

CHAPTER 17

1.

S. No.	Arrival time of customer (t)	Customer Service		Waiting time	$\begin{aligned} & \text { Idle } \\ & \text { time } \end{aligned}$
		Begins	Ends		
1.	0	0	4	0	0
2.	1.8	4	8	2.2	0
3.	3.6	8	12	4.4	0
4.	5.4	12	16	6.6	0
5.	7.2	16	20	8.8	0
6.	9.0	20	24	11.0	0
7.	10.8	24	28	13.2	0
8.	12.6	28	32	15.4	0
			Total	61.6	

Average waiting time per customer $=61.6 / 8=7.7$ units. Percentage idle time of the facility $=$ nil.
2.

Determination of Random Number Intervals

Daily demand	Probability	Cumulative probability	R. No. interval
0	0.01	0.01	00
10	0.20	0.21	$01-20$
20	0.15	0.36	$21-35$
30	0.50	0.86	$36-85$
40	0.12	0.98	$86-97$
50	0.02	1.00	$98-99$

The simulation of demand is given here.

Simulation Worksheet

Day	R. No.	Demand	Day	R. No.	Demand
1	25	20	6	05	10
2	39	30	7	73	30
3	65	30	8	89	40
4	76	30	9	19	10
5	12	10	10	49	30

Average demand per day $=240 / 10=24$ units
3.

Determination of Random Number Intervals

Demand	Frequency	Probability	R. No. Interval
0	2	0.04	$00-03$
5	11	0.22	$04-25$
10	8	0.16	$26-41$
15	21	0.42	$42-83$
20	5	0.10	$84-93$
25	3	0.06	$94-99$
Total	50		

Demand Simulation:

Week:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R. No.:	35	52	90	13	23	73	34	57	35	83	94	56	67	66	60
Demand:	10	15	5	5	5	15	10	15	10	15	25	15	15	15	15
Average demand $=12.6$ units															

4. Step 1: Determine random number intervals

Demand (units)	Probability	Cumulative probability	Random number interval
15	0.05	0.05	$00-04$
16	0.08	0.13	$05-12$
17	0.20	0.33	$13-32$
18	0.45	0.78	$33-77$
19	0.10	0.88	$78-87$
20	0.07	0.95	$88-94$
21	0.03	0.98	$95-97$
22	0.02	1.00	$98-99$

Step 2: \quad Simulation of demand for 20 years would be $16,15,20,22,17,18,18,17,16,16,20,17,15$, $18,18,17,17,16,20$, and 18 .
It is given in the form of a frequency distribution:

Demand	$:$	15	16	17	18	19	20	21	22
No. of Years :	2	4	5	5	0	3	0	1	

Step 3: Obtain conditional pay-off matrix as follows.
Conditional Pay-off Matrix

Demand	Course of Action							
	15	16	17	18	19	20	21	22
15	300	270	240	210	180	150	120	90
16	300	320	290	260	230	200	170	140
17	300	320	340	310	280	250	220	190
18	300	320	340	360	330	300	270	240
19	300	320	340	360	380	350	320	290
20	300	320	340	360	380	400	370	340
21	300	320	340	360	380	400	420	390
22	300	320	340	360	380	400	420	440

Step 4: Using frequency distribution of demand simulated, we may calculate the expected pay-offs having reference to the pay-off matrix. This is shown in the table here.

Calculation of Expected Pay-off

Course of Action	Expected Pay-off	Total
15	20×300	6,000
16	$2 \times 270+18 \times 320$	6,300
17	$2 \times 240+4 \times 290+14 \times 340$	6,400
18	$2 \times 210+4 \times 260+5 \times 310+9 \times 360$	6,250
19	$2 \times 180+4 \times 230+5 \times 280+5 \times 330+4 \times 380$	5,850
20	$2 \times 150+4 \times 200+5 \times 250+5 \times 300+4 \times 400$	5,200
21	$2 \times 120+4 \times 170+5 \times 220+5 \times 270+3 \times 370+1 \times 420$	4,900
22	$2 \times 90+4 \times 140+5 \times 190+5 \times 240+3 \times 340+1 \times 440$	4,350

The optimal policy is to buy 17 copies every year since it will entail the highest expected profit.
5. From the given information, the conditional probability distributions may be expressed as follows. Alongside, random number intervals are given.
When help is needed the previous day: (Distribution D_{l})

Whether help needed today	Probability	Random number interval
Yes	0.60	$00-59$
No	0.40	$60-99$

When help is not needed the previous day: (Distribution D_{2})

Whether help
needed today
Yes
Probability
0.30
0.70

Random number
interval
00-29
30-99

The simulation worksheet is given here with the random numbers taken from second row in table of random numbers (B7).

Simulation Worksheet

Day	R. No.	Help?	Distribution	Day	R. No.	Help?	Distribution
1	19	Yes	D_{2}	11	85	No	D_{2}
2	36	Yes	D_{1}	12	52	No	D_{2}
3	27	Yes	D_{1}	13	05	Yes	D_{2}
4	59	Yes	D_{1}	14	30	Yes	D_{1}
5	46	Yes	D_{1}	15	62	No	D_{1}
6	13	Yes	D_{1}	16	39	No	D_{2}
7	79	No	D_{1}	17	77	No	D_{2}
8	93	No	D_{2}	18	32	No	D_{2}
9	37	No	D_{2}	19	77	No	D_{2}
10	55	No	D_{2}	20	09	Yes	D_{2}

Thus, proportion of days when extra help is needed $=9 / 20$.
6. In the following solution, the random numbers used are taken from the first three columns of the table of random numbers (Table B7). The three columns are used respectively for price, yield and cost.

Simulation Worksheet

Run	Price/Quintal		Yield(Q/acre)		Cost/acre		Profit/acre (Rs)
	R. No.	Price (Rs)	R. No.	Yield	R. No.	Cost (Rs)	
1	22	250	17	70	68	16,000	1,500
2	19	250	36	75	27	12,000	6,750
3	16	250	77	80	23	12,000	8,000
4	78	260	43	75	76	16,000	3,500
5	03	240	28	75	28	12,000	6,000
6	93	280	22	75	53	14,000	7,000
7	78	260	76	80	58	14,000	6,800
8	23	250	68	80	35	14,000	6,000

(Contd.)

9	15	250	39	75	25	12,000	6,750
10	58	260	71	80	96	18,000	2,800
11	57	260	35	75	27	12,000	7,500
12	48	260	50	75	86	18,000	1,500
13	61	260	96	85	48	14,000	8,100
14	36	260	93	85	89	18,000	4,100
15	18	250	89	80	00	12,000	8,000
16	88	270	56	75	53	14,000	6,250
17	09	240	72	80	95	18,000	1,200
18	12	250	96	85	88	18,000	3,250
19	85	270	94	85	57	14,000	8,950
20	38	260	64	80	43	14,000	6,800

Expected profit = Rs 5,537.50
7. Step 1: Determination of Random Number Intervals

Receipts (Rs)			Payments (Rs)			
Amount	Prob.	R. No. Interval		Amount	Prob.	R. No. Interval
3,000	0.20	$00-19$		4,000	0.30	$00-29$
5,000	0.30	$20-49$		6,000	0.40	$30-69$
7,000	0.40	$50-89$		8,000	0.20	$70-89$
12,000	0.10	$90-99$		10,000	0.10	$90-99$

Step 2: Simulation of Receipts and Payments ('000 Rs)
$\begin{array}{llllllllllll}\text { Week: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
Receipts
R. No.:

Amount:
03

Payments
R. No.:

3	12	5

$\begin{array}{rrrrrrrrrrrr}61 & 96 & 30 & 32 & 03 & 88 & 48 & 28 & 88 & 18 & 71 & 99 \\ 6 & 10 & 6 & 6 & 4 & 8 & 6 & 4 & 8 & 4 & 8 & 10\end{array}$
Step 3:

Receipts and Payments Statement

Week	Opening Balance	Receipts	Payments	Closing Balance
1	8,000	3,000	6,000	5,000
2	5,000	12,000	10,000	7,000
3	7,000	5,000	6,000	6,000
4	6,000	7,000	6,000	7,000
5	7,000	3,000	4,000	6,000
6	6,000	5,000	8,000	3,000
7	3,000	5,000	6,000	2,000
8	2,000	5,000	4,000	3,000
9	3,000	7,000	8,000	2,000
10	2,000	7,000	4,000	5,000
11	5,000	5,000	8,000	2,000
12	2,000	5,000	10,000	$(3,000)$

Estimated balance at the end $=($ Rs 3,000$)$
Highest weekly balance $=$ Rs 7,000
Average weekly balance $=$ Rs 3,750
8. Hint: Let ' 0 ' indicate head and ' 1 ' indicate tail. Assign probability of 0.5 to each. Scan the random number is some order and locate 0 and 1 , until the difference between heads and tails is equal to 5 . Proceed to find the gain.
9. (a) Assuming that the system is initially empty, we can record the arrival and service of the customers as shown in the simulate worksheet.
Average time in queue $=71 / 10=7.1$ or 142 seconds
Average time in system $=506 / 10=50.6$ or 1,012 seconds
Average number in the queue $=\frac{71-9}{622}=0.10$
Average number in the system $=\frac{506-26}{622}=0.77$

Simulation Worksheet

Arrival	Arrival Time	Service Start	Departure Time	Time in Queue	Time in System
1	41	41	111	0	70
2	87	111	123	24	36
3	125	125	148	0	23
4	182	182	218	0	36
5	269	269	405	0	136
6	490	490	545	0	55
7	510	645	610	35	100
8	609	614	614	1	5
9	612	631	648	2	19
10	622		Total	71	26
				506	

(b) From the given data,

Average inter-arrival time $=622 / 10=62.2$ or 1,244 seconds
Average service time $=435 / 10=43.5$ or 870 seconds
Accordingly,
Arrival rate, $\lambda=\frac{1}{1,244}$ per second
Service rate, $\mu=\frac{1}{870}$ per second
Substituting these values in the formulae given,
Average time in queue $=2,024$ seconds
Average time in system $=2,894$ seconds
Average number in the queue $=1.63$
Average number in the system $=2.33$
Obviously, there are differences in the two sets of results. There are primarily two reasons for this:
(i) The formulae are based on the assumptions of Poisson arrivals and negatively exponentially distributed service times. The greater the departures from these assumptions, the more variation in the results.
(ii) The formulae also assume steady state while the simulation here is based on the assumption of an empty system.
10.

Simulation Worksheet

Customer	Arrivals			Service				Waiting time	Idle time
	R. No.	IAT	AT	R. No.	ST	SS	SF		
1	19	04	04	08	01	04	05	0	4
2	32	04	08	27	03	08	11	0	3
3	59	06	14	74	07	14	21	0	1
4	81	08	22	96	09	22	31	0	0
5	27	04	26	48	05	31	36	5	0
6	45	06	32	07	01	36	37	4	0
7	26	04	36	65	05	37	42	1	0
8	52	06	42	78	07	42	49	0	1
9	77	08	50	92	09	50	59	0	0
10	46	06	56	49	05	59	64	3	
							Total	13	9

Average waiting time $=13 / 10=1.3$ minutes
Probability of idle time $=9 / 64$

Notes:

1. In the given four-digit random numbers, the first two digits are used for inter-arrival times while the other two are used for service times.
2. According to the inter-arrival times simulated, only 10 customers arrive within the stipulated 60 minutes.
IAT: inter-arrival time; AT: arrival time (t; ST: service time; SS: service starts; SF: service finish.
3. The probabilities of having A, B, and C defects are given as $0.15,0.20$, and 0.10 respectively. Thus, chances of not having these would be $0.85,0.80$, and 0.90 respectively. Accordingly, we may determine the random number intervals for each of these as follows:

	Defect A	Defect B				Defect C		
Presence	Prob.	R. No.	Presence	Prob.	R. No.	Presence	Prob.	R. No.
Yes	0.15	$00-14$	Yes	0.20	$00-19$	Yes	0.10	$00-09$
Yes	0.85	$15-99$	No	0.80	$20-99$	No	0.90	$10-99$

The results of simulation are given in the simulation worksheet.
Simulation Worksheet (Defects and Rework)

Item	Random number for defect			Presence of defect/s	Rework time	Remarks
	A	B	C			
1	48	47	82	None	-	
2	55	36	95	None	-	
3	91	57	18	None	-	
4	40	04	96	B	15	
5	93	79	20	None	-	
6	01	55	84	A	-	Scrap
7	83	10	56	B	15	
8	63	13	11	B	15	
9	47	57	52	None	-	
10	52	09	03	B, C	$15+30=45$	

Thus, for the simulated runs, five out of ten items were found to have no defects, one item was scrapped and a total of 90 minutes of rework time was required by four items.
12. Using the given data, we first obtain the arrival times of the patients and state the service times required by them.

Patient	Time since last Arrival $(R$. No. 00-80)	Arrival (clock) time	Service time $(R$. No. 15-14)
1	07	007	23
2	21	$0: 28$	37
3	12	$0: 40$	16
4	80	$2: 00$	28
5	08	$2: 08$	30
6	03	$2: 00$	18
7	32	$2: 43$	25
8	65	$3: 48$	34
10	43	$4: 31$	19

(a) The required calculations are shown in Simulation Worksheet 1.

Simulation Worksheet 1

Patient Arrival Time	Service Time	Service		Patients in Queue	Time in Queue	Idle Time of Doctor	
	$0: 07$	23	$0: 07$	$0: 30$	0	0	7
2	$0: 28$	37	$0: 30$	$1: 07$	1	2	0
3	$0: 40$	16	$1: 07$	$1: 23$	1	27	0
4	$2: 00$	28	$2: 00$	$2: 28$	0	0	37
5	$2: 08$	30	$2: 28$	$2: 58$	1	20	0
6	$2: 11$	18	$2: 58$	$3: 16$	2	47	0
7	$2: 43$	25	$3: 16$	$3: 41$	2	32	0
8	$3: 48$	34	$3: 48$	$4: 22$	0	0	7
9	$4: 31$	19	$4: 31$	$4: 50$	0	0	9
10	$5: 45$	21	$5: 45$	$6: 06$	0	0	55
				Total	128	115	

Average patients' queue time $=128 / 10=12.8$ minutes.
Percentage of time the doctor is idle $=115 / 366=31 \%$.
(b) The calculations are presented in Simulation Worksheet 2.

Simulation Worksheet 2

Patient	Arrival Time	Service Time	Doctor l or 2	Service		Waiting in Queue	Doctor's Idle Time	
	$0: 07$	23	1	$0: 07$	$0: 30$	0	7	-
2	$0: 28$	37	2	$0: 28$	$1: 05$	0	-	28
3	$0: 40$	16	1	$0: 40$	$0: 56$	0	10	-
4	$2: 00$	28	2	$2: 00$	$2: 28$	0	-	55
5	$2: 08$	30	1	$2: 08$	$2: 38$	0	12	-
6	$2: 11$	18	2	$2: 28$	$2: 46$	17	-	-
7	$2: 43$	25	1	$2: 43$	$3: 08$	0	5	-
8	$3: 48$	34	2	$3: 48$	$4: 22$	0	-	62
9	$4: 31$	19	1	$4: 31$	$4: 50$	0	83	-
10	$5: 45$	21	2	$5: 45$	$6: 06$	0	-	83
					Total	17	117	228

Average patient queue time $=17 / 10=1.7$ minutes.
Percentage idle time for doctor $1=117 / 366=32 \%$.
Percentage idle time for doctor $2=228 / 366=62 \%$.
13. Step 1: Determine random number intervals.

The random number intervals are determined both for supply and demand, as a first step. This is given below:

Supply	Prob.	R. No. interval	Demand	Prob.	R. No. interval
10	0.08	$00-07$	10	0.10	$00-09$
20	0.10	$08-17$	20	0.22	$10-31$
30	0.38	$18-55$	30	0.40	$32-71$
40	0.30	$56-85$	40	0.20	$72-91$
50	0.14	$86-99$	50	0.08	$92-99$

The probabilities for various supply/demand values are obtained by dividing the given frequencies by their respective totals.
Step 2: Simulate supply/demand using given random numbers. Calculate profit/loss.
The simulation using random numbers is shown here. Further, profit has been calculated as:
Sale revenue - Cost - Loss on unsatisfied demand.
Simulation Worksheet

Day	Supply			Demand		Profit/Loss
	R. No.	Amount (kg)		R. No.	Amount (kg)	
1	31	30		18	20	$600-600=0$
2	63	40		84	40	$1,200-800=400$
3	15	20		79	40	$600-400-160=40$
4	07	10		32	30	$300-200-160=(60)$
5	43	30		75	40	$900-600-80=220$
6	81	40		27	20	$600-800=(200)$

Note: This question does not appear to be properly worded. The loss on unsatisfied demand should not be considered in determining the profit since unearned profit is actually opportunity loss and non out-ofpocket loss. It can be adjusted with profit only when a penalty is required to be paid for not satisfying some demand.
14. Based on given precedence relationships, the network is drawn here:

Network
It is evident that length of the critical path may be determined as:

$$
\begin{array}{cccc}
\text { Greater of times of } & \text { plus } & \text { Greater of times of } & \text { plus } \\
A \text { and } C \text {, and } B \text { and } D & E, \text { and } F \text { and } G & H
\end{array}
$$

To simulate the activity durations, we first obtain random number intervals for each of the activities as shown in the following table.

Determination of Random Number Intervals

Activity	Duration (Days)	Prob.	R. No. Interval	Activity	Duration (Days)	Prob.	R. No. Interval
A	2	0.20	$00-19$	E	4	0.60	$00-59$
	3	0.40	$20-59$		5	0.40	$60-99$
B	4	0.40	$60-99$	F	2	0.80	$00-79$
	4	0.30	$00-29$		3	0.20	$80-99$
C	6	0.70	$30-99$	G	1	0.30	$00-29$
	3	0.30	$00-29$		3	0.50	$30-79$
	4	0.30	$30-59$		4	0.20	$80-99$
D	5	0.40	$60-99$	H	2	0.10	$00-09$
	2	0.20	$00-19$		3	0.20	$10-29$
	3	0.60	$20-79$		4	0.30	$30-59$
	5	0.20	$80-99$		5	0.40	$60-99$

Using random numbers, the activity times are obtained as shown in the worksheet. The random numbers are read column-wise, beginning with north-east corner of the Table B7.

Simulation Worksheet

Activity	Simulation Run											
	1		2		3		4		5		6	
	R. No.	Time										
A	22	3	17	2	68	4	65	4	84	4	68	4
B	19	4	36	6	27	4	59	6	46	6	13	4
C	16	3	77	5	23	3	02	3	77	5	09	3
D	78	3	43	3	76	5	71	3	61	3	20	3
E	03	4	28	4	28	4	26	4	08	4	73	5
F	93	3	22	2	53	2	64	2	39	2	07	2
G	78	3	76	3	58	3	54	3	74	3	92	4
H	23	3	68	5	35	4	26	3	00	2	99	5

From the given information, the critical path for each of the runs and the project duration may be obtained as shown below:

Simulation run	Critical path (s)	Duration
1	$B-D-F-G-H$	16
2	$B-D-F-G-H$	19
3	$B-D-F-G-H$	18
4	$B-D-F-G-H$	17
5	$A-C-F-G-H / B-D-F-G-H$	16
6	$A-C-F-G-H / B-D-F-G-H$	18

15. To solve the problem, we first determine random number intervals in accordance with the given probabilities.

Determination of Random Number Intervals

Demand ('000 units)	Prob.	R.No. Interval	Profit (Rs)	Prob.	R. No. Interval	Investment ('O00 Rs)	Prob.	R. No. Interval
25	0.05	$00-04$	3	0.10	$00-09$	2,750	0.25	$00-24$
30	0.10	$05-14$	5	0.20	$10-29$	3,000	0.50	$25-74$
35	0.20	$15-34$	7	0.40	$30-69$	3,500	0.25	$75-99$
40	0.30	$35-64$	9	0.20	$70-89$			
45	0.20	$65-84$	10	0.10	$90-99$			
50	0.10	$85-94$						
55	0.05	$95-99$						

Based on the given random numbers and the random number intervals, the simulated values are given in the simulation worksheet where return on investment is also shown in the last column. The return is calculated as the ratio of total profit to total investment, expressed as a percentage. From the values calculated, the only value seen to repeat itself is 5.83 per cent, which is the most likely return therefore.

Simulation Worksheet

Run	Demand		Unit Profit		Investment		Total Profit ('000 Rs)	Return (\%)
	R. No.	'000 units	R. No.	Rs	R. No.	('000 Rs)		
1	30	35	12	5	16	2,750	175	6.34
2	59	40	09	3	69	3,000	120	4.00
3	63	40	94	10	26	3,000	400	13.33
4	27	35	08	3	74	3,000	105	3.50
5	64	40	60	7	61	3,000	280	9.33
6	28	35	28	5	72	3,000	175	5.83
7	31	35	23	5	57	3,000	175	5.83
8	54	40	85	9	20	2,750	360	13.09
9	64	40	68	7	18	2,750	280	10.18
10	32	35	31	7	87	3,500	245	7.00

16. As a first step, we determine random number intervals for each of the three variables, in keeping with the probabilities of various values thereof.

Determination of Random Number Intervals

(a) Contribution:

Contribution Per unit $(R s)$	Prob.	Cumulative probability	Random Number interval
3	0.10	0.10	$00-09$
5	0.20	0.30	$10-29$
7	0.40	0.70	$30-69$
9	0.20	0.90	$70-89$
10	0.10	1.00	$90-99$

(b) Demand:

Annual demand (in '000 units)	Prob.	Cumulative probability	Random number interval
20	0.05	0.05	$00-04$
25	0.10	0.15	$05-14$
30	0.20	0.35	$15-34$
35	0.30	0.65	$35-64$
40	0.20	0.85	$65-84$
45	0.10	0.95	$85-94$
50	0.05	1.00	$95-99$

(c) Investment:

Investment ('000 Rs)	Prob.	Cumulative probability	Random number interval
1,750	0.25	0.25	$00-24$
2,000	0.50	0.75	$25-74$
2,500	0.25	1.00	$75-99$

We may now simulate the output of 10 runs using the given random numbers in order to find the percentage of return on investment (ROI\%) defined as:

$$
\text { ROI }=\frac{\text { Cash inflow }}{\text { Cash outflow }} \times 100
$$

Where cash inflow $=$ Contribution per unit \times Demand.

Simulation Worksheet (ROI)

S. No.	Random Number	Contribution per unit (Rs)	Demand ('O00 units)	Investment ('000 Rs)	ROI\%
1	93	10	45	2,500	18.00
2	03	3	20	1,750	3.45
3	51	7	35	2,000	12.25
4	59	7	35	2,000	12.25
5	77	9	40	2,500	14.40
6	61	7	35	2,500	12.25
7	71	9	40	2,000	18.00
8	62	70	35	2,000	12.25
9	99	5	30	2,500	20.00
10	15			1,750	8.57

The ROI in the last column is the ratio of the product of contribution per unit and demand to the investment. For example, the first value is obtained as:

$$
\frac{10 \times 45,000}{25,00,000} \times 100=18 \%
$$

Since the modal value of ROI\% is 12.25 , the optimal investment strategy is to invest Rs $20,00,000$.
17. In accordance with the probabilities given for each input variable, the random number intervals are determined first. This is shown below.

	Selling price			Sales offtake (A)		
Price (Rs)	Prob.	R. No. interval		Units	Prob.	R. No. interval
25	0.55	$00-54$		45,000	0.20	$00-19$
30	0.45	$55-99$		50,000	0.35	$20-54$
				55,000	0.45	$55-99$

Sales offtake (B)			Variable cost		
Units	Prob.	R. No. interval	Units cost (Rs)	Prob.	R. No. interval
40,000	0.35	00-34	10	0.25	00-24
45,000	0.40	35-74	12	0.35	25-59
50,000	0.25	75-99	14	0.40	60-99

Fixed cost		
Cost (Rs lakh)	Prob.	R. No. interval
3	0.35	$00-34$
4	0.45	$35-79$
5	0.20	$80-99$

From the given information, it is evident that if the estimated selling price (in accordance with the chosen value of random number) is Rs 25 , then distribution A of the sales offtake would be referred to. On the other hand, if the selling price is Rs 30 , then distribution B would be used. The simulation is shown in the worksheet.

Simulation Worksheet: Profit Estimation

Iteration	Selling Price (Rs)		Sales ('000 units)		Variable Cost per unit (Rs)		Fixed Cost (lakh Rs)		Profit/Loss (lakh Rs)
	R. No.	Amt.							
1	12	25	09	45	33	12	65	4	1.85
2	87	30	79	50	15	10	43	4	6.00
3	28	25	46	50	72	14	11	3	2.50
4	98	30	92	50	05	10	13	3	7.00
5	25	25	67	55	54	12	90	5	2.15
6	42	25	38	50	76	14	45	4	1.50
7	98	30	06	40	33	12	28	3	4.20
8	64	30	10	40	74	14	92	5	1.40
9	71	30	27	40	53	12	04	3	4.20
10	01	25	06	45	67	14	96	5	(0.05)
11	48	25	52	50	37	12	45	4	2.50
12	80	30	33	40	12	10	67	4	4.00

From the values given in the last column of the table, the required probabilities are obtained as follows:
(i) Probability that the company will not break-even $=1 / 12$
(ii) Probability that volume would exceed Rs 3 lakh $=5 / 12$
(iii) Probability that profit would not be over Rs 4 lakh $=2 / 3$
18. As a first step, we determine random number intervals to simulate demand for 10 days, in accordance with the random numbers given. This is done below.

Demand	Probability	Cumulative probability	Random number Interval
0	0.05	0.05	$00-04$
1	0.10	0.15	$05-14$
2	0.30	0.45	$15-44$
3	0.45	0.90	$45-89$
4	0.10	1.00	$90-99$

The demand is estimated below:

Day	$:$	1	2	3	4	5	6	7	8	9	10
R. No.	$:$	89	34	78	63	61	81	39	16	13	73
Demand	$:$	3	2	3	3	3	3	2	2	1	3

Now, each of the two policies may be evaluated. This is shown in the simulation worksheets.
Each of these is drawn on the basis of the assumption that the demand for a given day can be met out of the stock in hand and the units receivable, if any, at the end of that day.
Policy 1: Inventory at the beginning + Orders outstanding <8, Order 5 books.

Simulation Worksheet: Policy 1

Day	Opening Stock	Demand	Receipts	Closing Stock	Outstanding Orders		
					Opening	Orders	Closing
1	8	3	-	5	6	-	6
2	5	2	6	9	6	-	-
3	9	3	-	6	-	-	-
4	6	3	-	3	-	5	5
5	3	3	-	0	5	-	5
6	0	3	5	2	5	5	5
7	2	2	-	0	5	5	10
8	0	2	5	3	10	-	5
9	3	1	5	7	5	-	-
10	7	3	-	4	-	5	5

Carrying cost $=39 \times 0.50=$ Rs 19.50
Ordering cost $=4 \times 10=$ Rs 40.00
Total Cost $=$ Carrying cost + Ordering cost

$$
=\text { Rs } 19.50+\text { Rs } 40.00=\text { Rs } 59.50
$$

Policy 2: Inventory at the beginning + Orders outstanding <8, Order 8 books.

Simulation Worksheet: Policy 2

Day	Opening Stock	Demand	Receipts	Closing Stock	Outstanding Orders		
				Opening	Orders	Closing	
1	8	3	-	5	6	-	6
2	5	2	6	9	6	-	-
3	9	3	-	6	-	-	-
4	6	3	-	3	-	8	8
5	3	3	-	0	8	-	8
6	0	3	8	5	8	-	-
7	5	2	-	3	-	8	8
8	3	2	-	1	8	-	8
9	1	1	8	8	8	-	-
10	8	3	-	5	-	-	-

Carrying cost $=45 \times 0.50=$ Rs 22.50
Ordering cost $=2 \times 10=$ Rs 20.00
Total cost $=$ Rs $22.50+$ Rs $20.00=$ Rs 42.50
Conclusion: Adopt Policy 2.
19. (a) The weekly demand can be simulated using random numbers, on the basis of random number intervals in accordance with the given frequencies.
A flow chart depicting simulation is given here.
(b) It is evident from the given summary that the stockout cost is relatively very high in comparison to the carrying and the ordering costs. This indicates the need to adjust the recorder level and order quantity to reduce the number of stockouts. This will obviously raise the carrying cost and ordering cost. Further simulations are needed to determine the optimal levels of these two parameters. More simula-
tions will be required if the lead time is allowed to vary. The lead time has been assumed to be fixed in the above analysis.

Flowchart Showing Inventory Simulation
20. (a)

Simulation Worksheet

Run	Cost		Sales Revenue		Net Revenue (Rs)
	R. No.	Amount (Rs)	R. No.	Amount (Rs)	
1	82	21,000	39	21,000	0
2	84	21,000	72	22,000	1,000
3	28	19,000	38	21,000	2,000
4	82	21,000	29	21,000	0
5	36	19,000	71	22,000	3,000
6	92	21,000	83	23,000	2,000
7	73	20,000	19	20,000	0
8	91	21,000	72	22,000	1,000
9	63	20,000	92	23,000	3,000
10	29	19,000	59	22,000	3,000
11	27	19,000	49	22,000	3,000
12	26	19,000	39	21,000	2,000
13	92	21,000	72	22,000	1,000
14	63	20,000	94	23,000	3,000
15	83	21,000	01	19,000	$(2,000)$
16	03	17,000	92	23,000	6,000
17	10	18,000	72	22,000	4,000
18	39	19,000	18	20,000	1,000
19	10	18,000	09	19,000	1,000
20	10	18,000	00	19,000	1,000

Probability distribution:

Net Reveneue $($ Rs $)$	Prob.
$(2,000)$	0.05
$(1,000)$	0.00
0	0.15
1,000	0.30
2,000	0.15
3,000	0.25
4,000	0.05
5,000	0.00
6,000	0.05

(b)

Simulation Worksheet

Run	Cost		Sales Revenue		Net Revenue $(R s)$
	R. No.	Amount (Rs)		R. No.	Amount $($ Rs $)$

Probability distribution:

Net Revenue (Rs)	Prob.
0	0.05
1,000	0.10
2,000	0.30
3,000	0.30
4,000	0.05
5,000	0.20

21. As a first step, we assign random number intervals for each of the three variables.

Assignment of Random Numbers

Selling Price (Rs)	Prob.	R. No.	Variable Cost (Rs)	Prob.	R. No.	Sales (Units)	Prob.	R. No.
3	0.20	$00-19$	1	0.30	$00-29$	2,000	0.30	$00-29$
4	0.50	$20-69$	2	0.60	$30-89$	3,000	0.30	$30-59$
5	0.30	$70-99$	3	0.10	$90-99$	5,000	0.40	$60-99$

Using the given random numbers, we simulate the output of 10 trials to obtain the average profit for the project. The selling price, variable cost, and sales are obtained as a first step. This is given in the following table. The profit is calculated as follows:

Profit $=($ Selling price - Variable cost $) \times$ Sales volume - Fixed cost

Estimation of Selling Price, Variable Cost and Sales

S. No.	R. No.	Selling Price $(R s)$	R. No.	Variable Cost $(R s)$	R. No.	Sales ('000 units)
1	81	5	32	2	60	5
2	04	3	46	2	31	3
3	67	4	25	1	24	2
4	10	3	40	2	02	2
5	39	4	68	2	08	2
6	59	4	66	2	90	5
7	12	3	64	2	79	5
8	31	4	86	2	68	5
9	82	5	89	2	25	2
10	11	3	98	3	16	2

Simulated profit for the ten trials is as follows:

S. No.	Profit/Loss
1	Rs $(5-2) \times 5,000-\operatorname{Rs} 4,000=$ Rs 11,000
2	Rs (3-2) $\times 3,000-$ Rs $4,000=($ Rs 1,000$)$
3	Rs (4-1) $\times 2,000-$ Rs $4,000=$ Rs 2,000
4	Rs (3-2) $\times 2,000-$ Rs $4,000=($ Rs 2,000$)$
5	Rs ($4-2$) $\times 2,000-$ Rs $4,000=0$
6	Rs (4-2) $\times 5,000-$ Rs $4,000=$ Rs 6,000
7	Rs (3-2) $\times 5,000-$ Rs $4,000=$ Rs 1,000
8	Rs (4-2) $\times 5,000-$ Rs $4,000=$ Rs 6,000
9	Rs (5-2) $\times 2,000-$ Rs $4,000=$ Rs 2,000
10	Rs $(3-2) \times 2,000-\operatorname{Rs} 4,000=(\operatorname{Rs~4,000})$
	Total Rs 21,000

Thus, average profit per trial $=$ Rs $21,000 / 10=$ Rs 2,100 .
22. To begin with, we allocate random numbers $00-99$ to each of the variables given, in proportion to the probabilities of various categories of each one.

Determination of Random Number Intervals

Cost $($ Rs $)$	Prob.	R. No.	Life (Years)	Prob.	R. No.	Annual Cash Flow	Prob.	R. No.
60,000	0.30	$00-29$	5	0.40	$00-39$	10,000	0.10	$00-09$
70,000	0.60	$30-89$	6	0.40	$40-79$	15,000	0.30	$10-39$
90,000	0.10	$90-99$	7	0.20	$80-99$	20,000	0.40	$40-79$
					25,000	0.20	$80-99$	

Using the given random numbers, five simulation runs are performed and the results are given in the simulation worksheet.

Simulation Worksheet (Cost, Life, and Cash Flows)

Run	R. No.	Cost $(R s)$	R. No	Life (Years)	R. No.	Annual Cash Flows (Rs)
1	09	60,000	24	5	07	10,000
2	84	70,000	38	5	48	20,000
3	41	70,000	73	6	57	20,000
4	92	90,000	07	5	64	20,000
5	65	70,000	04	5	72	20,000

We may now calculate NPV for each of the runs using discount rate of six per cent assuming that the required rate of return is six percent for the risk-free investment projects of the company. For this, we have Present value of annuity with $n=5$ and $r=6 \%$: 4.212, and
Present value of annuity with $n=6$ and $r=6 \%$: 4.917
Accordingly,
Run 1: $N P V=10,000 \times 4.212-60,000=($ Rs 17,880$)$
Run 2: $N P V=20,000 \times 4.212-70,000=$ Rs 14,240
Run 3: $N P V=20,000 \times 4.917-70,000=$ Rs 28,340
Run 4: $N P V=20,000 \times 4.212-90,000=($ Rs 5,760$)$
Run 5: $N P V=20,000 \times 4.212-70,000=$ Rs 14,240

Payback Period

Run 1: Inflows @ Rs 10,000 p.a. and outflow Rs 70,000 , payback $=6.0$ years
Run 2: Inflows @ Rs 20,000 p.a. and outflow Rs 70,000 , payback $=3.5$ years
Run 3: Inflows @ Rs 20,000 p.a. and outflow Rs 70,000, payback $=3.5$ years
Run 4: Inflows @ Rs 20,000 p.a. and outflow Rs 90,000 , payback $=4.5$ years
Run 5: Inflows @ Rs 20,000 p.a. and outflow Rs 70,000, payback $=3.5$ years

CHAPTER 18

1. Buyer A:
$P V$ factor for $i=8 \%$ and $n=8$ is equal to 0.5403 (Table B3). Thus, present value of the payment

$$
\begin{aligned}
& =50,000 \times 0.5403 \\
& =\operatorname{Rs} 27,015
\end{aligned}
$$

Buyer B:
$P V$ factor for $i=8 \%$ and $n=6$ is equal to 0.6302 (Table B3). Thus, present value of the payments

$$
=14,000+25,000 \times 0.6302
$$

$$
=\text { Rs 29,755 }
$$

Buyer C:
Present value of the payment $=$ Rs 29,000
Hence, ignoring risk, if any, the best offer to the company is from Buyer B, the second buyer.
2. $M=\frac{120\left(1.05^{20}-1\right)}{(1.05-1)}$

$$
=120 \times 33.06595=\text { Rs } 3,967.90
$$

3. $3,00,000=\frac{A\left(1-1.08^{-10}\right)}{1.08-1}$
$\therefore \quad A=\frac{300,000}{6.7100814}=\operatorname{Rs} 44,708.85$
4. Here, Total Cost = Installation Cost + Electricity Charges

$$
T C(\text { heater })=\text { Rs } 160+\text { Rs } 200 \times 5=\text { Rs } 1,160
$$

$$
T C(\text { gas boiler })=\text { Rs } 760+\text { Rs } 80 \times 5=\text { Rs } 1,160
$$

On the basis of total cost, either the two be chosen. We may now calculate and compare the present value for each of the alternatives.

Calculation of Present Value

Year	$P V$ Factor $@ 9 \%$	Electric Immersion Heater			Gas Boiler	
	Operating Cost	Present Value		Operating Cost	Present Value	
0	1.0000	160	160.00	760	760.00	
1	0.9174	200	183.48		80	
2	0.8417	200	168.34	80	73.39	
3	0.7722	200	154.44	80	67.33	
4	0.7484	200	141.68	80	61.78	
5	0.6499	Total	129.98	80	56.67	
		937.92		51.99		

On the basis of present value calculations for a five year base, the housewife is advised to buy electric immersion heater
When the gadgets are to be compared for an eight-year life:
$T C($ heater $)=$ Rs $160+$ Rs $200 \times 8=$ Rs 1,760
$T C($ gas boiler $)=$ Rs $760+$ Rs $80 \times 8=$ Rs 1,400
On the basis of total expenditure, gas boiler is a better choice. Now, we may compute the present value of the total expenditure. Since the present value calculations for the first five years are already available, we calculate the values for the remaining three years. This is shown here

Calculation of Present Values

Year	PV Factor @ 9\%		Electric Immersion Heater			Gas Boiler	
	Operating Cost	Present Value		Operating Cost	Present Value		
6	0.5963	200	119.26	80	47.70		
7	0.5470	200	109.40	80	43.76		
8	0.5019	200	100.38	80	40.15		
	Total	329.04		131.61			

Present value (immersion heater) $=$ Rs $937.92+$ Rs 329.04

$$
=\text { Rs } 1,266.96
$$

Present value (gas boiler) $=$ Rs 1,071.16 + Rs 131.61

$$
=\text { Rs } 1,202.77
$$

Thus, over an eight-year period, the present value of gas boiler is less. The housewife is, accordingly, advised to buy the gas boiler.
5. Present value of annuity,

$$
\begin{aligned}
V & =\frac{500\left(1-1.01^{-30}\right)}{1.01-1} \\
& =500 \times 25.8077082=12,904
\end{aligned}
$$

$\therefore \quad$ Cost of TV set $=2,000+12,904=$ Rs 14,904
6. (a) Value offerred $=$ Rs $5,00,000$
(b) Present value of the offer,

$$
\begin{aligned}
V & =(1.08)^{-2}\left[1,24,000\left(\frac{\left.1-1.08^{-5}\right)}{1.08-1}\right)\right] \\
& =(0.85734)(1,24,000)(3.99271) \\
& =\text { Rs } 4,24,465
\end{aligned}
$$

Thus, offer (a) is more attractive.
7. Here,

$$
75,000=3,750\left[\frac{1-1.035^{-n}}{1.035-1}\right]
$$

or

$$
1.035^{-n}=\frac{75,000 \times 0.035}{3,750}=0.3
$$

$$
\therefore \quad n=-(\log 0.3 / \log 1.035)=\frac{0.5229}{0.0149}=35
$$

8. Here $M=\operatorname{Rs} 12,00,000, i=8 \%$ (so $R=1+0.08$), and $n=8$. Now,

$$
\begin{aligned}
A & =\frac{M(R-1)}{R^{n}-1} \\
& =\frac{12,00,000(1.08-1)}{1.08^{8}-1} \\
& =\operatorname{Rs} 1,12,817.74
\end{aligned}
$$

Thus, Rs $1,12,817.74$ per annum should be paid in the fund.
9. Rent $=30,00,000 \times 0.10=$ Rs $3,00,000$ p.a.
10. (a) Here $k=20$. Thus, $i=1 / k=1 / 20$ or 0.05 , and $R=1+i=1.05$. With $A=1,000, R=1.05$ and $n=2$, we have

$$
\begin{aligned}
M & =\frac{M\left(R^{n}-1\right)}{R-1} \\
& =\frac{1,000\left(1.05^{2}-1\right)}{1.05-1} \\
& =\frac{102.5}{0.05} \text { or Rs } 2,050
\end{aligned}
$$

(b) Given

$$
\begin{equation*}
20=\frac{1-R^{-k}}{R-1} \quad \text { (i) } \quad \text { and } \quad 25=\frac{1-R^{-2 k}}{R-1} \tag{ii}
\end{equation*}
$$

Taking the ratio of these two,

$$
\frac{20}{25}=\frac{1-R^{-k}}{R-1} / \frac{1-R^{-2 k}}{R-1}
$$

On simplification,

$$
\frac{4}{5}=\frac{1-R^{-k}}{1-R^{-2 k}}
$$

or

$$
4 R^{-2 k}-5 R^{-k}+1=0
$$

or

$$
4 R^{-2 k}-4 R^{-k}-R^{-k}+1=0
$$

or

$$
\left(4 R^{-k}-1\right)\left(R^{-k}-1\right)=0
$$

Thus, either

$$
\begin{aligned}
4 R^{-k}-1 & =0, \text { i.e. } R^{-k}=1 / 4, \text { or } \\
R^{-k}-1 & =0, \text { i.e. } R^{-k}=1
\end{aligned}
$$

$$
R^{-k}=1 \text { is not possible since } R>1
$$

Substituting

$$
R^{-k}=1 / 4 \text { in the equation (i), we get }
$$

$$
20=\frac{1-\frac{1}{4}}{R-1}
$$

or

$$
\begin{aligned}
R-1 & =i=\frac{3}{4 \times 20} \\
& =0.0375 \text { or } 3.75 \%
\end{aligned}
$$

(c) The information can be presented as:

$$
V=\frac{100}{(1+0.05)^{1}}+\frac{200}{(1+0.05)^{2}}+\frac{300}{(1+0.05)^{3}}+\frac{400}{(1+0.05)^{4}}+\ldots
$$

The series on the RHS is an arithmetic-geometric series. We can rewrite it as follows:

$$
\frac{V}{100}=\frac{1}{(1.05)^{1}}+\frac{1}{(1.05)^{2}}+\frac{1}{(1.05)^{3}}+\frac{1}{(1.05)^{4}}+\ldots
$$

If we let $(1.05)^{-1}=x$, and denote the sum of the series by S, we get

$$
\begin{aligned}
S & =x+2 x^{2}+3 x^{3}+4 x^{4}+\ldots, \text { and } \\
S x & =x^{2}+2 x^{3}+3 x^{4}+\ldots
\end{aligned}
$$

By subtraction of the second equation from the first,
$S-S x=x+x^{2}+x^{3}+x^{4}+\ldots$
or

$$
S(1-x)=x\left(1+x+x^{2}+x^{3}+\ldots\right)
$$

or

$$
S(1-x)=\frac{x}{1-x}
$$

$\therefore \quad S=\frac{x}{(1-x)^{2}}$
Since we have put $S=V / 100$, we have

$$
V=\frac{100 x}{(1-x)^{2}}
$$

Substituting the value of x, we get

$$
\begin{aligned}
V & =\frac{100(1.05)^{-1}}{\left[1-(1.05)^{-1}\right]^{2}} \\
& =\frac{100 \times 1.05}{0.05^{2}} \\
& =\operatorname{Rs} 42,000
\end{aligned}
$$

11. Amount required to pay Biren,

$$
\begin{aligned}
S & =6,000\left(\frac{1-1.10^{-10}}{1.10-1}\right) \\
& =6,000 \times 6.144567=\text { Rs } 36,868
\end{aligned}
$$

Let annual payment to pension Fund Trust be x.
With $n=5$ and $i=0.10$, we have

$$
\begin{aligned}
36,868 & =\frac{x\left(1.10^{5}-1\right)}{(1.10-1)} \\
\therefore \quad x & =\frac{36,868}{6.1051}=\text { Rs } 6,039
\end{aligned}
$$

12. To choose between the two alternatives, we shall compare their present values. For the proposal of renting a building,
Net rental payable p.a., $\quad A=2,00,000-24,000=$ Rs $1,76,000$
No. of years, $\quad n=20$
Rate of interest, $\quad i=8 \%$
Price of building after 20 years $=$ Rs 5,00,000
Total present value $=P V$ of annuities $+P V$ of building price
$P V$ factor for annuities, for $i=8 \%$ and $n=20$, is 9.8181 (Table B4), and $P V$ factor for a rupee due after 20 years @ $8 \%=0.2145$ (Table B3). Thus,

$$
\begin{aligned}
\text { Total present value } & =1,76,000 \times 9.8181+5,00,000 \times 0.2145 \\
& =17,27,985.6+1,07,250 \\
& =\operatorname{Rs} 18,35,235.6
\end{aligned}
$$

Since this value is less than Rs 20 lakh, the cost of building own premises, the company will do better to rent the facility.
13. (a) $P V$ factor for an annuity for 7 years @ $15 \%=4.1604$
$\therefore N P V$ of the machine $=18,000 \times 4.1604-72,000=$ Rs 2,887
(b) $N P V @ 16 \%=4.0386 \times 18,000-72,000=$ Rs 694.8
$N P V @ 17 \%=3.9224 \times 18,000-72,000=(\operatorname{Rs} 1397.2)$
By interpolation, $\mathrm{IRR} \simeq 16.2 \%$
(c) Acceptable if the required rate of return is 16% or less.
14. (a)

Calculation of Net Present Value

Year	Cash inflow ('000 Rs)	PVF @ 14\%	Present Value
1	160	0.8772	140.35
2	190	0.7695	146.20
3	170	0.6750	114.75
4	150	0.5921	88.81
5	150	0.5194	77.91
6	150	0.4556	68.34
7	150	0.3996	59.95
8	200	0.3506	70.11
		$P V$ of inflows	$=766.41$

$N P V=766.41-1,000=($ Rs 233.59 thousand $)$
(b) IRR of the project works out to be $6.6 \% \mathrm{app}$.

The proposal is not an acceptable one.
15. Proposal (a)

Cash outlay $=$ Rs 25,000
Savings @ Rs 8,000 p.a. for 6 years $N P V=8,000 \times 3.6847-25,000$ $=\operatorname{Rs} 4,478$

Proposal (b)
Cash outlay = Rs 70,000
Savings @ Rs 22,000 p.a. for 6 years
$N P V=70,000 \times 3.6847-70,000$
$=$ Rs 11.063

Proposal (b) is preferable although both have positive $N P V \mathrm{~s}$.
16. $\frac{\text { Investment }}{\text { Annual Cash Saving }}=\frac{50,000}{10,500}=4.7619$

From the annuity PVF table (for $n=7$),
PVF @ $10 \%=4.8684$ and PVF @ $11 \%=4.7122$
By interpolation, $\mathrm{IRR}=10.7 \%$
The company should not buy the machine since IRR $<12 \%$.
17. Project X :

$$
\begin{array}{rlrl}
& \text { PVF for } n & =10 @ 5 \%=7.7217 \\
\therefore \quad N P V & =30,000 \times 7.7217-2,00,000=\text { Rs } 31,651
\end{array}
$$

Project Y :

$$
\begin{aligned}
& \text { PVF for } n & =20 @ 5 \%=12.4622 \\
& N P V & =20,000 \times 12.4622-2,00,000=\text { Rs } 49.244
\end{aligned}
$$

Since projects are mutually exclusive with different lives, we should compute and compare equivalent annuity for both projects at the require rate of return, 5%.
Equivalent (annual) annuity for $X: 31,651 / 7.7217=$ Rs 4,099
Equivalent (annual) annuity for $Y: 49,244 / 12.4622=$ Rs 3,951
Project X should be preferred.
18. The after-tax cash flows are used for each of the years in respect of both the projects, to calculate $N P V$ and $I R R$ values. To illustrate, for year 1 in case of project A :

$$
\begin{aligned}
\text { Cash flow before depreciation and taxation } & =7,00,000 \\
\text { - Depreciation } & =\frac{2,00,000}{5,00,000} \\
& =\underline{2,50,000} \\
\text { - Taxation @ } 50 \% & =\frac{2,50,000}{}
\end{aligned}
$$

Project A	+ Depreciation			$\begin{aligned} & =2,00,000 \\ & =4,50,000 \end{aligned}$
	Year	Cash flow	PVF	Present Value
	1	4,50,000	0.8696	3,91,320
	2	5,00,000	0.7561	3,78,050
	3	5,00,000	0.6575	3,28,750
	4	5,50,000	0.5718	3,14,490
	5	4,00,000	0.4972	1,98,880
				16,11,490
			less Outflow	10,00,000
			$N P V=$	6,11,490
Project B				
	Year	Cash flow	PVF	Present Value
	1	5,00,000	0.8696	4,34,800
	2	4,00,000	0.7561	3,02,440
	3	6,00,000	0.6575	3,94,500
	4	4,50,000	0.5718	2,57,310
	5	4,00,000	0.4972	1,98,880
				15,87,930
			less Outflow	10,00,000
			$N P V=$	5,87,930

IRR: Project A 38.6\%, Project B 38.3\%
Project A is better of the two.
19. The calculation of net present value is given in the following table. The given cash flows are converted into their equivalents by multiplying them by their respective certainty-equivalent coefficients.

Calculation of Net Present Value

Year t	Cash flow ('000 Rs), C_{t}	C.E. Coeff. α_{t}	$C_{t} \alpha_{t}$	PVF $(1.12)^{-1}$	Present Value ('000 Rs)
1	18	0.95	17.10	0.8929	15.26859
2	20	0.90	18.00	0.7972	14.34960
3	21	0.85	17.85	0.7118	12.70563
4	22	0.85	18.70	0.6355	11.88385
5	12	0.70	8.40	0.5674	4.76616
			Total	58.97383	
			Less Cash outlay	64.00000	
		$N P V$	(5.02617)		

Thus, the project has an $N P V=-$ Rs $5,026.17$.
20. (a) Alternative 1:

Present value of Rs $2,50,000(=$ Rs $3,00,000-50,000)$ received annually for five years @ 20% p.a.: $2,50,000 \times 2.9906($ Table B4 $)=$ Rs 7,47,650
less Present value of outflow of Rs $1,00,000$ at the end of five years @ 20% p.a.

$1,00,000 \times 0.4019($ Table B3 $)=$	Rs 40,190 Rs $7,07,460$ Rs $5,00,000$ Rs $2,07,460$

less Initial outflows
Net Present value
$\frac{\text { Rs } 5,00,000}{\text { Rs } 2,07,460}$

Alternative 2:
Present value of Rs $1,00,000$ (Rs $1,50,000-50,000$)
Received annually for five years @ 20% p.a.
$1,00,000 \times 2.9906$
$=\operatorname{Rs} 2,99,060$
less Initial outflow
$\frac{=\text { Rs } 2,50,000}{\text { Rs } 49,060}$
Net Present Value
Rs 49,060

Since the $N P V$ of alternative 1 is much higher than that of alternative 2 , the management should adopt the first method of promotion.
Note: Allocation of fixed cost to the extent of Rs 20,000 per annum is not to be taken into account for computing the cash flows.
(b) For obtaining the $I R R$ for alternative 2, we determine the ratio of the cost of the project to the annual net cash inflows, as Rs $2,50,000 / \mathrm{Rs} 1,00,000=2.5$.
From the Table B4, we observe that corresponding to the period of five years, the $P V$ values closest to 2.5 are those corresponding to $i=28 \%$ (2.5320) and $i=32 \%$ (2.3452).
$P V$ of cash flows @ $28 \%=1,00,000=$ Rs $2,53,200$
$P V$ of cash flows @ $32 \%=1,00,000=$ Rs $2,34,520$
Difference $\quad \frac{18,680}{}$
The $I R R$ can be interpolated as follows:

$$
\begin{aligned}
I R R & =28+\frac{2,53,200-2,50,000}{18,680}(32-28) \\
& =28+0.68=28.68 \%
\end{aligned}
$$

21.

Calculation of Expected Values and Variances

Year	Cashflow (X)	Prob. (p)	$p X$	$p(X-\bar{X})^{2}$
1	11,000	0.3	3,300	8,67,000
	12,000	0.1	1,200	49,000
	13,000	0.2	2,600	18,000
	14,000	0.4	5,600	6,76,000
			12,700	16,10,000
2	11,000	0.4	4,400	4,84,000
	12,000	0.2	2,400	2,000
	13,000	0.3	3,900	2,43,000
	14,000	0.1	1,400	3,61,000
			12,100	10,90,000
3	11,000	0.2	2,200	3,92,000
	12,000	0.3	3,600	48,000
	13,000	0.4	5,200	1,44,000
	14,000	0.1	1,400	2,56,000
			12,400	8,40,000

Calculation of Expected NPV and Standard Deviation

Year (n)	Expected Cash flow	$\begin{gathered} P V F \\ (1.10)^{-n} \end{gathered}$	Present Value	$\begin{gathered} \text { Variance } \\ \sigma^{2} \end{gathered}$	$\begin{gathered} P V F \\ (1.10)^{-2 n} \end{gathered}$	Present Value
1	12,700	0.9091	11,545.45	16,10.000	0.8264	13,30,578.5
2	12,100	0.8264	10,000.00	10,90,000	0.6830	7,44,484.7
3	12,400	0.7513	9,316.30	8,40,000	0.5645	4,74,158.1
			30,861.75		$\sigma^{2}=25,49,221.3$	
		less outlow	25,000.00			
		$N P V=$	5,861.75			

Expeced $N P V=$ Rs 5,862, Standard deviation $=\sqrt{25,49,221.3}$

$$
=\text { Rs } 1,597
$$

22. (a) Expected cash flow (ECF) (in Rupees)
$P_{1}: \quad$ Year $1 \mathrm{ECF}=45,000 \times 0.35+50,000 \times 0.40+60,000 \times 0.25=50,750$
Year $2 \mathrm{ECF}=50,000 \times 0.25+60,000 \times 0.50+70,000 \times 0.25=60,000$
$P_{2}: \quad$ Year $1 \mathrm{ECF}=(2,000) \times 0.20+40,000 \times 0.30+50,000 \times 0.30+72,000 \times 0.20=41,000$
Year $2 \mathrm{ECF}=10,000 \times 0.10+45,000 \times 0.30+65,000 \times 0.35+80,000 \times 0.25=57,250$
(b) From the cash flow probability distributions given, it is evident that there is much greater variability in case of project P_{2} than in P_{1}. This would be reflected in their variances as well.

$$
\begin{aligned}
& N P V \text { for } P_{1} \text { (using } r=12 \% \text {) } \\
& \quad=50,750 \times 0.8929+60,000 \times 0.7972-80,000=\text { Rs } 13,147 \\
& N P V \text { for } P_{2}(\text { using } r=14 \%) \\
& \quad=41,100 \times 0.8772+57,250 \times 0.7695-80,000=\text { Rs } 19
\end{aligned}
$$

(c) IRR: for $P_{1} 23.9 \%$, for $P_{2} 14.0 \%$
23.

Calculation of Expected Values and Variances

Year	Cash flow (X)	Prob. (p)	$p X$	$p(X-\bar{X})^{2}$
1	1,000	0.10	100	1,00,000
	1,500	0.20	300	50,000
	2,000	0.40	800	0
	2,500	0.20	500	50,000
	3,000	0.10	300	1,00,000
			2,000	3,00,000
2	1,900	0.20	380	$\overline{1,05,125.0}$
	2,500	0.30	750	4,687.5
	2,750	0.20	550	3,125.0
	3,150	0.30	945	82,687.5
			2,645	1,95,625.0
3.	1,500	0.10	150	60,062.5
	2,250	0.70	1,575	437.5
	2,500	0.10	250	5,062.5
	3,000	0.10	300	52,562.5
			2,275	1,18,125.0

Calculation of Expected DCF and Standard Deviation

Year (n)	Expected Cash flow	$P V F$ $(1.10)^{-n}$	Present Value	Variance σ^{2}	$P V F$ $(1.10)^{-2 n}$	Present Value
1	2,000	0.9091	$1,818.18$	$3,00,000$	0.8264	$2,47,933.9$
2	2,645	0.8264	$2,169,42$	$1,95,625$	0.6830	$1,33,614.5$
3	2,275	0.7513	$\frac{1,709.24}{2,696.84}$	$1,18,125$	0.5645	$66,678.5$
					$\sigma^{2}=\underline{4,48,226.9}$	

Thus, DCF $=$ Rs 5,696.84 and $\sigma=\sqrt{4,48,226.9}=$ Rs 669.5 .
24. For each of the three alternatives, the expected value and standard deviation are shown calculated in table here.

Calculation of Expected Value and Standard Deviation

Outcome (X)	Probability (p)	$p X$	$p(X-\bar{X})^{2}$
Alternative A_{1}			
125	0.2	25	2,000
200	0.4	80	250
300	0.4	120	2,250
	Total	225	4,500
Alternative A_{2}			
225	0.3	67.5	6,091.875
400	0.5	200.0	14,028.125
500	0.2	100.0	3,511.250
	Total	367.5	23,631.125
Alternative A_{3}			
200	0.4	80	21,160
500	0.5	250	2,450
1,000	0.1	100	32,490
	Total	430	56,100

Thus, expected value for $\quad A_{1}=$ Rs 225 , for $A_{2}=$ Rs 367.5 and for $A_{3}=$ Rs 430 .
Standard deviation for

$$
A_{1}=\sqrt{4,500} \quad=\text { Rs } 67.08
$$

for
for

$$
\begin{array}{ll}
A_{2}=\sqrt{23,631.125} & =\text { Rs } 153.725 \\
A_{3}=\sqrt{56,100} & =\text { Rs } 236.854
\end{array}
$$

Coefficient of variation $=\frac{\sigma}{\text { Mean }} \times 100$
for

$$
A_{1}=\frac{67.08}{225} \times 100 \quad=29.81 \%
$$

for

$$
A_{2}=\frac{153.725}{367.5} \times 100=41.83 \%
$$

$$
A_{3}=\frac{236.854}{430} \times 100=55.08 \%
$$

On the basis of the values computed, rankings are done here:
(i) A_{3}, A_{2}, A_{1}; (ii) A_{1}, A_{2}, A_{3}.

Note: (Mean and standard deviation values are in thousands of rupees).
25. Project 1

Calculation of Expected Cash Flow and Variance

Cash flow (X)	Prob. (p)	$p X$	$p(X-\bar{X})^{2}$
20,000	0.1	2,000	160×10^{6}
30,000	0.2	6,000	180×10^{6}
60,000	0.4	24,000	0
90,000	0.2	18,000	180×10^{6}
100,000	0.1	$\frac{10,000}{60,000}$	$\frac{160 \times 10^{6}}{680 \times 10^{6}}$

Expected $N P V=60,000 \times 4.3553$ (PVF for annuity $n=6 @ 10 \%)-2,00,000$

$$
=\text { Rs 61,318 }
$$

$$
\text { Variance }=680 \times 10^{6}[0.8264+0.6830+0.5645+0.4665+0.3855+0.3186]
$$

$$
=680 \times 10^{6}(3.2445)
$$

$$
=2206.26 \times 10^{6}
$$

Standard deviation $=46.971 \times 10^{3}=$ Rs 46,971
Project 2
Calculation of Expected Cash Flow and Variance

Cash flow (X)	Prob. (p)	$p X$	$p(X-\bar{X})^{2}$
30,000	0.20	6,000	156.8×10^{6}
50,000	0.30	15,000	19.2×10^{6}
70,000	0.40	28,000	57.6×10^{6}
90,000	0.10	9,000	$\frac{102.4 \times 10^{6}}{336 \times 10^{6}}$

Expected $N P V=58,000 \times 4.3553-2,00,000=$ Rs 52,607
Variance $=336 \times 10^{6} \times 3.2445$

$$
=1,090.152 \times 10^{6}
$$

Standard deviation $=33.017 \times 10^{3}=33,017$
26. (a) Calculation of expected return and variance is given in table here.

Calculation of Expected Return and Variance

Cash flow X	Prob. p	$p X$	$p(X-\bar{X})^{2}$
Year 1			
50,000	0.2	10,000	156.8×10^{6}
80,000	0.7	56,000	2.8×10^{6}
$1,20,000$	0.1	$\underline{12,000}$	$\underline{17,000}$

(Contd.)
(Contd.)

Year 2			
70,000	0.2	14,000	217.8×10^{6}
$1,00,000$	0.5	50,000	4.5×10^{6}
$1,30,000$	Total	$\underline{\frac{39,000}{1,03,000}}$	$\frac{218.7 \times 10^{6}}{441 \times 10^{6}}$
Year 3		$\underline{42,000}$	43.2×10^{6}
$1,40,000$	0.3	45,000	1.2×10^{6}
$1,50,000$	0.3	$\underline{\frac{65,000}{1,52,000}}$	$\underline{44.1 \times 10^{6}}$
$1,62,500$	0.4	$\underline{88.5 \times 10^{6}}$	

Thus, we have

$$
\begin{aligned}
& \mu_{1}=\operatorname{Rs} 78,000, \mu_{2}=\operatorname{Rs} 1,03,000, \text { and } \mu_{3}=\operatorname{Rs} 1,52,000 \\
& \sigma_{1}=\sqrt{336 \times 10^{6}}=\operatorname{Rs} 18,330.3, \sigma_{2}=\sqrt{441 \times 10^{6}}=\operatorname{Rs} 21,000, \text { and } \\
& \sigma_{3}=\sqrt{88.5 \times 10^{6}}=\operatorname{Rs} 9,407.4
\end{aligned}
$$

(b) The expected $N P V$ is Rs $39,951.4$ as shown below.

Calculation of Expected NPV

Year t	Expected Value m_{t}	$P V F,(1.12)^{-t}$	Present Value
1	78,000	0.8929	$69,646.2$
2	$1,03,000$	0.7972	$82,111.6$
3	$1,52,000$	0.7118	$\frac{1,08,193.6}{2,59,951.4}$
			$2,20,000.0$
		less Cash outflow	$39,951.4$

(c) The calculation of variance is given here:

Calculation of Variance

Year t	Variance σ_{t}^{2}	PVF, $(1.12)^{-2 t}$	Present Value
1	336×10^{6}	0.7972	267.8592×10^{6}
2	441×10^{6}	0.6355	280.2555×10^{6}
3	88.5×10^{6}	0.5066	44.8341×10^{6}
			Variance $=\frac{592.9488 \times 10^{6}}{}$

Thus, Standard deviation, $\quad \sigma=\sqrt{592.9488 \times 10^{6}}$

$$
=\operatorname{Rs} 24,350.5
$$

(d) To determine the required probability, we shall find area to the left of $X=0$ under the normal curve with $\mu=39,951.4$ and $\sigma=24,350.5$.

For $X=0$, we have

$$
Z=\frac{0-39,951.4}{24,350.5}=-1.64
$$

From Table B1, area between μ and $Z=-1.64$ is 0.4495 .

$$
\therefore \quad P(X<0)=0.5-0.4495=0.0505
$$

(e) From Table B2, $L_{N}(1.64)=0.02114$. Thus,

$$
\begin{aligned}
E V P I & =\sigma \times L_{N}(1.64) \\
& =24,350.5 \times 0.02114 \\
& =\text { Rs } 514.8
\end{aligned}
$$

Calculation of Expected Return and Variance

Year 1				Year 2				Year 3			
X	p	$p X$	$p(X-\bar{X})^{2}$	X	p	$p X$	$p(X-\bar{X})^{2}$	X	p	$p X$	$p(X-\bar{X})^{2}$
50	0.10	5	40	20	0.10	2	160	-40	0.1	-4	810
60	0.20	12	20	40	0.25	10	100	30	0.3	9	120
70	0.40	28	0	60	0.30	18	0	50	0.3	15	0
80	0.20	16	20	80	0.25	20	100	80	0.2	16	180
90	0.10	9	40	100	0.10	10	160	140	0.1	14	810
Total		70	120			60	520			50	1,920

Thus,

$$
\begin{aligned}
& \mu_{1}=70, \sigma_{1}^{2}=120 \text { and } \sigma_{1}=\sqrt{120}=10.95 \\
& \mu_{2}=60, \sigma_{2}^{2}=520 \text { and } \sigma_{2}=\sqrt{520}=22.80 ; \text { and } \\
& \mu_{3}=50, \sigma_{3}^{2}=1,920 \text { and } \sigma_{3}=\sqrt{1,920}=43.82
\end{aligned}
$$

The present values are shown calculated in table below.
From the calculations, it is evident that expected value of the project $=150.786$ and Standard deviation $=$
$\sqrt{\text { Variance }}=\sqrt{1,538.168}=39.22$. It may be noted that cash flows are assumed to be independent.

Calculation of Present Values

Year (t)	Expected value μ_{t}	PVF @ 10\%	Present Value $(1+0.10)^{-t}$	Variance σ_{1}^{2}	PVF @ 10\% $(1+0.10)^{-2 t}$	Present Value
1	70	0.9091	63.637	120	0.8264	99.168
2	60	0.8264	49.584	520	0.6830	355.160
3	50	0.7513	37.565	1,920	0.5645	$1,083.840$
	$E M V$	150.786		Variance	$1,538.168$	

28.

Calculation of Expected Values and Variances

	Year 1 Cash Flow Prob.			Year 2 Cash Flow Prob.					Year 3Cash Flow Prob.		
(X)	(p)	$p X$	$p(X-\bar{X})^{2}$	(X)	(p)	$p X$	$p(X-\bar{X})^{2}$	(X)	(p)	$p X$	$p(X-\bar{X})^{2}$
100	0.10	10	4,000	300	0.2	60	3,380	500	0.1	50	5,760
200	0.20	40	2,000	400	0.4	160	360	600	0.3	180	5,880
300	0.30	90	0	500	0.3	150	1,470	700	0.3	210	480
400	0.40	160	4,000	600	0.1	60	2,890	1,000	0.3	300	20,280
	Total	300	10,000			430	8,100			740	32,400

Thus, we have

$$
\begin{aligned}
& \mu_{1}=300, \sigma_{1}=\sqrt{10,000}=100 ; \mu_{2}=430, \sigma_{2}=\sqrt{8,100}=90 ; \text { and } \mu_{3}=740, \\
& \sigma_{3}=\sqrt{32,400}=180 .
\end{aligned}
$$

(b) The calculation of expected $N P V$ and standard deviation is given here.

Calculation of Expected NPV and Standard Deviation

Year t	PV Factor $(1+0.10)^{-t}$	Exp. Value	Present Value	σ_{t}	Present Value
1	0.9091	300	272.730	100	90.910
2	0.8264	430	355.352	90	74.376
3	0.7513	740	555.962	180	135.234
	Total	$1,184.044$		$\sigma=300.520$	
	Less outflow	$1,000.000$			
	Expected NPV	184.044			

Thus, expected $N P V$ of the project is 184.044 . The standard deviation is calculated for use in part (c).
(c) To determine the required probability, we shall find the area to the right of $X=0$ under the normal curve with $\mu=184.044$ and $\sigma=300.520$. This is shown in the figure. For $X=0$,

Calculation of Probability

Area corresponding to $Z=-0.61$ is 0.2291 . Thus, $P(X>0)=0.2291+0.5=0.7291$.
(d) If cash flows are assumed to be independent, the standard deviation would be equal to 179.12 , determined as follows.

$$
\begin{array}{ll}
& \sigma^{2}=90.910^{2}+74.376^{2}+135.234^{2}=32,084.65 \\
\therefore & \sigma=\sqrt{32,084.65}=179.12
\end{array}
$$

Now, to find the area under the curve to the right of $X=0$, we have,

$$
\begin{aligned}
Z & =\frac{0-184.044}{179.12} \\
& =-1.03
\end{aligned}
$$

From the normal area table (B1), area corresponding to $Z=-1.03$ is 0.3485 .
Thus, $P(X>0)=0.3485+0.5=0.8485$.
(e) (i) When cash flows are perfectly correlated,

$$
L_{N}(0.61)=0.1659 \text { (from Table B2) }
$$

Thus, $\quad E V P I=300.52 \times 0.1659=$ Rs 49.86
(ii) When cash flows are independent,

$$
L_{N}(0.03)=0.07866 \text { (from Table B2) }
$$

Thus, $\quad E V P I=179.12 \times 0.07866=$ Rs 14.09 .
29.

Calculation of Expected NPV and Standard Deviation

Year (n)	Expected Cash Flow	$\begin{gathered} P V F \\ (1.10)^{-n} \end{gathered}$	Present Value	Standard Deviation	Variance σ^{2}	$\begin{gathered} P V F \\ (1.10)^{-2 n} \end{gathered}$	Present Value
1	12,000	0.9091	10,909.09	5,000	25×10^{6}	0.8264	20.66×10^{6}
2	12,000	0.8264	9,917.36	4,000	16×10^{6}	0.6830	10.93×10^{6}
3	12,000	0.7513	7,513.15	5,000	25×10^{6}	0.5645	14.11×10^{6}
			28,339.60				45.70×10^{6}
	less outflow		20,000.00				
	Expected $N P V=$		8,339.60				

$\therefore \quad \quad \quad$ Expected $N P V=$ Rs $8,339.60$ and $\sigma=\sqrt{45.70 \times 10^{6}}=$ Rs $6,760.27$
To calculate required probability,

$$
\begin{array}{cc}
Z_{1}(X=0)=\frac{0-8,339.60}{6,760.27}=-1.23 & \therefore \text { Area } \quad=0.3907 \\
Z_{2}(X=10,000)=\frac{10,000-8,339.60}{6,760.27}=0.25 & \therefore \text { Area } \\
=0.0987
\end{array}
$$

Probability $=\underline{0.4894}$
30. To calculate expected net present value, we add the mean cash flows of the two components. The values are shown in table below where present value calculations are also given.

Calculation of Expected NPV

Year t	Expected Value	$P V F,(1.15)^{-t}$	Present Value
1	Rs 82,000	0.8696	$71,307.2$
2	$1,00,000$	0.7561	$75,610.0$
3	98,000	0.6675	$64,435.0$
4	98,000	0.5718	$56,036.4$
5	$1,07,000$	0.4972	$53,200.4$
6	$1,12,000$	0.4323	48,4176
			$3,69,006.6$
		less Cash outflow	$3,40,000.0$
	Expected $N P V$	$29,006.6$	

To calculate standard deviation for the project, we first obtain variance for each of the two components and then sum the two. From the overall variance, we get the standard deviation. The calculations are shown below in (a) and (b).
(a) Calculation of Standard Deviation (Correlated Component)

Year t	Standard Deviation σ_{t}	$P V F,(1.15)^{-t}$	Present Value
1	4,400	0.8696	$3,826.24$
2	4,500	0.7561	$3,402.45$
3	3,000	0.6575	$1,972.50$
4	3,200	0.5718	$1,829.76$
5	4,000	0.4972	$1,988.80$
6	4,000	0.4323	$1,729.20$
		$\sigma=14,748.95$	

(b) Calculation of Variance (Independent Component)

Year t	Standard Deviation σ_{t}	$P V F,(1.15)^{-t}$	Present Value PV	$(P V)^{2}$
1	4,400	0.8696	$3,478.40$	$1,20,99,266.56$
2	4,400	0.7561	$3,326.84$	$1,10,67,864.38$
3	4,800	0.6575	$3,156.00$	$9,960,336.00$
4	4,000	0.5718	$2,287.20$	$52,31,283.84$
5	4,000	0.4972	$1,988.80$	$39,55,325.44$
6	3,600	0.4323	$1,556.28$	$24,22,007.44$
			$\sigma=4,47,36,083.66$	

Total variance $=(14,748.95)^{2}+(4,47,36,083.66)=26,22,67,609.7$
Standard deviation $=\sqrt{26,22,67,609.7}=16,194.7$
To calculate the probability that the project would be successful, we determine the area under the normal curve to the right of $X=0$ (where X is the $N P V$), the parameters of the curve being $\mu=29,006.6$ and $\sigma=16,194.7$.

Thus,

$$
Z=\frac{0-29,006.6}{16,194.7}=-1.79
$$

Area corresponding to $Z=1.79$ is 0.4633 .
Thus, $P(X>0)=0.4633+0.5=0.9633$, which is the probability that the project would be successful. Further from Table B2, $L_{N}(1.79)=0.01464$. Therefore, $E V P I=\sigma \times L_{N}=16,194.7 \times 0.01464=$ Rs 237.09 .
31.

Calculation of Expected NPV and Standard Deviation

Year (n)	Expected Cash flow	$P V F$ $(0.10)^{-n}$	Present value	Standard deviation	Present value
1	36,000	0.9091	$32,727.27$	3,200	2909.09
2	42,000	0.8264	$34,710.74$	3,600	2975.21
3	50,000	0.7513	37565.74	3,600	2704.73
4	45,000	0.6830	$30,735.81$	3,300	2253.94
		less outflow	$1,05,003.80$		$10,842.98$
		Expected $N P V=$	$5,003.80$		

With $\mu=5,003.80$ and $\sigma=10,842.98, Z(0)=\frac{0-5003.80}{10842.98}=-0.46$
From Table B2, $L_{N}(0.46)=0.2104$
$\therefore E V P I=\sigma \times L_{N}=10,842.98 \times 0.2104=$ Rs 2281.36 .
32. The $N P V$ distributions for both the proposals are derived as shown in the figure below. Various NPV s are obtained using a discount-rate of 15% and their probabilities have been calculated by multiplying the probabilities on the relevant forks. The standard deviations are calculated from variances whose values are obtained in the table following.
For 'buy' decision

For 'lease' decision

Decision-tree: Calculation of $N P V$
Calculation of Variances

For 'Buy' Decision	For 'Lease' Decision
$P(X-\bar{X})^{2}$	$p(X-\bar{X})^{2}$
$1,00,90,144.44$	$1,26,13,649.41$
$84,41,015.63$	$1,05,52,418.00$
$11,69,425.96$	$14,62,052.81$
$27,37,497.60$	$21,90,510.75$
$60,393.06$	$48,412.80$
$10,81,752.10$	$8,65,138.58$
$17,61,459.84$	$20,54,571.99$
$1,00,97,073.03$	$1,17,78,482.80$
$86,18,413.50$	$1,00,53,976.81$
$\sigma^{2}=4,40,57,172.15$	$5,16,19,213.94$

'Buy' Decision:

$$
\begin{aligned}
\sigma & =\sqrt{4,40,57,172.15}=6,637.56 \\
\text { Mean } & =11,833.05
\end{aligned}
$$

$\therefore \quad$ Coefficient of variation $=\frac{\sigma}{\text { Mean }} \times 100$

$$
=\frac{6637.56}{11,833.05} \times 100=56.08 \%
$$

'Lease' Decision:

$$
\sigma=\sqrt{5,16,19,213.94}=7,184.65
$$

$$
\text { Mean }=12,401
$$

$\therefore \quad$ Coefficient of variation $=\frac{7,184.65}{12,401} \times 100=57.94 \%$

Thus, lease may be preferred by the management because it has a higher expected $N P V$, although it is marginally riskier alternative.
33. The decision tree depicts the various possible $N P V s$ for each of the alternatives. To illustrate, for the 'regular' size, when demand situation is low in each of the two years, with profits as 60 and 100 thousand rupees, the NPV is -22.814 (thousand rupees) as shown below:

$$
\begin{aligned}
N P V & =60 \times 0.9091+100 \times 0.8264-160 \\
& =54.546+82.64-160=-22.814
\end{aligned}
$$

Regular

Decision Tree: Obtaining NPVs

The calculation of mean and standard deviation is given below in respect of regular store.
Calculation of Mean and Standard Deviation

$N P V, X$	Prob. P	$p X$	$p(X-\bar{X})^{2}$
-22.814	0.04	-9.91256	374.91802
26.770	0.08	2.14160	178.45383
59.826	0.08	4.78608	16.07218
13.550	0.10	1.35500	65.42025
69.134	0.20	13.82680	4.73559
96.190	0.20	19.23800	98.47922
59.005	0.06	3.54030	13.49100
108.589	0.12	13.03068	143.56786
141.645	0.12	16.99740	549.10152
	Total	74.0033	$1,744.23947$

The mean and standard deviation calculations for large store are given here.

Calculation of Mean and Standard Deviation

$N P V, X$	Prob. P	$p X$	$p(X-\bar{X})^{2}$
-55.377	0.24	-13.29048	$1,257.9181$
-5.793	0.18	-1.04274	93.6779
27.263	0.18	4.90734	18.8854
8.260	0.12	0.99120	9.2085
57.844	0.09	5.20596	149.9939
90.900	0.09	8.18100	491.2429
80.988	0.04	3.23952	163.6762
130.572	0.03	3.91716	386.8217
163.628	0.03	4.90884	644.8172
	Total	17.01780	$3,216.2418$

For regular store:
Expected value $=74$, Standard deviation $=\sqrt{1,744.23947}=41.764$
For large store:
Expected value $=17.02$, Standard deviation $=\sqrt{3,216.2418}=56.712$
34. Fixed cost $=$ Rs 96,000

$$
\begin{aligned}
\mathrm{P} / \mathrm{V} \text { ratio } & =\frac{\mathrm{SP}-\mathrm{VC}}{\mathrm{SP}}=\frac{20-4}{20}=80 \% \\
\text { Break-even Sales } & =\frac{\text { Fixed cost }}{\mathrm{P} / \mathrm{V} \text { Ratio }} \\
& =\frac{96,000}{80 \%}=\text { Rs } 1,20,000
\end{aligned}
$$

To find profit at Sales $=$ Rs 2,00,000

$$
\begin{aligned}
\text { Sales } & =\frac{\text { Fixed cost }+ \text { Profit }}{\text { P/V Ratio }} \\
2,00,000 & =\frac{96,000+\text { Profit }}{80 \%} \\
\text { Profit } & =2,00,000 \times 0.80-96,000=\text { Rs } 64,000
\end{aligned}
$$

\therefore
35. (a)

	$A B$ Ltd.	$C D$ Ltd.
Sales	Rs $1,50,000$	Rs $1,50,000$
Less: Variable cost	$\frac{1,20,000}{30,000}$	
Contribution margin	$\frac{30,000}{1,50,000 \times 100}$	$\frac{1,00,000}{50,000}$
P/V Ratio	$=20 \%$	$\frac{50,000}{1,50,000} \times 100$
Break-even Sales	$=\frac{15,000}{20 \%}$	$=33.33 \%$
$=\frac{\text { Fixed cost }}{\text { P/V Ratio }}$	$=$ Rs 75,000	$=\frac{35,000}{33.33 \%}$
	$=$ Rs $1,05,000$	

(b) (i) Once the fixed cost is recovered, a firm with higher P/V ratio would earn higher profits. Thus, $C D$ Ltd., would be better placed when there is heavy demand.
(ii) When demand for the product is low, a firm with lower fixed cost would be better placed. Thus, in the given problem, $A B$ Ltd., would start earning profit once it recovers Rs 15,000 of fixed cost while $C D$ Ltd., can earn profit only after earning Rs 35,000 to meet its fixed cost. Thus, $A B$ Ltd., is likely to earn higher profits in periods of low demand.
36. Given, Sales $1,00,000$ units @ Rs 20 per unit,

$$
\text { Fixed cost }=\text { Rs 7,92,000 }
$$

Variable cost = Rs 14/unit

Thus, \quad Contribution margin $=$ Rs $20-14-$ Rs $6 /$ unit
(i) Break-even point (units) $=\frac{\text { Fixed cost }}{\text { Contribution margin }}$

$$
\begin{aligned}
& =\frac{7,92,000}{6} \\
& =1,32,000
\end{aligned}
$$

Also,

$$
P / V \text { ratio }=\frac{\text { Contribution margin }}{\text { Selling price }} \times 100
$$

$$
=\frac{6}{20} \times 100=30 \%
$$

Break-even sales $(\mathrm{Rs})=\frac{\text { Fixed cost }}{\text { P/V Ratio }}$

$$
\begin{aligned}
& =\frac{7,92,000}{30 \%} \\
& =\text { Rs } 26,40,000
\end{aligned}
$$

(ii) Required sales $=\frac{\text { Fixed cost }+ \text { Desired profit }}{\text { Contribution margin }}$

$$
\begin{aligned}
& =\frac{7,92,000+60,000}{6} \\
& =1,42,000 \text { units }
\end{aligned}
$$

(iii) Sales $=\frac{\text { Fixed cost }+ \text { Desired after }-\operatorname{Tax} \operatorname{profit}\left(1-\frac{1}{t}\right)}{\text { Contribution margin }}$

$$
\begin{aligned}
& =\frac{7,92,000+90,000\left(\frac{1}{1-0.50}\right)}{6} \\
& =1,62,000 \text { units }
\end{aligned}
$$

(iv) New fixed cost $=5,00,000 \times \frac{20}{100} \times \frac{110}{100}+4,00,000+2,92,000$

$$
\begin{aligned}
& =1,10,000+4,00,000+2,92,000 \\
& =\operatorname{Rs} 8,02,000
\end{aligned}
$$

$$
\text { Contribution margin }=20-\left[\frac{11}{2} \times \frac{110}{100}+\frac{11}{2}+3\right]
$$

$$
\begin{aligned}
& =\text { Rs } 5.45 \\
\text { Revised } B E P & =\frac{8,02,000}{5.45} \\
& =1,47,156 \text { units }
\end{aligned}
$$

37. (a) The contribution margin ratio (P / V ratio) is calculated here:

	P_{1}	P_{2}	P_{3}	P_{4}	Total
Sales (units)	3,800	4,800	6,000	2,000	
Unit price (Rs)	20	25	15	40	
Sales (Rs)	76,000	$1,20,000$	90,000	80,000	$3,66,000$
Variable Cost					
Per unit (Rs)	10	10	12	24	
Total VC (Rs)	38,000	48,000	72,000	48,000	$2,06,000$
Contribution (Rs)	38,000	72,000	18,000	32,000	$1,60,000$

$$
\begin{aligned}
\text { Contribution margin ratio } & =\frac{\text { Contribution }}{\text { Sales }} \times 100 \\
& =\frac{1,60,000}{3,66,000} \times 100=43.72 \% \\
\text { Break-even sales } & =\frac{\text { Fixed cost }}{C M \text { ratio }} \\
& =\frac{80,000}{43.72 \%}=\text { Rs } 1,83,000
\end{aligned}
$$

$$
\begin{aligned}
\text { Margin of safety } & =\frac{\text { Actual sales }- \text { Break-even sales }}{\text { Actual sales }} \\
& =\frac{3,66,000-1,83,000}{3,66,000} \\
& =50 \%
\end{aligned}
$$

38. Here Sales $=$ Rs $8,00,000$ and Margin of safety $=50 \%$. Thus, Break-even sales $=8,00,000-50 \%$ of $8,00,000=$ Rs 4,00,000
Now,

$$
\begin{aligned}
\text { Break-even sales } & =\frac{\text { Fixed cost }}{\text { P/V Ratio }} \\
4,00,000 & =\frac{\text { Fixed cost }}{40 \%}
\end{aligned}
$$

$$
\therefore \quad \text { Fixed Cost }=4,00,000 \times 40 \%=\text { Rs } 1,60,000
$$

To find profit at sales $=$ Rs $8,00,000:$

$$
\begin{aligned}
8,00,000 & =\frac{160,000+\text { Profit }}{\text { P/V Ratio }} \\
\therefore \quad \text { Profit } & =8,00,000 \times 40 \%-1,60,000 \\
& =\text { Rs } 1,60,000
\end{aligned}
$$

39. Here the output in year 1 and 2 is given to be 7,000 and 9,000 units respectively, while the unit price is Rs 100. Now, let the variable cost be Rs x per unit and the total fixed cost be Rs F. From the given information, we have

	Year 1	Year 2
Sales (Rs)	$7,00,000$	$9,00,000$
Variable cost	$7,000 x$	$9,000 x$
Contribution	$7,00,000-7,000 x$	$\frac{9,00,000-9,000 x}{}$
Fixed cost	F	F
Total profit (given)	$(10,000)$	10,000

From these, we have

$$
\begin{align*}
& 7,00,000-7,000 x-F=-10,000 \tag{i}\\
& 9,00,000-9,000 x-F=10,000 \tag{ii}
\end{align*}
$$

Solving (i) and (ii) simultaneously, we get $x=90$ and $F=80,000$. Thus, variable cost per unit $=$ Rs 90 and fixed cost $=$ Rs 80,000 . Now,

$$
\begin{aligned}
\text { Break-even point (units) } & =\frac{\text { Fixed cost }}{\text { Contribution margin }} \\
& =\frac{80,000}{100-90} \\
& =8,000 \\
\text { Total sales (profit }=\text { Rs } 50,000) & =\frac{\text { Fixed cost }+ \text { Profit }}{\text { Contribution margin }} \\
& =\frac{80,000+50,000}{10} \\
& =13,000
\end{aligned}
$$

Accordingly,
(a) Fixed cost $=$ Rs 80,000
(b) Number of units to break-even $=8,000$
(c) Number of units to earn a profit of Rs $50,000=13,000$
40. (a) We first calculate the overall P / V ratio as follows:

	Ace	Utility	Luxury	Supreme	Total
Sales-mix	$\frac{100}{3} \%$	$\frac{125}{3} \%$	$\frac{50}{3} \%$	$\frac{25}{3} \%$	100\%
Sales	2,00,000	2,50,000	1,00,000	50,000	6,00,000
Less:					
Variable cost	1,20,000	1,70,000	80,000	20,000	3,90,000
Contribution margin	80,000	80,000	20,000	30,000	1,10,000

$$
\begin{aligned}
\text { Overall } P / V \text { ratio } & =\frac{\text { Contribution }}{\text { Sales }} \times 100 \\
& =\frac{2,10,000}{6,00,000} \times 100=35 \% \\
\text { Break-even point } & =\frac{\text { Fixed cost }}{P / V \text { Ratio }} \\
& =\frac{1,59,000}{35 \%}=\operatorname{Rs} 4,54,285.71
\end{aligned}
$$

(b) Break-even point under new proposal is shown calculated here.

	Ace	Utility	Luxury	Supreme	Total
Sales-mix	25%	40%	30%	5%	100%
Sales	$1,50,000$	$2,40,000$	$1,80,000$	30,000	$6,00,000$
Less:					
Variable cost	90,000	$1,63,200$	$\frac{1,44,000}{36,000}$	$\frac{12,000}{18,000}$	$\frac{4,09,200}{1,90,800}$
Contribution margin	60,000		76,800		

$$
\begin{aligned}
\text { New } P / V \text { ratio } & =\frac{1,90,800}{6,00,000} \times 100=31.8 \% \\
\text { Break-even point } & =\frac{1,59,000}{31.8 \%} \\
& =\operatorname{Rs} 5,00,000
\end{aligned}
$$

CHAPTER 19

1. The required values are given in third to fifth columns of table. The three-monthly values are obtained as $(220+228+217) / 3=221.67,(228+217+219) / 3=221.33$ and so on. Similarly, five-monthly values are obtained by considering five monthly-data. The last column contains moving averages calculated by using weights in the given ratio.

Calculation of Forecasted Demand

Month	Demand Y	3-monthly Moving Average	5-monthly Moving Average	4-monthly Moving Average (weighted)
1	220			
2	228			
3	217	221.67		
4	219	221.33		
5	258	231.33	228.40	157.20
6	241	239.33	232.60	220.30
7	239	246.00	234.80	235.10
8	244	241.33	240.20	239.30
9	256	246.33	247.60	241.40
10	260	253.33	248.00	243.30
11	265	260.33	252.80	247.50

2.

Calculation of Moving Averages

Year	Profit	4-yearly Moving Average	5 -yearly Moving Average
1994	48		
1995	53		
1996	55		
1997	56	53.00	54.00
1998	58	58.00	57.00
1999	63	61.25	60.00
2000	68	62.25	61.00
2001	60	63.00	62.00
2002	61	64.25	64.00
2003	68	61.75	63.00
2004	58	62.50	62.00
2005	63	64.75	64.00
2006	70	66.75	67.00
2007	76	73.00	70.00
2008	83	79.25	76.00
2009	88		
2010			

Forecasting of Demand: Exponential Smoothing

	Year and Quarter, t	Demand Y_{t}	$\begin{gathered} \text { Forecast }\left(F_{t}\right) \\ \alpha=0.1 \end{gathered}$	$\alpha=0.3$
2005	I	70		
	II	160	70.00	70.00
	III	110	79.00	97.00
	IV	200	82.10	100.90
2006	I	90	93.89	130.63
	II	120	93.50	118.44
	III	60	96.15	118.91
	IV	110	92.54	101.24
2007	I	100	94.28	103.87
	II	190	94.85	102.71
	III	150	104.37	128.89
	IV	300	108.93	135.23
2008	I	270	128.04	184.66
	II	350	142.23	210.26
	III	320	163.01	252.18
	IV		178.71	272.53

The actual and forecasted demand values are shown plotted in the figure.

Calculation of MAD: With the help of actual and forecasted demand values, forecast errors, defined as absolute differences between various pairs of such values $\left|Y_{t}-F_{t}\right|$, are calculated. These are presented in table below. The mean absolute difference (MAD) when $\alpha=0.1$ is found to be 83.37 , and when $\alpha=0.3$, it is 62.99. Thus, $\alpha=0.3$ is more appropriate of the two.

Calculation of Forecast Error, MAD

Year Quarter		$\begin{gathered} \text { Demand } \\ Y_{t} \end{gathered}$	Forecast		Error, $\left\|Y_{t}-F_{t}\right\|$		
		$\alpha=0.1$	$\alpha=0.3$	$\overline{\alpha=0.1}$	$\alpha=0.3$		
2005	I		70				
	II	160	70.00	70.00	90.00	90.00	
	III	110	79.00	97.00	31.00	13.00	
	IV	200	82.10	100.90	117.90	99.10	
2006	I	90	93.89	130.63	3.89	40.63	
	II	120	93.50	118.44	26.50	1.56	
	III	60	96.15	118.91	36.15	58.91	
	IV	110	92.54	101.24	17.46	8.76	
2007	I	100	94.28	103.87	5.72	3.87	
	II	190	94.85	102.71	95.15	87.29	
	III	150	104.37	128.89	45.63	21.11	
	IV	300	108.93	135.23	191.07	164.77	
2008	I	270	128.04	184.66	141.96	85.34	
	II	350	142.23	210.26	207.77	139.74	
	III	320	163.01	252.18	156.99	67.82	
	IV		178.71	272.53			
				MAD	83.37	62.99	

The exponential smoothing method does not appear to be appropriate method of forecasting in this case in view of relatively large forecasting error observed.
4.

Forecasting: Exponential Smoothing

Year	Quarter	Value Y_{t}	$\begin{gathered} \text { Forecast } \\ F_{t} \end{gathered}$	α	$\begin{gathered} \text { Error } \\ \left\|Y_{t}-F_{t}\right\| \end{gathered}$	Cumulative Error	$M A D$
2005	I	70	-	-	-	-	-
	II	160	70.00	-	90.00	90.00	90.00
	III	110	142.00	0.8	32.00	122.00	61.00
	IV	200	116.40	0.8	83.60	205.60	68.53
2006	I	90	183.28	0.8	93.28	298.88	74.72
	II	120	108.66	0.8	11.34	310.22	62.04
	III	60	117.73	0.8	57.73	367.95	61.33
	IV	110	71.55	0.8	38.45	406.42	58.06
2007	I	100	83.09	0.3	16.91	423.31	52.91
	II	190	88.16	0.3	101.84	525.15	58.35
	III	150	118.71	0.3	31.29	556.44	55.64
	IV	300	128.10	0.3	171.90	728.34	66.22
2008	I	270	365.62	0.8	4.38	732.72	61.06
	II	350	269.12	0.8	80.88	813.60	62.58
	III	320	333.82	0.8	13.82	827.42	59.10
	IV	-	329.67	0.3	-	-	-

5. (i) The constants a and b for the trend line $Y_{t}=a+b X$ can be obtained by solving the following pair of equations simultaneously.

$$
\begin{align*}
\Sigma Y & =n a+b \Sigma X \tag{i}\\
\Sigma X Y & =a \Sigma X+b \Sigma X^{2} \tag{ii}
\end{align*}
$$

Obtaining Trend Equation

Year	X	Demand (Y)	$X Y$	X^{2}	Y_{t}
2002	0	77	0	0	83
2003	1	88	88	1	85
2004	2	94	188	4	87
2005	3	95	255	9	89
2006	4	98	364	16	91
2007	5	90	590	25	93
2008	6	623	1,925	36	95
Total	21		91		

Substituting the calculated value in the two equations, we get

$$
\begin{aligned}
623 & =7 a+21 b \\
1,925 & =21 a+91 b
\end{aligned}
$$

Solving these equations simultaneously, we get $a=83$ and $b=2$. Accordingly, the trend equation is:

$$
\begin{aligned}
& Y_{t}=83+2 X \\
& \text { Origin: } 2002 \\
& X \text { unit: } 1 \text { Year } \\
& Y \text { unit: Annual demand (‘} 000 \mathrm{mt})
\end{aligned}
$$

(ii) The trend values for various years may be obtained by substituting the relevant X values in the trend equation. These are given in the last column of the table. Further, the actual and the trend values are shown graphically here.

(iii) Forecast for year 2010

$$
\begin{aligned}
\text { With } 2002 & =0, \text { the } X \text {-value for } 2010 \text { is } 8 . \text { Thus, } \\
Y_{t}(2010) & =83+2 \times 8 \\
& =99\left({ }^{\prime} 000 \mathrm{mt}\right)
\end{aligned}
$$

6.

Obtaining the Trend Equation

Year	X	Demand (Y)	$X Y$	X^{2}
2002	-3	80	-240	9
2003	-2	84	-168	4
2004	-1	90	-90	1
2005	0	93	0	0
2006	1	98	98	1
2007	2	100	200	4
2008	3	104	312	9
Total	0	649	112	28

Since

$$
\Sigma X=0, \text { we have }
$$

$$
\begin{aligned}
a & =\frac{\Sigma Y}{n}, \text { and } & b & =\frac{\Sigma X Y}{\Sigma Y^{2}} \\
& =\frac{649}{7}=92.7 & & =\frac{112}{28}=4
\end{aligned}
$$

Accordingly, the trend equation is:
$Y_{t}=92.7+4 X$
Origin: 2005
X : 1 Year
Y unit: Annual demand of steel ingots (in millions)
$Y_{t}(2010)=92.7+4 \times 4=108.7 \mathrm{~m}$
7. Here the data given are as monthly demand for motor fuel. For obtaining straight line trend, they are first converted into yearly totals. The calculations for obtaining a and b are given in the table.

Obtaining Straight Line Trend

Year	X	Demand (Y)	$X Y$	X^{2}
1998	-5	732	$-3,660$	25
1999	-4	792	$-3,168$	16
2000	-3	864	$-2,592$	9
2001	-2	912	$-1,824$	4
2002	-1	984	-984	1
2003	0	1,080	0	0
2004	1	1,152	1,152	1
2005	2	1,200	2,400	4
2006	3	1,236	3,708	9
2007	4	1,320	5,280	16
2008	5	1,368	6840	25
Total	0	11,640	7,152	110

Here
$\Sigma X=0$. Thus, we have,

$$
\begin{aligned}
a & =\frac{\Sigma Y}{n}, & b & =\frac{\Sigma X Y}{\Sigma Y^{2}} \\
& =\frac{11,640}{11} & & =\frac{7,152}{110} \\
& =1,058.18 & & =65.02
\end{aligned}
$$

The trend equation is:

$$
Y_{t}=1,058.18+65.02 X
$$

Origin: 2003
X unit: 1 Year
Y unit: Annual Demand

$$
Y_{t}(2009)=1,058.18+65.02 \times 7
$$

$$
=1,513.32 \text { million barrels }
$$

8. The given data are reproduced in the table where the average values for various months are also given. Thus, for January the average sales is $(46+45+42) / 3=44.33$ thousand rupees. The overall average for the twelve months works out to be 43.67 thousand rupees. Seasonal indices for various months are calculated as the ratio of the monthly averages to overall average, expressed as percentages. Finally, the sales estimates are obtained as: seasonal index \times average monthly sales $/ 100$. Thus, for January, we have ($101.53 \times$ $5,60,000 / 12) \times 100=\operatorname{Rs} 47,379$.

Seasonal Indices and Monthly Sales Schedule

Month	Year							Average	Seasonal Index	Expected Sales (Rs)
	2006	2007	2008		101.53	47.379				
Jan	46	45	42	44.33	99.24	46,310				
Feb	45	44	41	43.33	96.95	45,242				
Mar	44	43	40	42.33	103.82	48,448				
Apr	46	46	44	45.33	103.82	48,448				
May	45	46	45	45.33	104.58	48,804				
Jun	47	45	45	46.67	106.11	49,517				
Jul	46	47	46	42.67	97.71	45,598				
Aug	43	42	41	41.33	94.66	44,173				
Sep	40	43	40.67	93.13	43.461					
Oct	40	42	42	96.18	44,886					
Nov	41	43	45	102.29	47,735					
Dec	45	44								

9. The least square regression equation of Y on X is given by $Y=a+b X$. The constants a and b for this equation may be obtained as follows:

$$
\begin{aligned}
& b=\frac{\Sigma X Y-n \bar{X} \bar{Y}}{\Sigma X^{2}-n \bar{X}^{2}} ; \text { and } \\
& a=\bar{Y}-b \bar{X}
\end{aligned}
$$

Obtaining Regression Equation

	X	Y	XY	X^{2}
	89	92	8,188	7,921
	86	91	7,826	7,396
	74	84	6,216	5,476
	65	75	4,875	4,225
	64	73	4,672	4,096
	63	72	4,536	3,969
	66	71	4,686	4,356
	67	75	5,025	4,489
	72	78	5,616	5,184
	79	84	6,636	6,241
Total	725	795	58,276	53.353

Here,

$$
\bar{X}=\Sigma X / n=725 / 10=72.5, \text { and }
$$

$$
\bar{Y}=\Sigma Y / n=795 / 10=79.5 .
$$

Thus,

$$
\begin{aligned}
b & =\frac{58,276-10 \times 72.5 \times 79.5}{53,353-10 \times 72.5^{2}} \\
& =\frac{638.5}{790.5}=0.8077 \\
a & =79.5-0.8077 \times 72.5 \\
& =20.9405
\end{aligned}
$$

The regression equation, therefore, is

$$
Y=20.9405+0.8077 X
$$

Forecasts:
For $\quad X=70, Y=20.9405+0.8077 \times 70$

$$
=77.48
$$

For $\quad X=85, Y=20.9405+0.8077 \times 85$

$$
=89.60
$$

10. To fit the required regression equations, we first calculate the returns on indices and on the share. For example, the index moves from 1376.15 to 1388.75 in the first instance. We have the return as (1388.75 $1376.15) / 1376.15=0.9156$ per cent. The index returns are denoted as X-variable while the share returns as Y-variable.

Obtaining Regression Coefficients

Day	Index	Share Prince	Index Returns, X	Share Returns, Y	$X Y$	X^{2}
1	$1,376.15$	818.35				
2	$1,388.75$	811.75	0.9156	-0.8065	-0.738430	0.838319
3	$1,408.85$	819.85	1.4473	0.9978	1.444224	2.094807
4	$1,418.00$	836.05	0.6495	1.9760	1.283326	0.421806
5	$1,442.85$	815.65	1.7525	-2.4400	-4.276102	3.071145
6	$1,445.15$	804.30	0.1594	-1.3915	-0.221819	0.025411
7	$1,438.65$	801.30	-0.4498	-0.3730	0.167766	0.202302
8	$1,447.55$	792.30	0.6186	-1.1232	-0.694836	0.382710
9	$1,439.70$	778.30	-0.5423	-1.7670	0.958240	0.294085
10	$1,427.65$	740.95	-0.8370	-4.7989	4.016600	0.700535
11	$1,398.25$	718.35	-2.0593	-3.0501	6.281236	4.240833
12	$1,401.40$	737.50	0.2253	2.6658	0.600563	0.050752
13	$1,419.70$	735.55	1.3058	-0.2644	-0.345272	1.705210
		Total	3.1857	-10.3751	8.475496	14.027915

Further,

$$
\begin{aligned}
& \bar{X}=\frac{\Sigma X}{n}, \quad \text { and } \quad \bar{Y}=\frac{\Sigma Y}{n} \\
& =\frac{3.1857}{12}=0.2655 \quad=\frac{-10.3751}{12}=-0.8646
\end{aligned}
$$

Now, the constants a and b for the regression equation $Y=a+b X$ may be obtained as follows:

$$
\begin{aligned}
b & =\frac{\Sigma X Y-n \bar{X} \bar{Y}}{\Sigma X^{2}-n \bar{X}^{2}} \\
& =\frac{8.475496-12 \times 0.2655 \times(-0.8646)}{14.027915-12 \times 0.2655^{2}} \\
& =0.8519 \\
a & =\bar{Y}-b \bar{X} \\
& =-0.8646-0.8519 \times 0.2655 \\
& =-1.0907
\end{aligned}
$$

Accordingly, the regression equation is:

$$
Y=-1.0907+0.8519 X
$$

The regression coefficient 0.8519 implies that a 1% increase in index would cause 0.8519% increase in the share price.
Estimation:
For

$$
\begin{aligned}
X & =12, Y=-1.0907+0.8519 \times 12 \\
& =9.1321 \%
\end{aligned}
$$

11. (i) Let Y, X_{1}, and X_{2} represent sales, advertising, and price respectively. The required regression equation is:

$$
Y=a+b_{1} X_{1}+b_{2} X_{2}
$$

The parameters a, b_{1}, and b_{2} for this can be obtained from the following normal equations:

$$
\begin{aligned}
\Sigma Y & =n a+b_{1} \Sigma X_{1}+b_{2} \Sigma X_{2} \\
\Sigma X_{1} Y & =a \Sigma X_{1}+b_{1} \Sigma X_{1}^{2}+b_{2} \Sigma X_{1} X_{2} \\
\Sigma X_{2} Y & =a \Sigma X_{2}+b_{1} \Sigma X_{1} X_{2}+b_{2} \Sigma X_{2}^{2}
\end{aligned}
$$

Calculation of Regression Coefficients

Y	X_{1}	X_{2}	$X_{1} Y$	$X_{2} Y$	$X_{1} Y_{2}$	X_{1}^{2}	X_{2}^{2}
33	3	125	99	4,125	375	9	15,625
61	6	115	366	7,015	690	36	13,225
70	10	140	700	9,800	1,400	100	19,600
82	13	130	1,066	10,660	1,690	169	16,900
17	9	145	153	2,465	1,305	81	21,025
	24	6	140	144	3,360	840	36
Total	287	47	795	2,528	37,425	6,300	431

Substituting the calculated values in the equations given earlier, we get

$$
\begin{aligned}
6 a+47 b_{1}+795 b_{2} & =287 \\
47 a+431 b_{1}+6,300 b_{2} & =2,528 \\
795 a+6,300 b_{1}+1,05,975 b_{2} & =37,425
\end{aligned}
$$

Solving the three equations simultaneously, we get
$a=219.23, b_{1}=6.3815$, and $b_{2}=-1.6708$. The regression equation, therefore, is:
$Y=219.23+6.3815 X_{1}-1.6708 X_{2}$
(ii) For $X_{1}=7$ and $X_{2}=132$;

$$
\begin{aligned}
Y & =219.23+6.3815 \times 7-1.6708 \times 132 \\
& =43.25 \text { or } 43 \text { approx. }
\end{aligned}
$$

12. The regression equation is $Y=a+b_{1} X_{1}+b_{2} X_{2}$.

The parameters a, b_{1}, and b_{2} are obtainable as follows:

$$
\begin{aligned}
\Sigma Y & =n a+b_{1} \Sigma X_{1}+b_{2} \Sigma X_{2} \\
\Sigma X_{1} Y & =a \Sigma X_{1}+b_{1} \Sigma X_{1}^{2}+b_{2} \Sigma X_{1} X_{2} \\
\Sigma X_{2} Y & =a \Sigma X_{2}+b_{1} \Sigma X_{1} X_{2}+b_{2} \Sigma X_{2}^{2}
\end{aligned}
$$

Obtaining of Regression Parameters

Y	X_{1}	X_{2}	$X_{1} Y$	$X_{2} Y$	$X_{1} Y_{2}$	X_{1}^{2}	X_{2}^{2}
72	12	5	864	360	60	144	25
76	11	8	836	608	88	121	64
78	15	6	1,170	468	90	225	36
70	10	5	700	350	50	100	25
68	11	3	748	204	33	121	9
80	16	9	1,280	720	144	256	81
82	14	12	1,148	984	168	196	144
65	8	4	520	260	32	64	16
62	8	3	496	186	24	64	9
90	18	10	1,620	900	180	324	100
743	123	65	9,382	5,040	869	1,615	509

From the calculations, we have

$$
\begin{aligned}
10 a+123 b_{1}+65 b_{2} & =743 \\
123 a+1,615 b_{1}+869 b_{2} & =9,382 \\
65 a+869 b_{1}+509 b_{2} & =5,040
\end{aligned}
$$

Solving these equations, we get $a=47.1649, b_{1}=1.599$, and $b_{2}=1.1487$. The regression equation is:

$$
Y=47.1649+1.599 X_{1}+1.1487 X_{2}
$$

Estimation: For $X_{1}=13$ and $X_{2}=7$ (since original values are in thousands), we have

$$
\begin{aligned}
Y & =47.1649+1.599 \times 13+1.1487 \times 7 \\
& =76
\end{aligned}
$$

Thus, approximate sales $=$ Rs 76,000.

[^0]: 19.

